Local Maximum, Minimum Values

As we have seen throughout this semester, the concepts of Calculus I - limits, continuity, differentiability - are currently being reexamined in the context of functions of several variables. We continue that trend with the current lecture and discuss max and min values for multivariable functions.

Definition. A function $f(x, y)$ has a **local maximum value** at (a, b) if $f(x, y) \leq f(a, b)$ for all $(x, y,)$ in the domain of f in some open disk centered at (a, b). A function f has a **local minimum value** at (a, b) if $f(x, y) \geq f(a, b)$ for all $(x, y,)$ in the domain of f in some open disk centered at (a, b). Local maximum and local minimum values are also called **local extreme values** or **local extrema**.

How do these definitions differ from those for a real-valued function of a single variable?

Now that we know what local extrema are, how do we find the points at which they occur?
Theorem 1

Derivatives and Local Max, Min Values

If \(f \) has a local max or min value at \((a, b)\) and \(f_x \) and \(f_y \) exist at \((a, b)\), then \(f_x(a, b) = f_y(a, b) = 0 \).

The logic behind this theorem is evident if one examines the tangent plane to a surface at a point where the surface has a local max or min.

At this point the tangent plane is \textbf{horizontal}.

Recall that the equation of the tangent plane at \((a, b)\) is given by

\[
z = f(a, b) + f_x(a, b)(x-a) + f_y(a, b)(y-b).
\]

A horizontal plane has an equation of the form \(z = c \), which would imply

\[
f_x(a, b) = f_y(a, b) = 0
\]

What is this theorem \textbf{not} saying?

\(\text{It does not say that if } f_x(a, b) = 0 \text{ and } f_y(a, b) = 0 \text{ then } (a, b) \text{ is a max or min at } (a, b) \).
Definition: An interior point \((a, b)\) in the domain of \(f\) is a **critical point** of \(f\) if either

1. \(f_x(a, b) = f_y(a, b) = 0\), or

2. one (or both) of \(f_x\) or \(f_y\) does not exist at \((a, b)\).

Example: Find all of the critical points for the function \(f(x, y) = x^4 - 2x^2 + y^2 - 4y + 5\).

\[
\begin{align*}
f_x &= 4x^3 - 4x = 4x(x^2 - 1) = 0 \quad \Rightarrow \quad x = 0, 1, -1 \\
f_y &= 2y - 4y = 0 \quad \Rightarrow \quad y = 2.
\end{align*}
\]

critical points \((0, 2)\); \((1, 2)\); \((-1, 2)\)

Example: Find all of the critical points for the function \(f(x, y) = 3x^2 - 4y^2\).

\[
\begin{align*}
f_x &= 6x = 0 \quad \Rightarrow \quad x = 0 \quad \text{\((0, 0)\)} \\
f_y &= -8y = 0 \quad \Rightarrow \quad y = 0
\end{align*}
\]
As we know from our experience in Calculus I, not all critical points correspond to local max and mins for a function.

Consider the function from the last example,
\[f(x, y) = 3x^2 - 4y^2. \]

If we intersect the graph of this function with the plane \(y = 0 \), we generate the curve

\[z = 3x^2 \]

which would lead us to suspect that at the critical point \((0, 0)\) there exists a \textit{local min}.

If we intersect the graph of this function with the plane \(x = 0 \), we generate the curve

\[z = -4y^2 \]

which would lead us to suspect that at the critical point \((0, 0)\) there exists a

A point such as this is referred to as a \textbf{saddle point}.
Definition. A function f has a **saddle point** at a critical point (a, b) if, in every open disk centered at (a, b), there are points (x, y) for which $f(x, y) > f(a, b)$ and points for which $f(x, y) < f(a, b)$.

Recall: 2nd derivative test: If $f'(a) = 0$ and (i) $f''(a) < 0 \Rightarrow$ loc. max @ a
(ii) $f''(a) > 0 \Rightarrow$ loc. min @ a.

Theorem 2

Second Derivative Test

Suppose that the second partial derivatives of f are continuous throughout an open disk centered at the point (a, b), where $f_x(a, b) = f_y(a, b) = 0$. Define a new function called the **discriminant** by $D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^2$.

1. If $D(a, b) > 0$ and $f_{xx}(a, b) < 0$, then f has a local max value at (a, b).

2. If $D(a, b) > 0$ and $f_{xx}(a, b) > 0$, then f has a local min value at (a, b).

3. If $D(a, b) < 0$, then f has a saddle point at (a, b).

4. If $D(x, y) = 0$, then the test is inconclusive.
Example: Find and classify all critical points for
\[f(x, y) = 2x^2 + 4y^2 - 5. \]

\[f_x = 4x = 0 \implies x = 0 \]
\[f_y = 8y = 0 \implies y = 0 \]

Critical point \((0,0)\)

\[f_{xx} = 4 \quad ; \quad f_{yy} = 8 \quad ; \quad f_{xy} = 0 \]

\[D(0,0) = (4)(8) - 32 = 32 \]

\[D(0,0) > 0 \quad \text{and} \quad f_{xx}(0,0) > 0 \]

\implies \text{local minimum at } (0,0). \text{ Value of } \min_{f(0,0)} = -5.

Example: Find and classify all critical points for
\[f(x, y) = e^{4y-x^2-y^2}. \]

\[f_x = -2x e^{4y-x^2-y^2} \implies x = 0 \]
\[f_y = (2y+4) e^{4y-x^2-y^2} \implies y = 2 \]

C.P. \((0,2)\)

\[f_{xx} = -2 e^{4y-x^2-y^2} + 4x^2 e^{4y-x^2-y^2} = (4x^2 + 2) e^{4y-x^2-y^2} \]
\[f_{yy} = -2 e^{4y-x^2-y^2} + (2y+4)(-2y+4) e^{4y-x^2-y^2} = (-8y^2 + 16y + 16) e^{4y-x^2-y^2} \]
\[f_{xy} = -2x(2y+4) e^{4y-x^2-y^2} \]

\[D(0,2) = 4 e^{8} > 0 \quad \text{and} \quad f_{xx}(0,0) = -2 e^{4} < 0 \]

\implies \text{local max at } (0,2). \text{ Value of } \max_{f(0,y) = e^{4y}}
Example: Find and classify all critical points for
\[f(x, y) = x^3 y + 12x^2 - 8y. \]

\[f_x = 3x^2 y + 24x = 3x(x^2y + 8) = 0 \quad \text{and} \quad 6(2y + 8) = 0 \]

\[f_y = x^3 - 8 = 0 \quad \Rightarrow \quad x = 2 \quad \text{and} \quad y = -4 \]

\(C.P. \quad (2, -4) \)

\[f_{xx} = 6xy + 24 \quad f_{yy} = 0 \quad f_{xy} = 3x^2 \]

\(D(2, -4) = -144 < 0 \quad \text{Saddle point at} \quad (2, -4) \)

Example: Given \(f(x, y) = x^4 + 2y^2 - 4xy \), determine if the function has any local mins and determine the values of the local mins if they exist.

\[f_x = 4x^3 - 4y = 4(x^3 - y) = 0 \]

\[f_y = 4y - 4x = 4(y - x) = 0 \quad \Rightarrow \quad x = y \]

\(C.P. \quad (0, 0), (1, 1), (-1, -1) \)

\[f_{xx} = 12x^2 \quad f_{yy} = 4 \quad f_{xy} = -4 \]

\(D(0, 0) = -16 < 0 \quad \text{Saddle point} \)

\(D(1, 1) = 32 > 0 \quad \text{local min} \quad f_{xx}(1, 1) = 12 > 0 \)

\(D(-1, -1) = 32 > 0 \quad f_{xx}(-1, -1) = 12 > 0 \quad \text{local min} \)
Absolute Max and Min Values

In addition to relative extrema, we also have **global** or **absolute extrema**.

Definition. If \(f(x, y) \leq f(a, b) \) for all \((x, y)\) in the domain of \(f\) then, then \(f\) has an **absolute maximum** at \((a, b)\). If \(f(x, y) \geq f(a, b)\) for all \((x, y)\) in the domain of \(f\) then, then \(f\) has an **absolute minimum** at \((a, b)\).

Recall from Calculus I that a function may have no absolute extrema, one absolute extrema, or two absolute extrema.

Example: Find any absolute extrema of the function \(f(x, y) = 10 - 2x^2 - 5y^2\).
The procedure used to determine the absolute max and min of a differentiable function \(f(x, y) \) on a \textbf{closed} and \textbf{bounded} region is similar to but not exactly the same as that used for a real-valued function of a single variable (what was this procedure?):

1. Determine the value of \(f \) at all critical points in the interior of the closed and bounded region.

2. Find all extrema of \(f \) on the boundary.

3. The greatest function value from steps 1 and 2 is the absolute max, the least function value from steps 1 and 2 is the absolute min.

Example: Find the absolute extrema of \(f(x, y) = x^2 + y^2 - 4 \) on the disk \(x^2 + y^2 \leq 4 \).

(1) \[
\begin{align*}
\frac{\partial f}{\partial x} &= 2x = 0 \implies x = 0 \\
\frac{\partial f}{\partial y} &= 2y = 0 \implies y = 0.
\end{align*}
\]

Critical Point \((0, 0)\) \quad \text{Value} \quad f(0, 0) = -4

(2) Parametrize the boundary curve \(x = 2 \cos t \quad y = 2 \sin t \quad t \in [0, 2\pi] \)

on the boundary \(f(x, y) = (2 \cos t)^2 + (2 \sin t)^2 - 4 = 0 \)

\(f(x, y) \) const. on the boundary; no extrema

(3) From (1) \& (2) \quad \text{abs max} \quad 0 \quad \text{abs min} \quad -4.
Example: Find the absolute extrema of \(f(x, y) = 3 + xy - x - 2y \) in the triangular region with vertices (1, 0), (5, 0), and (1, 4).

1. \(f_x = y - 1 = 0 \Rightarrow y = 1 \)
 \(f_y = x - 2 = 0 \Rightarrow x = 2 \)
 \(f(2, 1) = 1 \).

2. (I) boundary curve \(x = 1, \ y \in [0, 4] \).
 \(f(x, y) = f(y, y) = 2 - y \) on \([0, 4] \).
 \(\max \) at \(y = 4 \) \(f(0, 4) = 2 \)
 \(\min \) at \(y = 0 \) \(f(0, 0) = -2 \)

3. (II) boundary curve \(y = 0, \ x \in [1, 5] \)
 \(f(x, y) = f(x, 0) = 3 - x \)
 \(\max \) at \(x = 1 \) \(f(1, 0) = 2 \)
 \(\min \) at \(x = 5 \) \(f(5, 0) = -2 \)

4. (III) boundary curve \(y = -x + 5, \ x \in [1, 6] \)
 \(f(x, y) = f(x, -x + 5) = -x^2 + 6x + 7 \)
 \(f'(x, -x + 5) = -2x + 6 \Rightarrow x = 3, \)
 \(f(3, 2) = 3 + 6 - 2 - 6 = 1 \)
 \(f(1, 4) = -2 \quad f(5) = -2 \).

From all these values, \(\max = 2 \)
\(\min = -2 \).
Example: Find the point on the surface \(z^2 = xy + 1 \) closest to the origin.

We are trying to minimize \(d = \sqrt{x^2 + y^2 + z^2} \)

\[
d^2 = D = x^2 + y^2 + xy + 1 \quad \Rightarrow \quad d = \sqrt{x^2 + y^2 + xy + 1}
\]

Local min
\[
D_x = 2x + y = 0 \quad x = 0 \quad y = 0
\]
\[
D_y = 2y + x = 0
\]

Critical point
\[
D_{xy} = 2 \quad D_{yy} = 2 \quad D_{xy} = 1.
\]

\[
D(0,0) = 3 > 0 \quad D_{xx} > 0 \quad \therefore \text{local min @ (0,0)}
\]

Is it an abs. min?

Sub \(x = r \cos \theta \) \(y = r \sin \theta \) \(\Rightarrow \)

\[
d^2 = \frac{1}{2} r^2 (2 + \sin 2\theta) + 1
\]

\(d^2 = 1 \) only when \(r = 0 \)

\(d^2 = 1 \) is abs. min.

and occurs at \((0,0) \).