Homework \#9 - Properties of differentiable function, Mean value theorems

PARTIAL SOLUTIONS

Exercise 1.

Recall that f even means $f(-x)=f(x)$ and f odd means $f(-x)=-f(x)$.

1. Since f is differentiable and even,

$$
\begin{aligned}
& f^{\prime}(-x)=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h} \\
= & -\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{-h}=-\lim _{H \rightarrow 0} \frac{f(x+H)-f(x)}{H}=-f^{\prime}(x) .
\end{aligned}
$$

Exercise 4.

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

Exercise 5.

$f(x)=1$ on $[0,1]$. In this case, we have $f^{\prime}(x)=1$ for all $x \in[0,1]$, and f attains its maximum at 1 and its minimum at 0 .

Exercise 6.

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin ^{2}\left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

