8 Logarithmic and Exponential Functions

8.1 Domain and Range

Exponential Functions

Exponential functions have the form \(f(x) = b^x \) for any real number \(x \) and constant \(b > 0, b \neq 1 \).

Graph of Exponential Function: The graph of the parent function, \(f(x) = b^x \) is shown below.

We call the two cases exponential \(f(x) = b^x \) \(b > 1 \) and exponential \(f(x) = b^x \) \(0 < b < 1 \).
Characteristics of the Graph of b^x

An exponential function of the form $f(x) = b^x$, $b > 0$, $b \neq 1$ has the following characteristics:

- Horizontal Asymptote at ________________
- Domain: ________________
- Range: ________________
- Vertical Asymptote: ________________
- x-intercept: ________________
- y-intercept: ________________
- Increasing if ________________
- Decreasing if ________________
Shifts of the Parent Function, $f(x) = b^x$

For any constants c and d, the function $b^{x+c} + d$ shifts the graph of the parent function $f(x) = b^x$:

- Vertically _____ units, in the __________________ direction as the sign of _____
- Horizontally _____ units, in the __________________ direction as the sign of _____
- The y-intercept becomes ________________
- The horizontal asymptote becomes ________________
- The range becomes ________________
- The domain is ________________ (it remains ________________)
Example 1. Determine the domain AND range of the exponential function:

\[f(x) = -8^{x-4} + 6 \]

Example 2. Determine the domain AND range of the exponential function:

\[f(x) = -8^{x-10} + 4 \]

Logarithmic Functions

Logarithmic functions have the form \(\log_b x \) for any real number \(x > 0 \) and constant \(b > 0, \, b \neq 1 \). We read \(\log_b x \) as "the logarithm with base \(b \) of \(x \)."

Note 1. We have that \(y = \log_b x \) is equivalent to \(x = b^y \). So, the logarithmic function \(y = \log_b x \) is the \(\text{____________} \) of the exponential function \(y = b^x \).
Graph of Logarithm Function: The graph of the parent function, \(f(x) = \log_b(x) \) is shown below:

![Graph of Logarithm Function](image)

Characteristics of the Graph of \(\log_b(x) \)

For any real number \(x \) and constant \(b > 0, \ b \neq 1 \), we can see the following characteristics in the graph of \(f(x) = \log_b(x) \):

- Vertical Asymptote at _________________
- Domain: _________________
- Range: _________________
- \(x \)-intercept: _________________
- Key point: _________________
- \(y \)-intercept: _________________
- Increasing if _________________
- Decreasing if _________________
Note 2. For any constant, c, the function $f(x) = \log_b (x + c)$ shifts the graph of $\log_b (x)$ by ____ units to the ________________ if $c > 0$ and by ____ units to the ________________ if $c < 0$. When we shift the graph of $\log_b (x)$ to the right and left, we must also shift the ________________ of the function.

How to Determine the Domain of Logarithm Functions

Recall that the domain of the parent function, $\log_b (x)$ is _________________. Since the graph of $\log_b (x + c)$ shifts the graph of $\log_b (x)$ to the right and left, we must also shift the domain (and vertical asymptote). The function $\log_b (x + c)$ has a vertical asymptote at ________________, so the domain of $\log_b (x + c)$ is ________________.

Note 3. Another way to consider finding the domain of $\log_b (x + c)$ is to solve _________________.

Definition

A ________________ ________________ is a logarithm with base 10. We write $\log_{10} (x)$ as ________________. The common logarithm of a positive number x satisfies the following definition:

For $x > 0$, ________________

Note 4. Since the graph of a logarithmic function $\log_b (x + c) + d$ does not have any ________________ asymptotes, the range is ________________ (it remains ________________).
Example 3. Determine the domain AND range of the logarithmic function:

\[f(x) = \log(x - 5) + 7 \]

Example 4. Determine the domain AND range of the logarithmic function:

\[f(x) = -\log(x - 9) + 10 \]

Note 5. The domain of logarithmic functions tells us that we cannot take the logarithm of a
____________________ number. We also cannot take the logarithm of _____.

8.2 Convert Between Forms

Relationship Between Logarithmic Functions and its Corresponding Exponential Form

We can express the relationship between logarithmic functions and its corresponding exponential form as follows:

How to Convert From Logarithmic Form to Exponential Form

1. Examine the equation $y = \log_b(x)$ and identify $\text{___}, \text{___}$, and ___.

2. Rewrite $y = \log_b(x)$ as ____________.

Note 6. To convert from exponential form to logarithmic form, follow the same steps above in reverse.

Example 5. Convert the function below from logarithmic form to exponential form:

$$y = \log_7(9)$$
Example 6. Convert the function below from logarithmic form to exponential form:

\[y = \log_{10} (x - 6) + 1 \]

Example 7. Convert the function below from exponential form to logarithmic form:

\[y = 10^{x-4} + 1 \]

Note 7. Changing between forms is most helpful when trying to solve logarithmic equations.

Example 8. Solve the logarithmic equation below:

\[\log_4 (4x) = 9 \]
Example 9. Solve the logarithmic equation below:

\[\log_3 (4x - 6) + 8 = -\frac{2}{3} \]

Example 10. Solve \(y = \log_4 (64) \) without using a calculator.

Note 8. Recall that \(\pi \approx 3.14 \). Similarly, we can define a new irrational number, \(e \approx 2.718281828 \ldots \)

Definition

The function given by \(f(x) = e^x \) is called the ________________
_________________________ ________________ with natural base \(e \).

Definition

A ________________ ________________ is a logarithm with base \(e \). We write \(\log_e (x) \) as
The natural logarithm of a positive number x satisfies the following definition:

For $x > 0$, ________________________________.

Since the functions $y = e^x$ and $y = \ln(x)$ are inverse functions, $\ln(e^x) = \underline{\hspace{2cm}}$ for all x, and $e^{\ln(x)} = \underline{\hspace{2cm}}$ for all $x > 0$.
8.3 Properties of Logs

Basic Logarithm Properties

Two basic properties of logarithms are as follows:

\[\log_b(1) = \text{__________} \]

\[\log_b(b) = \text{__________} \]

One-to-One Property

The one-to-one property for logarithms states that \(\log_b M = \log_b N \) if and only if \(\text{__________} \)

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individual logarithms:

\[\text{__________________________} \]

Example 11. Expand \(\log_2 xy \)
Example 12. Expand $\log_3 (30x(3x + 4))$

The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm of a quotient by rewriting it as a difference of individual logarithms:

Example 13. Expand $\log_2 \left(\frac{x}{y} \right)$
Example 14. Expand \(\log_3 \left(\frac{7x^2 + 21x}{7x(x - 1)(x - 2)} \right) \)
The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as a product of the exponent times the logarithm of a base:

Example 15. Expand \(\log_2 x^5 \)
Example 16. Use properties of logarithms to simplify the expression below:

$$\log \left(\frac{\sqrt{8x^7y^3}}{z^4} \right)$$
Example 17. Use properties of logarithms to simplify the expression below:

$$\log \left(\frac{\sqrt[4]{x^4y^5}}{z^5} \right)$$
Example 18. Use properties of logarithm functions to solve the logarithmic equation below:

$$6 = \ln \left(\sqrt{\frac{4}{e^x}} \right)$$
8.4 Solve Exponential Functions

One-to-One Property of Exponential Functions

For any algebraic expressions S and T, and any positive real number $b \neq 1$, $b^S = b^T$ if and only if ___________.

Using the One-to-One Property to Solve Exponential Equations

1. Rewrite each side of the equation as a power with a ________________ ________________.

2. Use the rules of exponents to simplify so that the resulting equation has the form

 __________ = __________.

3. Use the One-to-One property to set the exponents equal.

4. Solve the resulting equation, $S = T$ for the unknown.

Example 19. Solve the exponential equation below:

$$2^{-5x-6} = 2^{4x+4}$$
Example 20. Solve the exponential equation below:

\[4^{5x-3} = 2^{-4x+5} \]

Example 21. Solve the exponential equation below:

\[\left(\frac{1}{4}\right)^{4x-2} = 2^{-6x+6} \]
Note 9. Using the one-to-one property is very useful, but sometimes we will be given an equation in which the one-to-one property cannot be applied.

Solving Exponential Equations Using Logarithms

1. Take the logarithm of both sides of the equation.

2. If one of the terms in the equation has base 10, use the ________________
 ________________.

3. If neither of the terms in the equation has base 10, then use the ________________
 ________________.

4. Use the properties of logarithms to solve for the unknowns.

Example 22. Solve the exponential equation below:

\[
6^{-5x-6} = 5^{6x+4}
\]
Example 23. Solve the exponential equation below:

\[2^{7-6x-3} = \left(\frac{1}{16} \right)^{2x+3} \]