Interval on Which a Function is Increasing or Decreasing:

If \(f(x) \) is increasing if \(f'(x) > 0 \)

If \(f(x) \) is decreasing if \(f'(x) < 0 \)

Concavity and Point of Inflection:

If \(f' \) is increasing over an interval \(I \), then \(f \) is concave up over \(I \).

If \(f' \) is decreasing over an interval \(I \), then \(f \) is concave down over \(I \).

* If \(f''(x) > 0 \) for all \(x \in [a, b] \) \(\Rightarrow \) \(f \) is concave up over \([a, b] \)

* If \(f''(x) < 0 \) for all \(x \in [a, b] \) \(\Rightarrow \) \(f \) is concave down over \([a, b] \).

If \(f \) is continuous at a point \(x \) and if \(f \) changes concavity at \(x \), then \((x, f(x)) \) is an inflection point of \(f \).

To Find Inflection Points:

1. Determine where \(f \) changes concavity
2. Evaluate \(f \) at the values found in 1

L'Hospital's Rule:

Suppose that \(f \) and \(g \) are differentiable and \(g'(x) \neq 0 \) near \(a \). Suppose that either

1. \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \)

or

2. \(\lim_{x \to a} f(x) = \pm \infty \) and \(\lim_{x \to a} g(x) = \pm \infty \)

Then, \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \) if it exists, or is \(\pm \infty \).

This is an indeterminate form \(0/0 \) or \(\infty/\infty \).

L'Hospital's Rule Applied to Indeterminate Products:
IF \(\lim_{x \to a} f(x) = 0 \) AND \(\lim_{x \to a} g(x) = \pm \infty \), THEN TO FIND \(\lim_{x \to a} f(x)g(x) \), WE FIND

\[\lim_{x \to a} \frac{g(x)}{f(x)} \] (THIS IS OK BECAUSE \(g(x) = g(x) \cdot \frac{f(x)}{f(x)} \))

↑

NOW, THIS IS INDETERMINANT FORM \(\frac{0}{\infty} \)

L'HÔPITAL'S RULE APPLIED TO INDETERMINANT DIFFERENCES:

IF \(\lim_{x \to a} f(x) = \infty \) AND \(\lim_{x \to a} g(x) = \infty \), THEN TO FIND \(\lim_{x \to a} f(x) - g(x) \), REWRITE \(f(x) - g(x) \)

AS A SINGLE FRACTION, AND THEN APPLY L'HÔPITAL'S RULE.

L'HÔPITAL'S RULE APPLIED TO INDETERMINANT POWERS:

WANT TO FIND \(\lim_{x \to a} f(x)^{g(x)} \), BUT WE OBTAIN THE INDETERMINANT FORM \(\infty^0 \), \(0^0 \)

OR \(\infty^\infty \). THEN, FOLLOW THE STEPS BELOW TO FIND THE LIMIT:

1. **LET** \(y = f(x)^{g(x)} \)

2. **TAKE** \(\ln \) **OF BOTH SIDES** AND **USE PROPERTIES** **OF \(\ln \) TO SIMPLIFY:**

\[\ln(y) = \ln(f(x)^{g(x)}) = g(x) \ln(f(x)) \]

3. **TAKE THE LIMIT AS** \(x \to a \) **OF BOTH SIDES:**

\[\lim_{x \to a} \ln(y) = \lim_{x \to a} \{g(x) \ln(f(x))\} \]

4. **USE AN APPROPRIATE APPLICATION OF L'HÔPITAL'S RULE TO FIND THE LIMIT OF**

\[\lim_{x \to a} \{g(x) \ln(f(x))\} \]

SAID YOU FIND THAT \(\lim_{x \to a} \{g(x) \ln(f(x))\} = L \) \((L \) \(CAN \) \(BE \) \(\infty \)\)

5. **SINCE** \(\lim_{x \to a} \{g(x) \ln(f(x))\} = L \), WE HAVE \(\lim_{x \to a} \ln(y) = L \).
(6) Since \(\ln \) is continuous, rewrite as follows:

\[
\lim_{x \to a} \ln(y) = L \iff \ln \left(\lim_{x \to a} y \right) = L
\]

(7) Solve \(\ln \left(\lim_{x \to a} y \right) = L \) as follows:

\[
\ln \left(\lim_{x \to a} y \right) = L \\
\Rightarrow e^{\ln \left(\lim_{x \to a} y \right)} = e^L \\
\Rightarrow \lim_{x \to a} y = e^L
\]

Then, since \(y = f(x)^{g(x)} \), we have

\[
\lim_{x \to a} f(x)^{g(x)} = e^L
\]