6 Polynomial Functions

6.1 End and Zero Behavior

Note 1. A polynomial of degree 2 or more has a graph with no sharp turns or cusps.

Note 2. The domain of a polynomial function is ________________.

Definition

The values of x for which $f(x) = 0$ are called the ________________ or x-intercepts of f.

Note 3. If a polynomial can be factored, we can set each factor equal to zero to find the x-intercepts (or zeros) of the function. Recall that the x-intercepts of a function are where $f(x) = 0$, or $y = 0$. The y-intercepts are where $x = 0$.

How to Find the x-Intercepts of a Polynomial Function, f, by Factoring

1. Set ________________.

2. If the polynomial function is not in factored form, then factor the polynomial.
3. Set each factor equal to _____ to find the x-intercepts.

Example 1. Find the x and y-intercepts of:

\[g(x) = (x - 2)^2(2x + 3) \]

Note 4. The graphs of polynomials behave differently at various x-intercepts. Sometimes, a graph will ______________ the horizontal x-axis at the x-intercepts, and other times the graph will ______________ or bounce off the horizontal x-axis at the x-intercepts.

Definition

The number of times a given factor appears in the factored form of a polynomial is called the ______________.

Example 2. From the above example, \(g(x) = (x - 2)^2(2x + 3) \), the factor associated to the zero at \(x = 2 \) has multiplicity ___. This zero has even multiplicity. The factor associated to the zero at \(x = -\frac{3}{2} \) has multiplicity ___. This zero has odd multiplicity.

Graphical Behavior of Polynomials at x-Intercepts (Zeros)

If a polynomial contains a factor in the form \((x - h)^p \), the behavior near the x-intercept \(h \) is determined by the power \(p \). We say that \(x = h \) is a zero of ______________ \(p \). The graph of a polynomial function will touch the x-axis at zeros with ______________ multiplicities. The graph of a polynomial function will cross the x-axis at zeros with ______________ multiplicities. The sum of the multiplicities is the ______________ of the polynomial function.
Example 3. The graphs below exemplify the behavior of polynomials at their zeros with different multiplicities:

Note 5. The graph of a polynomial function of the form

\[f(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n \]

will either ______ or _______ as \(x \) increases without bound and will either ______ or _______ as \(x \) decreases without bound. This is called the ______ _______ of a function.
Example 4. The chart below illustrates the end behavior of a polynomial function:

<table>
<thead>
<tr>
<th></th>
<th>Even Degree</th>
<th>Odd Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Leading</td>
<td>$a_n > 0$</td>
<td>Positive Leading Coefficient</td>
</tr>
<tr>
<td>Coefficient</td>
<td></td>
<td>$a_n > 0$</td>
</tr>
<tr>
<td>End Behavior:</td>
<td>$x \to \infty, f(x) \to \infty$</td>
<td>End Behavior:</td>
</tr>
<tr>
<td></td>
<td>$x \to -\infty, f(x) \to \infty$</td>
<td>$x \to \infty, f(x) \to -\infty$</td>
</tr>
<tr>
<td>Negative Leading</td>
<td>$a_n < 0$</td>
<td>Negative Leading Coefficient</td>
</tr>
<tr>
<td>Coefficient</td>
<td></td>
<td>$a_n < 0$</td>
</tr>
<tr>
<td>End Behavior:</td>
<td>$x \to \infty, f(x) \to -\infty$</td>
<td>End Behavior:</td>
</tr>
<tr>
<td></td>
<td>$x \to -\infty, f(x) \to -\infty$</td>
<td>$x \to -\infty, f(x) \to \infty$</td>
</tr>
</tbody>
</table>
Example 5. Choose the end behavior of the polynomial function:

\[f(x) = -(x + 7)^6 (x + 5)^4 (x - 5)^3 (x - 7)^3 \]
Example 6. Choose the option below that describes the behavior at $x = -3$ of the polynomial:

$$f(x) = (x + 6)(x + 3)^4(x - 3)^3(x - 6)$$
Example 7. Choose the option below that describes the behavior at $x = -9$ of the polynomial:

$$f(x) = (x + 9)^3(x + 3)^5(x - 3)^3(x - 9)^2$$
Example 8. Choose the end behavior of the polynomial function:

\[f(x) = (x + 9)(x + 4)^6(x - 4)^3(x - 9) \]
6.2 Graphing Polynomials

Definition

A __________ _________ of the graph of a polynomial function is the point where a function changes from rising to falling or from falling to rising. A polynomial of degree \(n \) will have at most ___________ turning points.

How to Determine the Zeros and Multiplicities of a Polynomial of Degree \(n \) Given its Graph

1. If the graph crosses the \(x \)-axis at the intercept, it is a zero with __________ _________.
2. If the graph touches the \(x \)-axis and bounces off the axis, it is a zero with __________ _________.
3. The sum of the multiplicities is _____.

Definition

If a polynomial of lowest degree \(p \) has \(x \)-intercepts at \(x = x_1, x_2, \ldots, x_n \), then the polynomial can be written in factored form:

_______________________________.
Note 6. In the factored form of a polynomial, the powers on each factor can be determined by the behavior of the graph at the corresponding ________________, and the stretch factor a can be determined given a value of the function other than the _____ - ________________.

How to Determine a Polynomial Function Given its Graph

1. Identify the _____ - _________________ to determine the factors of the polynomial.

2. Examine the behavior of the graph at x-intercepts to determine the _________________ of each factor.

3. Find the polynomial of least degree containing all the factors found in step 2.

4. Use any other point on the graph (typically the y-intercept) to determine the stretch factor (or, you can analyze the end behavior of the graph to determine the stretch factor).
Example 9. Write an equation of the function graphed below:
Example 10. Write an equation of the function graphed below:
How to Sketch the Graph of a Polynomial Function

1. Find the \(x \)-intercepts (zeros).

2. Find the \(y \)-intercepts.

3. Check for symmetry. If the function is an even function, then its graph is symmetric about the \(-\) - \(-\)-______________ (that is, \(f(-x) = f(x) \)). If the function is an odd function, then its graph is symmetric about the \(-\) - \(-\)-______________ (that is, \(f(-x) = -f(x) \)).

4. Determine the behavior of the polynomial at the zeros using their ________________.

5. Determine the ________________ ________________.

6. Sketch a graph.

7. Check that the number of ________________ ________________ does not exceed one less than the degree of the polynomial.
The Factor Theorem

\(k \) is a zero of \(f(x) \) if and only if \(\quad \) is a factor of \(f(x) \).

Note 7. The following statements are equivalent:

Note 8. If we are given the zeros of a polynomial, we can use the \(\quad \) \(\quad \) to construct the lowest-degree polynomial.

Example 11. Construct the lowest-degree polynomial given the zeros below:

\[3, -3, -4 \]
Example 12. Construct the lowest-degree polynomial given the zeros below:

\[- \frac{4}{3}, -\frac{3}{2}, -3\]

Fundamental Theorem of Algebra

If \(f(x) \) is a polynomial of degree \(n > 0 \), then \(f(x) \) has at least one \(\underline{\text{____________}} \) \(\underline{\text{____________}} \). In fact, if \(f(x) \) is a polynomial of degree \(n > 0 \) and \(a \) is a nonzero real number, then \(f(x) \) has exactly \(n \) \(\underline{\text{____________}} \) \(\underline{\text{____________}} \):

\[\underline{\text{__}} \]

where \(c_1, c_2, ..., c_n \) are complex numbers. That is, \(f(x) \) has \(\underline{\text{____________}} \) if we allow for multiplicities.

Note 9. This does NOT mean that every polynomial has an imaginary zero. Real numbers are a subset of the complex numbers, but complex numbers are not a subset of the real numbers.
The Linear Factorization Theorem

If \(f \) is a polynomial function of degree \(n \), then \(f \) has \(n \) ____________, and each factor is of the form ____________, where \(c \) is a complex number. That is, a polynomial function has the same number of linear factors as its degree.

Complex Conjugate Theorem

Suppose \(f \) is a polynomial function with real coefficients. If \(f \) has a complex zero of the form \(a + bi \), then the ________________ ________________ of the zero, \(a - bi \), is also a zero.

A Closer Look at the Zeros of a Polynomial Function

Recall the quadratic formula:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Case 1: \(b^2 - 4ac \) is positive and not a perfect square:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Case 2: \(b^2 - 4ac \) is negative:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]
Example 13. Construct the lowest-degree polynomial given the zeros below:

\[\sqrt{2}, \frac{1}{3} \]

Example 14. Construct the lowest-degree polynomial given the zeros below:

\[4 + 3i, -\frac{2}{5} \]