University of Florida

Homework #6 – Continuity of a function, properties of continuous functions

PARTIAL SOLUTIONS

Exercise 1. Determine where the given functions are continuous. Explain clearly. (First, find the domain of the given functions.)

1. f(x) = |x - 1|.

The domain of the function f is $D = \mathbb{R}$. Fix $a \in \mathbb{R}$ arbitrary, and let us prove that f is continuous at a. Let $\varepsilon > 0$. For all $x \in \mathbb{R}$, we have by the triangle inequality

$$|f(x) - f(a)| = ||x - 1| - |a - 1|| \le |(x - 1) - (a - 1)| = |x - a|.$$
(1)

So, choose $\delta = \varepsilon$. Hence, if $|x - a| \le \delta = \varepsilon$, then from (1),

 $|f(x) - f(a)| \le |x - a| \le \varepsilon.$

This proved continuity of f at a. Since $a \in \mathbb{R}$ was arbitrary, this shows that f is continuous on \mathbb{R} .

2. $f(x) = \frac{|x|}{x}$.

The domain of f is $D = \mathbb{R} \setminus \{0\}$. Note that if x < 0, then f(x) = -1, and if x > 0, then f(x) = 1. Hence, it is easy to check that f is continuous on $\mathbb{R} \setminus \{0\}$.

3.

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

The domain of f is $D = [0, +\infty)$. f is not continuous at 0. One way to prove this is to use the sequential equivalent property of continuity.

Recall that a function f is continuous at a if and only if for all sequence $\{x_n\}$ that converges to a, the sequence $\{f(x_n)\}$ converges to f(a).

Here, consider $x_n = \frac{1}{n}$, $n \ge 1$. We have $\lim_n x_n = 0$, however $\lim_n f(x_n) = 1 \ne 0 = f(0)$. This shows that f is not continuous at 0

Exercise 2. Prove that if the functions $f, g: D \to \mathbb{R}$ are continuous at a, then the given functions are also continuous at a.

1. |f|

Assume that f is continuous at a. Fix $\varepsilon > 0$. Since f is continuous at a, there exists $\delta > 0$ such that for all $x \in D$, if $|x - a| \le \delta$, then $|f(x) - f(a)| \le \varepsilon$.

In particular, for all $x \in D$, if $|x - a| \leq \delta$, then by the triangle inequality

 $\left| |f(x)| - |f(a)| \right| \le |f(x) - f(a)| \le \varepsilon.$

This proves that |f| is continuous at a (same δ as for f).