Homework \#6 - Continuity of a function, properties of continuous functions

PARTIAL SOLUTIONS

Exercise 1. Determine where the given functions are continuous. Explain clearly. (First, find the domain of the given functions.)

1. $f(x)=|x-1|$.

The domain of the function f is $D=\mathbb{R}$. Fix $a \in \mathbb{R}$ arbitrary, and let us prove that f is continuous at a. Let $\varepsilon>0$. For all $x \in \mathbb{R}$, we have by the triangle inequality

$$
\begin{equation*}
|f(x)-f(a)|=||x-1|-|a-1|| \leq|(x-1)-(a-1)|=|x-a| . \tag{1}
\end{equation*}
$$

So, choose $\delta=\varepsilon$. Hence, if $|x-a| \leq \delta=\varepsilon$, then from (1),

$$
|f(x)-f(a)| \leq|x-a| \leq \varepsilon
$$

This proved continuity of f at a. Since $a \in \mathbb{R}$ was arbitrary, this shows that f is continuous on \mathbb{R}.
2. $f(x)=\frac{|x|}{x}$.

The domain of f is $D=\mathbb{R} \backslash\{0\}$. Note that if $x<0$, then $f(x)=-1$, and if $x>0$, then $f(x)=1$. Hence, it is easy to check that f is continuous on $\mathbb{R} \backslash\{0\}$.
3.
$f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}$
The domain of f is $D=[0,+\infty) . f$ is not continuous at 0 . One way to prove this is to use the sequential equivalent property of continuity.

Recall that a function f is continuous at a if and only if for all sequence $\left\{x_{n}\right\}$ that converges to a, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(a)$.

Here, consider $x_{n}=\frac{1}{n}, n \geq 1$. We have $\lim _{n} x_{n}=0$, however $\lim _{n} f\left(x_{n}\right)=1 \neq 0=f(0)$. This shows that f is not continuous at 0

Exercise 2. Prove that if the functions $f, g: D \rightarrow \mathbb{R}$ are continuous at a, then the given functions are also continuous at a.

1. $|f|$

Assume that f is continuous at a. Fix $\varepsilon>0$. Since f is continuous at a, there exists $\delta>0$ such that for all $x \in D$, if $|x-a| \leq \delta$, then $|f(x)-f(a)| \leq \varepsilon$.
In particular, for all $x \in D$, if $|x-a| \leq \delta$, then by the triangle inequality

$$
||f(x)|-|f(a)|| \leq|f(x)-f(a)| \leq \varepsilon .
$$

This proves that $|f|$ is continuous at a (same δ as for f).

