THE LIMIT OF A FUNCTION, \(f(x) \):

The limit of \(f(x) \) as \(x \) approaches \(a \) is denoted \(\lim_{x \to a} f(x) \). This limit determines the "value" of \(f(x) \) in a neighborhood around \(x \).

ONE-SIDED LIMIT:

* \(\lim_{x \to a^+} f(x) \) is the limit of \(f(x) \) as \(x \) approaches \(a \) from the right

* \(\lim_{x \to a^-} f(x) \) is the limit of \(f(x) \) as \(x \) approaches \(a \) from the left

* If \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \), then \(\lim_{x \to a} f(x) \) exists

* If \(\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x) \), then \(\lim_{x \to a} f(x) \) does not exist

HOW TO FIND LIMITS (WHEN \(x \) IS NOT APPROACHING \(\pm \infty \)):

* METHOD ONE: GRAPH THE FUNCTION AND FIND THE LIMIT BY ANALYZING THE GRAPH

* METHOD TWO: FIND LIMIT ALGEBRAICALLY

STEP ONE: Plug in the value that \(x \) is approaching. If you get an answer, then this is your limit

STEP TWO: Simplify \(f(x) \) and then plug in the value that \(x \) is approaching to the simplified \(f(x) \), if you get an answer, then this is your limit

STEP THREE: When you plug in the number that \(x \) is approaching, your answer will look like: \(\frac{\text{NUMBER}}{0} \). If
DISCUSS HOW TO SOLVE BELOW.

INFINITE LIMITS:

CONTINUING FROM STEP THREE ABOVE, IF YOU GET THE FORM
"NUMBER", THEN PLUG IN A NUMBER CLOSE TO THE NUMBER
0

BEING APPROACHED. (I TYPICALLY ALWAYS PLUG IN A NUMBER
WITHIN 0.1). THEN, ANALYZE THE SIGN.

EXAMPLE: \(\lim_{{x \to 2^+}} \frac{x}{x-2} = \frac{2}{2-2} = \frac{2}{0} \) "NUMBER"

SINCE \(x \to 2^+ \) CHOOSE A NUMBER TO THE RIGHT OF 2, SAY
2.1. \(x = 2.1 \) = \(\frac{2}{2.1-2} \) \(\frac{2}{0.1} \) \(\frac{2}{0} \) \(\frac{2}{0} \)

\[\lim_{{x \to 2^+}} \frac{x}{x-2} = +\infty \]

EXAMPLE: \(\lim_{{x \to 2^-}} \frac{x}{x-2} = \frac{2}{2-2} = \frac{2}{0} \) "NUMBER"

SINCE \(x \to 2^- \) CHOOSE A NUMBER TO THE LEFT OF 2, SAY
1.9. \(x = 1.9 \) = \(\frac{2}{1.9-2} \) \(\frac{2}{-0.1} \) \(\frac{2}{0} \) \(\frac{2}{0} \)

\[\lim_{{x \to 2^-}} \frac{x}{x-2} = -\infty \]

EXAMPLE: \(\lim_{{x \to 2}} \frac{x}{x-2} \) DOES NOT EXIST BECAUSE
\[\lim_{{x \to 2^+}} = +\infty \] \(\lim_{{x \to 2^-}} = -\infty \)

\[80 \lim_{{x \to 2^+}} \neq \lim_{{x \to 2^-}} \]
LIMITS TO REMEMBER:

\[\lim_{x \to 0^+} \frac{1}{x} = +\infty \]

\[\lim_{x \to 0} \ln(x) = -\infty \]

LIMIT LAWS:

\[\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \]

\[\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \]

\[\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \]

\[\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) \quad (c \text{ is a constant}) \]

\[\lim_{x \to a} f(g(x)) = f \left(\lim_{x \to a} g(x) \right) \]

\[\lim_{x \to a} [f(x)]^n = \left(\lim_{x \to a} f(x) \right)^n \]

SQUEEZE THEOREM:

If \(f(x) \leq g(x) \leq h(x) \) and \(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \), then also \(\lim_{x \to a} g(x) = L \).
HOW TO SOLVE:

1. START WITH A TRUE STATEMENT
2. MANIPULATE INEQUALITY UNTIL THE MIDDLE LOOKS LIKE YOUR ORIGINAL FUNCTION
3. TAKE THE LIMIT OF EACH PART OF THE INEQUALITY

EXAMPLE: \(\lim_{x \to 0} x^3 \cos(x) \)

1. \(-1 \leq \cos(x) \leq 1\) (BECUSE THE RANGE OF \(\cos(x) \) IS \([-1,1]\).)
2. \(-x^3 \leq x^3 \cos(x) \leq x^3\) (MULTIPLY BY \(x^3 \) TO GET ORIGINAL FUNCTION)
3. \(\lim_{x \to 0} -x^3 \leq \lim_{x \to 0} x^3 \cos(x) \leq \lim_{x \to 0} x^3\)

\(0 \leq \lim_{x \to 0} x^3 \cos(x) \leq 0\)

\(\Rightarrow \lim_{x \to 0} x^3 \cos(x) = 0\)

ABSOLUTE VALUE LIMITS: USE DEFINITION OF ABSOLUTE VALUE FUNCTION TO DETERMINE IF POSITIVE OR NEGATIVE.

EXAMPLE: \(\lim_{x \to 3^+} |x-3| \)

LOOK AT \(|x-3| \): WHEN \(x \to 3^+ \), \(x > 3 \) (BECAUSE \(x \) IS APPROACHING 3 FROM THE RIGHT AND 3 TO THE RIGHT OF 3 ARE BIGGER THAN 3), SO \(|x-3| = x-3 \)

\(\Rightarrow \lim_{x \to 3^+} |x-3| = \lim_{x \to 3^+} x - 3 = 1 \)
Example: \(\lim_{x \to 3^-} \frac{|x-3|}{x^2 - 9} \)

Look at \(|x-3| \): When \(x \to 3^- \), \(x < 3 \) (because \(x \) is approaching \(3 \) from the left, and \(x \)'s to the right of \(3 \) are smaller than \(3 \)), so \(|x-3| = -(x-3) \)

\[
\Rightarrow \lim_{x \to 3^-} \frac{|x-3|}{x^2 - 9} = \lim_{x \to 3^-} \frac{-(x-3)}{(x+3)(x-3)} = \lim_{x \to 3^-} \frac{-1}{x+3} = -\frac{1}{6}
\]

Note: \(|x| = \begin{cases} \frac{x}{x} & x > 0 \\ -x & x < 0 \end{cases} \)