Lecture 21 (Part I): Cylindrical polar coordinates

Summary of Lecture

1. For a point P in the \mathbb{R}^3, r is defined to be the perpendicular distance between P and the z axis, z is the height of P from the xy-plane. Drop a perpendicular line from P to xy plane and name the intersection point Q. θ is the angle subtended by the positive x axis and the line OQ. Representation of a point P in \mathbb{R}^3 in terms of (r, θ, z) is called the cylindrical polar coordinate representation of P.

2. The transformations to cylindrical coordinates is given by
 $$x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = z, \quad dz \, dy \, dx = r \, dz \, dr \, d\theta$$

3. If a point (x, y, z) is in the Cartesian coordinates, its representation in the cylindrical coordinates is given by
 $$r = \sqrt{x^2 + y^2}, \quad z = z, \quad \begin{cases} \tan^{-1}(y/x) & \text{if } x > 0 \\ \tan^{-1}(y/x) + \pi & \text{if } x < 0 \end{cases}$$

 Remark: If $x = 0$, then $\theta = \pi/2$ if $y > 0$ and $\theta = 3\pi/2$ if $y = 0$. Also θ is undefined at the origin.

4. Triple integration over a general region $W = \{(r, \theta, z)|\alpha \leq \theta \leq \beta, g(\theta) \leq r \leq h(\theta), G(r \cos(\theta), r \sin(\theta)) \leq z \leq H(r \cos(\theta), r \sin(\theta))\}$ can be calculated by
 $$\int_{\theta=\alpha}^{\beta} \int_{r=g(\theta)}^{h(\theta)} \int_{z=G(r \cos(\theta), r \sin(\theta))}^{H(r \cos(\theta), r \sin(\theta))} f(r, \theta, z) \, dz \, dr \, d\theta$$

 Observe that the volume element $dV = r \, dz \, dr \, d\theta$.

5. The equation $z = c$ (const.) represents a plane parallel to the xy plane through $(0, 0, c)$, $\theta = \theta_0$(const). represents half planes passing through the origin parallel to the z axis making angle θ_0 with the positive x axis, and the equation $r = R$ (const.) gives cylinders having z axis on the center, and having radius R.

6. The volume of the region W given in cylindrical coordinates is
 $$\iiint_W r \, dz \, dr \, d\theta.$$
Exercises

1. Convert the following points from cylindrical to Cartesian coordinates
 (a) \((4, \pi, 4)\)
 (b) \((2, \pi/3, -8)\)
 (c) \((0, \pi/5, 1/2)\)
 (d) \((1, \pi/2, -2)\)

2. Convert the following points from Cartesian to cylindrical coordinates.
 (a) \((1, -1, 1)\)
 (b) \((1, \sqrt{3}, 7)\)
 (c) \((5/\sqrt{2}, 5/\sqrt{2}, 2)\)
 (d) (modified) \((-3, 3\sqrt{3}, 2)\)

3. Find an equation of the form \(z = f(r, \theta)\) in cylindrical coordinates for the following functions
 (a) \(z = x^2 + y^2\)
 (b) \(z = x + y\)
 (c) \(z = \sqrt{x^2 - y^2}\)

4. Convert the following surfaces to cylindrical coordinates
 (a) \(x^2 + y^2 + z^2 = 4\)
 (b) \(x^2 + y^2 = 4\)
 (c) \(x^2 - y^2 = 4\)

5. Use the cylindrical coordinates to find the volume of the region \(W\) between the paraboloids \(z = x^2 + y^2\) and \(z = 8 - x^2 - y^2\).

6. Use cylindrical coordinates to calculate the integral of the function \(f(x, y, z) = z\) over the region above the disk \(x^2 + y^2 = 1\) in the \(xy\)-plane and below the surface \(z = 4 + x^2 + y^2\).

7. Integrate the function \(f(x, y, z) = x^2 + y^2\) over the region bounded by \(x^2 + y^2 \leq 9\), \(0 \leq z \leq 5\) by converting to cylindrical coordinates.

8. Integrate \(f(x, y, z) = z\) over the region \(0 \leq z \leq x^2 + y^2 \leq 9\) using cylindrical polar coordinates.

9. Express the following triple integrals in cylindrical coordinates
 (a) \(\int_{x=-1}^{1} \int_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{z=0}^{4} f(x, y, z) \, dz \, dy \, dx\).
 (b) \(\int_{x=0}^{2} \int_{y=0}^{\sqrt{2x-x^2}} \int_{z=0}^{\sqrt{x^2+y^2}} f(x, y, z) \, dz \, dy \, dx\)

10. Use cylindrical coordinates to integrate \(f(x, y, z) = z\) over the intersection of the hemisphere \(x^2 + y^2 + z^2 = 4\), \(z \geq 0\) and the cylinder \(x^2 + y^2 = 1\).
Answers
1. (a) \((-4, 0, 4)\)
 (b) \((1, \sqrt{3}, -8)\)
 (c) \((0, 0, \frac{1}{2})\)
 (d) \((0, 1, -2)\)
2. (a) \((\sqrt{2}, \frac{7\pi}{4}, 1)\)
 (b) \((2, \frac{\pi}{3}, 7)\)
 (c) \((5, \frac{\pi}{4}, 2)\)
 (d) \((6, \frac{5\pi}{6}, 2)\)
3. (a) \(z = r^2\)
 (b) \(z = r \cos(\theta) + r \sin(\theta)\)
 (c) \(z = r \sqrt{\cos(2\theta)}\)
4. (a) \(r^2 + z^2 = 4\)
 (b) \(r = 2\)
 (c) \(r^2 = 4 \sec(2\theta)\)
5. 16\pi
6. \(\frac{61\pi}{6}\)
7. \(\frac{1024\pi}{15}\)
8. \(\frac{729\pi}{6}\)
9. (a) \(\int_{\theta=0}^{2\pi} \int_{r=0}^{1} \int_{z=0}^{4} f(r \cos(\theta), r \sin(\theta), z) r \, dz \, dr \, d\theta\)
 (b) \(\int_{\theta=0}^{\pi/2} \int_{r=0}^{2 \cos(\theta)} \int_{z=0}^{r} f(r \cos(\theta), r \sin(\theta), z) r \, dz \, dr \, d\theta\)
10. 0
1 Lecture 21: (Part 2) Spherical polar coordinates

Summary of Lecture

1. For a point \(P \) in the \(\mathbb{R}^3 \), \(\rho \) is defined to be the distance between \(P \) and the origin \(O \), \(\phi \) is the lesser angle subtended by the \(z \) axis and the line \(OP \). Drop a perpendicular line from \(P \) to \(xy \) plane and name the intersection point \(Q \). \(\theta \) is the angle subtended by the positive \(x \) axis and the line \(OQ \). Representation of a point \(P \) in \(\mathbb{R}^3 \) in terms of \((\rho, \phi, \theta) \) is called the spherical polar coordinate representation of \(P \).

2. The transformations to spherical coordinates is given by
 \[
 x = \rho \sin(\phi) \cos(\theta) \quad y = \rho \sin(\phi) \sin(\theta) \quad z = \rho \cos(\phi) \quad dz \ dy \ dx = \rho^2 \sin(\phi) \ d\rho \ d\phi \ d\theta
 \]

3. If a point \((x, y, z)\) is in the Cartesian coordinates, its representation in spherical coordinates is given by
 \[
 \rho = \sqrt{x^2 + y^2 + z^2} \quad \phi = \cos^{-1}\left(\frac{z}{\rho}\right) \quad \theta = \begin{cases} \tan^{-1}(y/x) & \text{if } x > 0 \\ \tan^{-1}(y/x) + \pi & \text{if } x < 0 \end{cases}
 \]
 Remark: If \(x = 0 \), then \(\theta = \pi/2 \) if \(y > 0 \) and \(\theta = 3\pi/2 \) if \(y = 0 \). Also \(\theta \) and \(\phi \) are undefined at the origin.

4. For a region \(W \) defined by \(W = \{(\rho, \phi, \theta) | a \leq \theta \leq b, a \leq \phi \leq b, g(\phi, \theta) \leq \rho \leq h(\phi, \theta)\} \), the triple integral \(\iiint_W f \ dV \) is given by
 \[
 \int_{\theta=a}^{\beta} \int_{\phi=a}^{b} \int_{\rho=g(\phi,\theta)}^{h(\phi,\theta)} f(\rho, \phi, \theta) \rho^2 \sin(\phi) \ d\rho \ d\phi \ d\theta
 \]

5. The surface \(\rho = R \) (const) is a sphere of radius \(R \), \(\theta = \theta_0 \) (const) is a vertical half plane and the surface \(\phi = \phi_0 \) (const) is a right circular cone.

6. The relationship between spherical and cylindrical coordinates is given by
 \[
 \theta = \theta, \quad r = \rho \sin(\phi) \quad \phi = \cos^{-1}\left(\frac{z}{\sqrt{\rho^2 + z^2}}\right) \quad z = \rho \cos(\phi)
 \]
 Also the volume of a region \(W \) in spherical coordinates is given by \(\iiint_W \rho^2 \sin(\phi) \ d\rho \ d\phi \ d\theta \).
Exercises

1. Convert from spherical to Cartesian coordinates
 (a) \((3, 0, \pi/2)\)
 (b) \((3, \pi, 0)\)
 (c) \((6, \pi/6, 5\pi/6)\)

2. Convert from Cartesian to spherical coordinates.
 (a) \((\sqrt{3}, 0, 1)\)
 (b) \((1, 1, 1)\)
 (c) \((1/2, -\sqrt{3}/2, 1)\) (modified)

3. Do the following conversions
 (a) \((2, 0, 2)\) from cylindrical to spherical coordinates.
 (b) \((4, 0, \pi/4)\) from spherical to cylindrical coordinates

 For the questions (4) to (8), find the integral of the given function in the given region using spherical coordinates.

4. \(f(x, y, z) = y\) on the region \(x^2 + y^2 + z^2 \leq 1\), \(x, y, z \leq 0\).

5. \(f(x, y, z) = x^2 + y^2\) on the region \(\rho \leq 1\).

6. \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2}\) on the region \(x^2 + y^2 + z^2 \leq 2z\).

7. \(f(x, y, z) = z\) on the region \(0 \leq \theta \leq \pi/3\), \(0 \leq \phi e\pi/2\) and \(1 \leq \rho \leq 2\).

8. \(f(x, y, z) = z(x^2 + y^2 + z^2)^{-3/2}\) over the part of the ball \(x^2 + y^2 + z^2 \leq 16\) defined by \(z \geq 2\).

9. Find the volume of the region lying above the cone \(\phi = \pi/3\) and below the sphere \(\rho = R\).

10. Let \(W\) be the region within the cylinder \(x^2 + y^2 = 2\) between \(z = 0\) and the cone \(z = x^2 + y^2\). Calculate the integral of \(f(x, y, z) = x^2 + y^2\), first using spherical coordinates, and then using cylindrical coordinates.
Answers

1. (a) $(3, 0, 0)$
 (b) $(0, 0, 3)$
 (c) $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}, -3\sqrt{3}\right)$

2. (a) $(2, 0, \frac{\pi}{3})$
 (b) $\left(\sqrt{3}, \frac{\pi}{4}, \cos^{-1}\left(\frac{1}{3}\right)\right)$
 (c) $(2, \frac{\pi}{3}, \frac{\pi}{6})$

3. (a) $(2\sqrt{2}, \frac{\pi}{4}, 0)$
 (b) $(2\sqrt{2}, 0, 2\sqrt{2})$

4. $-\frac{\pi}{16}$

5. $\frac{8\pi}{15}$

6. $\frac{8\pi}{5}$

7. $\frac{5\pi}{8}$

8. π

9. $\frac{\pi R^3}{3}$

10. $\frac{8\sqrt{2}\pi}{5}$