Homework \#9 - Properties of differentiable function, Mean value theorems

## PARTIAL SOLUTIONS

## Exercise 10.

The function $f(x)=x^{3}-x$ is continuous on $[0,1]$, differentiable on $(0,1)$, and satisfies $f(0)=f(1)=0$. Hence by the Rolle theorem, there exists $c \in(0,1)$ such that

$$
f^{\prime}(c)=0 .
$$

Since $f^{\prime}(x)=3 x^{2}-1$, we conclude that there exists $c \in(0,1)$ such that

$$
3 c^{2}-1=0 .
$$

## Exercise 12.

1. Let $x, y \in(a, b)$, with $x \neq y$. Since $f$ is differentiable on $(a, b), f$ is continuous on $[x, y]$ and differentiable on $(x, y)$. Hence, by the mean value theorem, there exists $c$ between $x$ and $y$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c) .
$$

By assumption, $f^{\prime}$ is bounded on $(a, b)$, which means that

$$
\exists M>0, \forall c \in(a, b),\left|f^{\prime}(c)\right| \leq M
$$

We deduce that

$$
\left|\frac{f(y)-f(x)}{y-x}\right|=\left|f^{\prime}(c)\right| \leq M .
$$

We conclude that for all $x, y \in(a, b)$,

$$
|f(y)-f(x)| \leq M|y-x| .
$$

In particular, $f$ is a Lipschitz function on $(a, b)$, and thus $f$ is uniformly continuous on $(a, b)$.
2. Consider $f(x)=x \sin \left(\frac{1}{x}\right)$ on $(0,1)$.

## Exercise 13.

1. Let $r \geq 0$. If $x=0$, then the inequality clearly holds. Assume now that $x>0$, and consider the function $f(t)=(1+t)^{r}$ on $[0,+\infty)$. Since $f$ is continuous on $[0,+\infty)$, differentiable on $(0,+\infty)$, by the mean value theorem, there exists $c \in(0, x)$ such that

$$
\frac{f(x)-f(0)}{x-0}=f^{\prime}(c)
$$

Since $c>0,(1+c)^{r-1} \geq 1$, and thus

$$
f^{\prime}(c)=r(1+c)^{r-1} \geq r .
$$

We deduce that

$$
\frac{(1+x)^{r}-1}{x}=r(1+c)^{r-1} \geq r
$$

Multiplying both side by $x>0$, we have

$$
(1+x)^{r} \geq r x+1
$$

which is the desired inequality.
2. Same argument, applied to the function $f(x)=e^{x}$ :

- If $x=0$, then the inequality clearly holds.
- If $x<0$, then, Since $f$ is continuous and differentiable on $\mathbb{R}$, by the mean value theorem, there exists $c \in(x, 0)$ such that

$$
\frac{f(x)-f(0)}{x-0}=f^{\prime}(c)=e^{c}
$$

Since $c<0, e^{c} \leq 1$, and thus

$$
\frac{e^{x}-1}{x} \leq 1
$$

Multiplying both side by $x<0$ (hence reversing the inequality), we have

$$
e^{x} \geq 1+x
$$

- If $x>0$, the same argument applies.

