1. Find the domain and the range of the function

\[f(x, y, z) = \ln\left(\sqrt{4 - 2x^2 - y^2 - z^2}\right) \]

\[\text{domain is given by } 4 - 2x^2 - y^2 - z^2 > 0 \]

\[2x^2 + y^2 + z^2 < 4 \]

\[\left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y}{\sqrt{2}}\right)^2 + \left(\frac{z}{\sqrt{2}}\right)^2 < 1 \]

in order for \(\sqrt{ } \) to make sense, the inside should be \(> 0 \), but it cannot be \(0 \), since \(\ln(0) \) does not accept \(0 \)

\[\text{range: as inside } \to 0, \text{ output values } \to -\infty \]

the maximum value of output is \(\ln(\sqrt{4}) = \ln 2 \).

\[(-\infty, \ln 2] \]

2. Does \(\lim_{(x,y) \to (0,0)} \frac{x \sqrt{y}}{x^2 + y^{2/3}} \) exist? Justify your answer.

No: consider the limit from path \(x = 0 \) and \(y = x^3 \)

\[\lim_{(x,y) \to (0,0)} \frac{x \sqrt{y}}{x^2 + y^{2/3}} = \lim_{(x,y) \to (0,0)} \frac{0 \sqrt{y}}{0 + y^{2/3}} = 0 \]

\[\lim_{(x,y) \to (0,0)} \frac{x \sqrt{y}}{x^2 + y^{2/3}} = \lim_{(x,y) \to (0,0)} \frac{x^3 \sqrt{x^3}}{x^2 + (x^3)^{2/3}} = \lim_{(x,y) \to (0,0)} \frac{x^2}{2x^2} = \frac{1}{2} \]

the limit through 2 different paths has two different values. Hence the limit DNE.
3. Show that

\[\lim_{(x,y) \to (0,0)} \frac{x^2y}{x^2 + y^2} = 0. \]

Method 1: Use polar coordinates

\[
x = r \cos \theta \\
y = r \sin \theta
\]

\[
\lim_{(r \to 0)} \frac{r^3 \cos^2 \theta \sin \theta}{r^2} = \lim_{r \to 0} r \cos^2 \theta \sin \theta = 0
\]

as \(r \to 0 \) for any value of \(\theta \)

Method 2: Use Squeeze Theorem.

\[\frac{x^2}{x^2 + y^2} \leq 1 \quad \text{always, (why?)} \]

\[-y \leq \frac{x^2y}{x^2 + y^2} \leq y \]

as \(y \to 0 \), \(\text{LHS} \to 0 \\	ext{RHS} \to 0 \]

hence by Squeeze Theorem

\[\frac{x^2y}{x^2 + y^2} \to 0 \]

4. Characterize all level surfaces of the function \(f(x, y, z) = x^2 + y^2 - z^2 \).

\(f(x, y, z) = 0 \) \(\Rightarrow \) \(x^2 + y^2 - z^2 = 0 \), gives a cone.

\(f(x, y, z) > 0 \) \(\Rightarrow \) \(x^2 + y^2 = z^2 + C \) hyperboloid of one sheet

say \(\text{Const C} \)

\(f(x, y, z) < 0 \) \(\Rightarrow \) \(x^2 + y^2 = z^2 - C \) hyperboloid of two sheets.

\(\text{Const} - C, \text{C} \)

5. If the limit of a function \(f(x, y, z) \) exists at the point \((a, b, c) \), then \(f \) is continuous at \((a, b, c) \).

(a) TRUE if \(f \) is continuous, then limit exists, the converse is false.

(b) FALSE

6. The range of the function is the set of all real values that can be plugged-in to the function.

(a) TRUE it's the set of all output values.

(b) FALSE