Homework \#7 - Uniform Continuity

PARTIAL SOLUTIONS

Exercise 1. Determine whether or not the given functions are uniformly continuous.

1. $f(x)=\frac{1}{x}$, with $x \in(0,1]$

NO
2. $f(x)=x^{3}$, with $x \in[0,2)$

YES
5. $f(x)=\frac{1}{x^{2}}$, with $x \in[1,+\infty)$

YES

Exercise 2. If f and g are uniformly continuous on D, prove that:
4. If D is bounded, then f is bounded.

Take $\varepsilon=1$. Since f is uniformly continuous on D, there exists $\delta>0$ such that for all $x, y \in D$, if $|x-y| \leq \delta$, then $|f(x)-f(y)| \leq 1$.
Since D is bounded, there exists $N \in \mathbb{N}$ such that

$$
D \subset[-N \delta, N \delta] .
$$

Assume, without loss of generality, that for all $k \in\{-N, \ldots, N-1\}$,

$$
[k \delta,(k+1) \delta] \cap D \neq \emptyset .
$$

For each $k \in\{-N, \ldots, N-1\}$, choose $x_{k} \in[k \delta,(k+1) \delta] \cap D$. Now, let $x \in D$ be arbitrary. Then, there exists $k_{0} \in\{-N, \ldots, N-1\}$ such that $\left|x-x_{k_{0}}\right| \leq \delta$. (Exercise. Draw a picture to help.)
Since $\left|x-x_{k_{0}}\right| \leq \delta$, we have $\left|f(x)-f\left(x_{k_{0}}\right)\right| \leq 1$. We deduce, by the triangular inequality, that

$$
|f(x)| \leq\left|f\left(x_{k_{0}}\right)\right|+1 \leq M+1,
$$

where $M=\sup _{k \in\{-N, \ldots, N-1\}}\left|f\left(x_{k}\right)\right|<+\infty$ (it is finite because we are taking the supremum over a finite set).

Exercise 3. Give an example of a function $f_{1}, f_{2}, f_{3}, f_{4}$ that satisfies each of the given conditions.
3. f_{3} uniformly continuous on $[0,+\infty)$ with $\lim _{x \rightarrow+\infty} f_{3}(x)=-\infty$.

Consider $f_{3}(x)=-x$, defined on \mathbb{R}.
Exercise 4. Give an example of a function f with a Lipschitz constant $L \geq 1$, such that

1. f has no fixed points.

Consider $f(x)=x+1$, defined on \mathbb{R}.

