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A CHARACTERIZATION OF HYPERBOLIC

AFFINE ITERATED FUNCTION SYSTEMS

ROSS ATKINS, MICHAEL F. BARNSLEY, ANDREW VINCE,
AND DAVID C. WILSON

Abstract. The two main theorems of this paper provide a
characterization of hyperbolic affine iterated function systems
defined on ℝ𝑚. Atsushi Kameyama [Distances on topological
self-similar sets, in Fractal Geometry and Applications: A
Jubilee of Benǒit Mandelbrot. Proceedings of Symposia in
Pure Mathematics, Volume 72, Part 1, 2004, pages 117–129]
asked the following fundamental question: Given a topolog-
ical self-similar set, does there exist an associated system of
contraction mappings? Our theorems imply an affirmative
answer to Kameyama’s question for self-similar sets derived
from affine transformations on ℝ𝑚.

1. Introduction

The goal of this paper is to prove and explain two theorems that
characterize hyperbolic affine iterated function systems defined on
ℝ𝑚. One motivation was the following question: When are the
functions of an affine iterated function system (IFS) on ℝ𝑚 con-
tractions with respect to a metric equivalent to the usual Euclidean
metric?

Theorem 1.1 (Characterization for Affine Hyperbolic IFSs). If
ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is an affine iterated function system, then
the following statements are equivalent.

2010 Mathematics Subject Classification. Primary 54H25, 26A18, 28A80.
Key words and phrases. affine mappings, contraction mapping, hyperbolic

IFS, iterated function systems.
c⃝2010 Topology Proceedings.

189

TopologyP
Sticky Note

TopologyP
Sticky Note

TopologyP
Sticky Note



190 R. ATKINS, M. F. BARNSLEY, A. VINCE, AND D. C. WILSON

(1) ℱ is hyperbolic.
(2) ℱ is point-fibered.
(3) ℱ has an attractor.
(4) ℱ is a topological contraction with respect to some convex

body 𝐾 ⊂ ℝ𝑚.
(5) ℱ is non-antipodal with respect to some convex body 𝐾 ⊂

ℝ𝑚.

Statement (1) is a metric condition on an affine IFS, statements
(2) and (3) are in terms of convergence, and statements (4) and (5)
are in terms of concepts from convex geometry. The terms “con-
tractive,” “hyperbolic,” “point-fibered,” “attractor,” “topological
contraction,” and “non-antipodal” are defined in definitions 2.2,
2.3, 2.5, 2.7, 5.8, and 6.5, respectively. This theorem draws to-
gether some of the main concepts in the theory of iterated function
systems. Banach’s classical Contraction Mapping Theorem states
that a contraction 𝑓 on a complete metric space has a fixed point 𝑥0
and that 𝑥0 = lim𝑘→∞ 𝑓∘𝑘(𝑥), independent of 𝑥, where ∘𝑘 denotes
the 𝑘𝑡ℎ iteration. The notion of hyperbolic generalizes the contrac-
tion property to an IFS. Namely, an IFS ℱ is hyperbolic if there
is a metric on ℝ𝑚, Lipschitz equivalent to the usual one, such that
each 𝑓 ∈ ℱ is a contraction. The notion of point-fibered, intro-
duced by Bernd Kieninger [10], is the natural generalization of the
limit condition above to the case of an IFS. While traditional dis-
cussions of fractal geometry focus on the existence of an attractor
for a hyperbolic IFS, Theorem 1.1 establishes that the more geo-
metrical (and non-metric) assumptions – topologically contractive
and non-antipodal – can also be used to guarantee the existence of
an attractor. Basically, a function 𝑓 : ℝ𝑚 → ℝ𝑚 is non-antipodal
if certain pairs of points (antipodal points) on the boundary of 𝐾
are not mapped by 𝑓 to another pair of antipodal points.

Since the implication (1) ⇒ (2) is the Contraction Mapping The-
orem when the IFS contains only one affine mapping, Theorem 1.1
contains an affine IFS version of the converse to the Contraction
Mapping Theorem. Thus, our theorem provides a generalization of
results proved by Ludv́ık Janoš [8] and Solomon Leader [12]. Such
a converse statement in the IFS setting has remained unclear until
now.
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AFFINE ITERATED FUNCTION SYSTEMS 191

Although not every affine IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is hyper-
bolic on all of ℝ𝑚, the second main result states that if ℱ has a
coding map (Definition 2.4), then ℱ is always hyperbolic on some
affine subspace of ℝ𝑚.

Theorem 1.2. If ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is an affine IFS with a
coding map 𝜋 : Ω → ℝ𝑚, then ℱ is hyperbolic on the affine hull of
𝜋(Ω). In particular, if 𝜋(Ω) contains a non-empty open subset of
ℝ𝑚, then ℱ is hyperbolic on ℝ𝑚.

Using slightly different terminology, Atsushi Kameyama [9] posed
the following fundamental question: Is an affine IFS with a coding
map 𝜋 : Ω → ℝ𝑚 hyperbolic when restricted to 𝜋(Ω)? An affir-
mative answer to this question follows immediately from Theorem
1.2.

Our original motivation, however, was not Kameyama’s question,
but rather a desire to approximate a compact subset 𝑇 ⊂ ℝ𝑚 as the
attractor 𝐴 of an iterated function system ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ...𝑓𝑁 ),
where each 𝑓𝑛 : ℝ𝑚 → ℝ𝑚 is affine. This task is usually done using
the “collage theorem” [1], [2] by choosing an IFS ℱ so that the
Hausdorff distance 𝑑ℍ(𝑇,ℱ (𝑇 )) is small. If the IFS ℱ is hyperbolic,
then we can guarantee it has an attractor 𝐴 such that 𝑑ℍ(𝑇,𝐴) is
comparably small. But then the question arises: How does one
know if ℱ is hyperbolic?

The paper is organized as follows. Section 2 contains notation,
terminology, and definitions that will be used throughout the paper.
Section 3 contains examples and remarks relating iterated function
systems and their attractors to Theorem 1.1 and Theorem 1.2. In
Example 3.1, we show that an affine IFS can be point-fibered, but
not contractive under the usual metric on ℝ𝑚. Thus, some kind
of remetrization is required for the system to be contractive. In
Example 3.2, we show that an affine IFS can contain two linear
maps each with real eigenvalues all with magnitudes less than 1,
but still may not be point-fibered. Thus, Theorem 1.1 cannot be
phrased only in terms of eigenvalues and eigenvectors of the individ-
ual functions in the IFS. Indeed, in Example 3.3, we explain how,
given any integer 𝑀 > 0, there exists a linear IFS

(
ℝ2;𝐿1, 𝐿2

)
such

that each operator of the form 𝐿𝜎1𝐿𝜎2 ...𝐿𝜎𝑘
, with 𝜎𝑗 ∈ {1, 2} for

𝑗 = 1, 2, ..., 𝑘, and 𝑘 ≤ 𝑀, has spectral radius less than one, while
𝐿1𝐿

𝑀
2 has spectral radius larger than one. This is related to the
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joint spectral radius [16] of the pair of linear operators 𝐿1 and 𝐿2

and to the associated finiteness conjecture; see, for example, [4]. In
section 8 we comment on the relationship between the present work
and recent results concerning the joint spectral radius of finite sets
of linear operators. Example 3.4 provides an affine IFS on ℝ2 that
has a coding map 𝜋 but is not point-fibered on ℝ2, and hence, by
Theorem 1.1, not hyperbolic on ℝ2. It is, however, point-fibered
and hyperbolic when restricted to the 𝑥-axis, which is the affine
hull of 𝜋(Ω), thus illustrating Theorem 1.2.

For the proof of Theorem 1.1, we provide the following road map.

(1) The proof that statement (1) ⇒ statement (2) is provided
in Theorem 4.1.

(2) The proof that statement (2) ⇒ statement (3) is provided
in Theorem 4.3.

(3) The proof that statement (3) ⇒ statement (4) is provided
in Theorem 5.10.

(4) The proof that statement (4) ⇒ statement (5) is provided
in Proposition 6.6.

(5) The proof that statement (5) ⇒ statement (1) is provided
in Theorem 6.7.

Theorem 1.2 is proved in section 7.

2. Notation and definitions

We treat ℝ𝑚 as a vector space, an affine space, and a metric
space. We identify a point 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) ∈ ℝ𝑚 with the
vector whose coordinates are 𝑥1, 𝑥2, ..., 𝑥𝑚. We write 0 ∈ ℝ𝑚 for
the point in ℝ𝑚 whose coordinates are all zero. The standard basis
is denoted {𝑒1, 𝑒2, . . . , 𝑒𝑚}. The inner product between 𝑥, 𝑦 ∈ ℝ𝑚 is

denoted by ⟨𝑥, 𝑦⟩. The 2-norm of a point 𝑥 ∈ ℝ𝑚 is ∥𝑥∥2 =
√⟨𝑥, 𝑥⟩,

and the Euclidean metric 𝑑𝐸 : ℝ𝑚 × ℝ𝑚 → [0,∞) is defined by
𝑑𝐸(𝑥, 𝑦) = ∥𝑥− 𝑦∥2 for all 𝑥, 𝑦 ∈ ℝ𝑚.

The following notations, conventions, and definitions will also be
used throughout this paper.

(1) A convex body is a compact convex subset of ℝ𝑚 with non-
empty interior.

(2) For a set 𝐵 in ℝ𝑚, the notation 𝑐𝑜𝑛𝑣(𝐵) is used to denote
the convex hull of 𝐵.
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(3) For a set 𝐵 ∈ ℝ𝑚, the affine hull, denoted aff(𝐵), of 𝐵 is the
smallest affine subspace containing 𝐵, i.e., the intersection
of all affine subspaces containing 𝐵.

(4) The symbol ℍ will denote the nonempty compact subsets
of ℝ𝑚, and the symbol 𝑑ℍ will denote the Hausdorff metric
on ℍ. Recall that (ℝ𝑚, 𝑑ℍ) is a complete metric space.

(5) A metric 𝑑 on ℝ𝑚 is said to be Lipschitz equivalent to 𝑑𝐸
if there are positive constants 𝑟 and 𝑅 such that

𝑟 𝑑𝐸(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) ≤ 𝑅𝑑𝐸(𝑥, 𝑦),

for all 𝑥, 𝑦 ∈ ℝ𝑚. If two metrics are Lipschitz equivalent,
then they induce the same topology on ℝ𝑚, but the converse
is not necessarily true.

(6) For any two subsets 𝐴 and 𝐵 of ℝ𝑚, the notation 𝐴−𝐵 :=
{𝑥− 𝑦 : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵} is used to denote the pointwise
subtraction of elements in the two sets.

(7) For a positive integer𝑁, the symbol Ω = {1, 2, . . . , 𝑁}∞ will
denote the set of all infinite sequences of symbols {𝜎𝑘}∞𝑘=1
belonging to the alphabet {1, 2, . . . , 𝑁}. The set Ω is en-
dowed with the product topology. An element of 𝜎 ∈ Ω
will also be denoted by the concatenation 𝜎 = 𝜎1𝜎2𝜎3 . . . ,
where 𝜎𝑘 denotes the 𝑘𝑡ℎ component of 𝜎. Recall that since
Ω is endowed with the product topology, it is a compact
Hausdorff space.

Definition 2.1 (IFS). If 𝑁 > 0 is an integer and 𝑓𝑛 : ℝ𝑚 → ℝ𝑚,
𝑛 = 1, 2, . . . , 𝑁, are continuous mappings, then ℱ =
(ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is called an iterated function system (IFS). If
each 𝑓 ∈ ℱ is an affine map on ℝ𝑚, then ℱ is called an affine IFS.

Definition 2.2 (Contractive IFS). An IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 )
is contractive when each 𝑓𝑛 is a contraction. Namely, there is a
number 𝛼𝑛 ∈ [0, 1) such that 𝑑𝐸(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≤ 𝛼𝑛𝑑𝐸(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ ℝ𝑚, for all 𝑛.

Definition 2.3 (Hyperbolic IFS). An IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 )
is called hyperbolic if there is a metric on ℝ𝑚 Lipschitz equivalent
to the given metric so that each 𝑓𝑛 is a contraction.

Definition 2.4 (Coding Map). A continuous map 𝜋 : Ω → ℝ𝑚 is
called a coding map for the IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) if, for each

TopologyP
Sticky Note



194 R. ATKINS, M. F. BARNSLEY, A. VINCE, AND D. C. WILSON

𝑛 = 1, 2, . . . , 𝑁, the following diagram commutes,

(2.1)

Ω
𝑠𝑛→ Ω

𝜋 ↓ ↓ 𝜋
ℝ𝑚 →

𝑓𝑛
ℝ𝑚

where the symbol 𝑠𝑛 : Ω → Ω denotes the inverse shift map defined
by 𝑠𝑛(𝜎) = 𝑛𝜎.

The notion of a coding map is due to Jun Kigami [11] and
Kameyama [9].

Definition 2.5 (Point-Fibered IFS). An IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 )
is point-fibered if, for each 𝜎 = 𝜎1 𝜎2 𝜎3 ⋅ ⋅ ⋅ ∈ Ω, the limit on the
right hand side of

(2.2) 𝜋(𝜎) := lim
𝑘→∞

𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘
(𝑥)

exists, is independent of 𝑥 ∈ ℝ𝑚 for fixed 𝜎, and the map 𝜋 : Ω →
ℝ𝑚 is a coding map.

It is not difficult to show that (2.2) is the unique coding map of
a point-fibered IFS. Our notion of a point-fibered iterated function
system is similar to that of Kieninger [10, Definition 4.3.6, p. 97].
However, we work in the setting of complete metric spaces whereas
Kieninger frames his definition in a compact Hausdorff space.

Definition 2.6 (The Symbol ℱ(𝐵) for an IFS). For an IFS ℱ =
(ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) define ℱ : ℍ →ℍ by

ℱ(𝐵) =

𝑁∪
𝑛=1

𝑓𝑛(𝐵).

(The same symbol ℱ is used for both the IFS and the mapping.)
For 𝐵 ∈ ℍ, let ℱ∘𝑘(𝐵) denote the 𝑘-fold composition of ℱ , i.e., the
union of 𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘

(𝐵) over all words 𝜎1𝜎2 ⋅ ⋅ ⋅𝜎𝑘 of length
𝑘.

Definition 2.7 (Attractor for an IFS). A set 𝐴 ∈ ℍ is called an
attractor of an IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) if

(2.3) 𝐴 = ℱ(𝐴) and

(2.4) 𝐴 = lim
𝑘→∞

ℱ∘𝑘(𝐵),
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the limit with respect to the Hausdorff metric, for all 𝐵 ∈ ℍ.

If an IFS has an attractor 𝐴, then clearly 𝐴 is the unique attrac-
tor. It is well known that a hyperbolic IFS has an attractor. An
elegant proof of this fact is given by John E. Hutchinson [7]. He ob-
serves that a contractive IFS ℱ induces a contraction ℱ : ℍ → ℍ,
from which the result follows by the contraction mapping theorem.
See also [6] and [19].

Section 4 shows that a point-fibered IFS ℱ has an attractor 𝐴,
and, moreover, if 𝜋 is the coding map of ℱ , then 𝐴 = 𝜋(Ω). Often
𝜎 is considered as the “address” of the point 𝜋(𝜎) in the attractor.
In the literature on fractals (for example, [11]) there is an approach
to the concept of a self-similar system without reference to the
ambient space. This approach begins with the idea of a continuous
coding map 𝜋 and, in effect, defines the attractor as 𝜋(Ω).

3. Examples and remarks on iterated function systems

This section contains examples and remarks relevant to Theo-
rem 1.1 and Theorem 1.2.

Example 3.1 (A Point-Fibered, Not Contractive IFS). Consider
the affine IFS consisting of a single linear function on ℝ2 given by
the matrix

𝑓 =

(
0 2
1
8 0

)
.

Note that the eigenvalues of 𝑓 equal ±1
2 . Since

lim
𝑛→∞ 𝑓∘2𝑛 = lim

𝑛→∞𝑇−1

(
(12)

𝑛 0
0 (−1

2)
𝑛

)
𝑇 =

(
0 0
0 0

)
,

where 𝑇 is the change of basis matrix, this IFS is point-fibered.
However, since

𝑓

(
0
1

)
=

(
2
0

)
,

the mapping is not a contraction under the usual metric on ℝ2.
Theorem 1.1, however, guarantees we can remetrize ℝ2 with an
equivalent metric so that 𝑓 is a contraction.

Example 3.2 (An IFS with Point-Fibered Functions That Is Not
Point-Fibered). In the literature on affine iterated function sys-
tems, it is sometimes assumed that the eigenvalues of the linear
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parts of the affine functions are less than 1 in modulus. Unfortu-
nately, this assumption is not sufficient to imply any of the five
statements given in Theorem 1.1. While the affine IFS (ℝ𝑚; 𝑓) is
point-fibered if and only if the eigenvalues of the linear part of 𝑓
all have moduli strictly less than 1, an analogous statement cannot
be made if the number of functions in the IFS is larger than 1.

Consider the affine IFS ℱ =
(
ℝ2; 𝑓1, 𝑓2

)
, where

𝑓1 =

(
0 2
1
8 0

)
and 𝑓2 =

(
0 1

8
2 0

)
.

As noted in Example 3.1,

lim
𝑛→∞ 𝑓∘𝑛

1 u = lim
𝑛→∞ 𝑓∘𝑛

2 u =

(
0
0

)
for any vector u. Thus, both ℱ1 =

(
ℝ2; 𝑓1

)
and ℱ2 =

(
ℝ2; 𝑓2

)
are

point-fibered. Unfortunately, their product is the matrix

𝑓1 ∘ 𝑓2 =
(
4 0
0 1

64

)
,

so that

lim
𝑛→∞(𝑓1 ∘ 𝑓2)∘𝑛

(
1
0

)
= lim

𝑛→∞

(
4𝑛

0

)
= +∞ .

Thus, the IFS ℱ =
(
ℝ2; 𝑓1, 𝑓2

)
fails to be point-fibered.

Remark 3.3. While it is true that (1) ⇒ (2) in Theorem 1.1 even
without the assumption that the IFS is affine, the converse is not
true in general. Kameyama [9] has shown that there exists a point-
fibered IFS that is not hyperbolic. We next give an example of an
affine IFS with a coding map that is not point-fibered. Thus, the
set of IFSs (with a coding map) strictly contains the set of point-
fibered IFSs which, in turn, strictly contains the set of hyperbolic
IFSs.

Example 3.4 (The Failure of a Finite Eigenvalue Test to Imply
Point-Fibered). Consider the linear IFS ℱ =

(
ℝ2;𝐿1, 𝐿2

)
, where

𝐿1 =

(
0 2
1
8 0

)
and 𝐿2 =

(
𝑎 cos 𝜃 −𝑎 sin 𝜃
𝑎 sin 𝜃 𝑎 cos 𝜃

)
= 𝑎𝑅𝜃,

where 𝑅𝜃 denotes rotation by angle 𝜃, and 0 < 𝑎 < 1. Then 𝐿𝑛
1 has

eigenvalues ±1/2𝑛 while the eigenvalues of 𝐿𝑛
2 both have magnitude

TopologyP
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𝑎𝑛 < 1. For example, if we choose 𝜃 = 𝜋/8 and 𝑎 = 31/32, then it
is readily verified that the eigenvalues of 𝐿1𝐿2 and 𝐿2𝐿1 are smaller
than one in magnitude and that one of the eigenvalues of 𝐿1𝐿2𝐿2

is 1.4014... . Hence, in this case, the magnitudes of the eigenvalues
of the linear operators 𝐿1, 𝐿2, 𝐿

2
1, 𝐿1𝐿2, 𝐿2𝐿1, 𝐿

2
2 are all less than

one, but ∥(𝐿1𝐿2𝐿2)
𝑛 𝑥∥ does not converge when 𝑥 ∈ ℝ2 is any

eigenvector of 𝐿1𝐿2𝐿2 corresponding to the eigenvalue 1.4014... .
It follows that the IFS

(
ℝ2;𝐿1, 𝐿2

)
is not point-fibered. By using

the same underlying idea, it is straightforward to prove that, given
any positive integer𝑀 , we can choose 𝑎 close to 1 and 𝜃 close to 0 in
such a way that the eigenvalues of 𝐿𝜎1𝐿𝜎2 ...𝐿𝜎𝑘

, (where 𝜎𝑗 ∈ {1, 2}
for 𝑗 = 1, 2, ..., 𝑘, with 𝑘 ≤ 𝑀) are all of magnitude less than one,
while 𝐿1𝐿

𝑀
2 has an eigenvalue of magnitude larger than one.

Example 3.5 (A Non-Hyperbolic Affine IFS). Let ℱ =
(
ℝ2; 𝑓0, 𝑓1

)
,

where

𝑓0(𝑥1, 𝑥2) = (
1

2
𝑥1, 𝑥2), 𝑓1(𝑥1, 𝑥2) = (

1

2
𝑥1 +

1

2
, 𝑥2).

This IFS has a coding map 𝜋 with Ω = {0, 1}∞ and 𝜋(𝜎) = (0.𝜎, 0),
where 0.𝜎 is considered as a base 2 decimal. Since lim𝑘→∞ 𝑓𝜎1 ∘
𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘𝑓𝜎𝑘

(𝑥1, 𝑥2) = (0.𝜎, 𝑥2) depends on the choice of the points
(𝑥1, 𝑥2) ∈ ℝ2, this IFS cannot be point-fibered. Hence, by Theo-
rem 1.1, the IFS ℱ is also not hyperbolic. However, it is clearly
hyperbolic when restricted to the 𝑥-axis, the affine hull of unit inter-
val 𝜋(Ω) = [0, 1]×{0}. Thus, this example illustrates Theorem 1.2.

Remark 3.6. A key fact used in the proof of Theorem 1.1 is that
the set of antipodal points in a convex body equals the set of dia-
metric points. The definitions of antipodal and diametric points are
given in definitions 6.1 and 6.2, respectively. The equality between
these two point sets is proved in Theorem 6.4. While it is possible
that this result is present in the convex geometry literature, it does
not seem to be well known. For example, it is not mentioned in the
works of Maria Moszyńska [13] or Rolf Schneider [17]. This equiva-
lence between antipodal and diametric points is crucial to our work
because it provides the remetrization technique at the heart of The-
orem 6.7, which implies that a non-antipodal IFS is hyperbolic. A
consequence of Theorem 1.1 is that a non-antipodal affine IFS has
the seemingly stronger property of being topologically contractive.
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4. Hyperbolic implies point-fibered implies
the existence of an attractor

The implications (1) ⇒ (2) ⇒ (3) in Theorem 1.1 are proved in
this section. We also introduce the notation 𝑓𝜎 ∣ 𝑘 = 𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘
𝑓𝜎𝑘

(𝑥). Note that, for 𝑘 fixed, 𝑓𝜎 ∣ 𝑘(𝑥) is a function of both 𝑥 and
𝜎.

Theorem 4.1. If ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is a hyperbolic IFS, then
ℱ is point fibered.

Proof: For 𝜎 ∈ Ω, the proof that the limit lim𝑘→∞ 𝑓𝜎∣𝑘 exists and
is independent of 𝑥 is virtually identical to the proof of the classical
Contraction Mapping Theorem. Moreover, the same proof shows
that the limit is uniform in 𝜎.

With 𝜋 : Ω → ℝ𝑚 defined by 𝜋(𝜎) = lim𝑘→∞ 𝑓𝜎∣𝑘, it is easy to
check that, for each 𝑛 = 1, 2, . . . , 𝑁 , the diagram (2.1) commutes.

It only remains to show that 𝜋 is continuous. With 𝑥 fixed,
𝑓𝜎 ∣ 𝑘(𝑥) is a continuous function of 𝜎. This is simply because, if
𝜎, 𝜏 ∈ Ω are sufficiently close in the product topology, then they
agree on the first 𝑘 components. By Definition 2.5, the function 𝜋
is then the uniform limit of continuous (in 𝜎) functions defined on
the compact set Ω. Therefore, 𝜋 is continuous. □

Let ℱ be a point-fibered affine IFS, and let 𝐴 denote the set

𝐴 := 𝜋(Ω).

According to Theorem 4.3, 𝐴 is the attractor of ℱ .

Lemma 4.2. Let ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) be a point-fibered affine
IFS with coding map 𝜋 : Ω → ℝ𝑚. If 𝐵 ⊂ ℝ𝑚 is compact, then the
convergence in the limit

𝜋(𝜎) = lim
𝑘→∞

𝑓𝜎∣𝑘(𝑥)

is uniform in 𝜎 = 𝜎1𝜎2 ⋅ ⋅ ⋅ ∈ Ω and 𝑥 ∈ 𝐵 simultaneously.

Proof: Only the uniformity requires proof. Express 𝑓𝑛(𝑥) =

𝐿𝑛𝑥+ 𝑎𝑛, where 𝐿𝑛 is the linear part. Then

(4.1)

𝑓𝜎∣𝑘(𝑥) = 𝐿𝜎∣𝑘(𝑥) + 𝐿𝜎∣𝑘−1(𝑎𝜎𝑘
) + 𝐿𝜎∣𝑘−2(𝑎𝜎𝑘−1

) + ⋅ ⋅ ⋅+ 𝐿𝜎∣1𝑎𝜎2
+ 𝑎𝜎1

= 𝐿𝜎∣𝑘(𝑥) + 𝑓𝜎∣𝑘(0).
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From equation (4.1) it follows that, for any 𝑥, 𝑦 ∈ 𝐵,

(4.2) 𝑑𝐸(𝑓𝜎∣𝑘(𝑥), 𝑓𝜎∣𝑘(𝑦)) =
∥∥𝐿𝜎∣𝑘(𝑥− 𝑦)

∥∥
2

≤ sup
{ 𝑚∑
𝑗=1

2 ∣𝑐𝑗 ∣
∥∥𝐿𝜎∣𝑘(𝑒𝑗)

∥∥
2
: 𝑐1𝑒1 + ⋅ ⋅ ⋅+ 𝑐𝑚𝑒𝑚 ∈ 𝐵

}
≤ 𝑐 max

𝑗

∥∥𝑓𝜎∣𝑘(𝑒𝑗)− 𝑓𝜎∣𝑘(0)
∥∥
2
,

where 𝑐 = 2𝑚 ⋅ sup {max𝑗 ∣𝑐𝑗 ∣ : 𝑐1𝑒1 + ⋅ ⋅ ⋅+ 𝑐𝑚𝑒𝑚 ∈ 𝐵} and where
{𝑒𝑗}𝑚𝑗=1 is a basis for ℝ𝑚.

Let 𝜖 > 0. From the definition of point-fibered there is a 𝑘𝑗 ,
independent of 𝜎, such that if 𝑘 > 𝑘𝑗 , then∥∥𝑓𝜎∣𝑘(𝑒𝑗)− 𝜋(𝜎)

∥∥
2
<

𝜖

4𝑐
and

∥∥𝑓𝜎∣𝑘(0)− 𝜋(𝜎)
∥∥
2
<

𝜖

4𝑐
,

which implies
∥∥𝑓𝜎∣𝑘(𝑒𝑗)− 𝑓𝜎∣𝑘(0)

∥∥
2
< 𝜖

2𝑐 . This and equation (4.2)

imply that if 𝑘 ≥ 𝑘 := max𝑗 𝑘𝑗 , then, for any 𝑥, 𝑦 ∈ 𝐵, we have

(4.3) 𝑑𝐸(𝑓𝜎∣𝑘(𝑥), 𝑓𝜎∣𝑘(𝑦)) < 𝑐
𝜖

2𝑐
=

𝜖

2
.

Let 𝑏 be a fixed element of 𝐵. There is a 𝑘𝑏, independent of 𝜎, such

that if 𝑘 > 𝑘𝑏, then 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝜋(𝜎)) < 𝜖
2 . If 𝑘 > 𝑚𝑎𝑥(𝑘𝑏, 𝑘), then,

by equation (4.3), for any 𝑥 ∈ 𝐵,

𝑑𝐸(𝑓𝜎∣𝑘(𝑥), 𝜋(𝜎)) ≤ 𝑑𝐸(𝑓𝜎∣𝑘(𝑥), 𝑓𝜎∣𝑘(𝑏)) + 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝜋(𝜎)) <
𝜖

2
+

𝜖

2
= 𝜖.

□
Theorem 4.3 (A Point-Fibered IFS Has an Attractor). If ℱ =
(ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is a point-fibered affine IFS, then ℱ has an at-
tractor 𝐴 = 𝜋(Ω), where 𝜋 : Ω → ℝ𝑚 is the coding map of ℱ .

Proof: It follows directly from the commutative diagram (2.1)
that 𝐴 obeys the self-referential equation (2.3). We next show that
𝐴 satisfies equation (2.4).

Let 𝜖 > 0. We must show that there is an 𝑀 such that if
𝑘 > 𝑀 , then 𝑑ℍ(ℱ∘𝑘(𝐵), 𝜋(Ω)) < 𝜖. It is sufficient to let 𝑀 =
max(𝑀1,𝑀2), where 𝑀1 and 𝑀2 are defined as follows.

First, let 𝑎 be an arbitrary element of 𝐴. Then there exists a
𝜎 ∈ Ω such that 𝑎 = 𝜋(𝜎). By Lemma 4.2, there is an 𝑀1 such
that if 𝑘 > 𝑀1, then 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝑎) = 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝜋(𝜎)) < 𝜖, for all

𝑏 ∈ 𝐵. In other words, 𝐴 lies in an 𝜖-neighborhood of ℱ∘𝑘(𝐵).
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Second, let 𝑏 be an arbitrary element of 𝐵 and 𝜎 an arbitrary
element of Ω. If 𝑎 := 𝜋(𝜎) ∈ 𝐴, then there is an 𝑀2 such that
if 𝑘 > 𝑀2, then 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝑎) = 𝑑𝐸(𝑓𝜎∣𝑘(𝑏), 𝜋(𝜎)) < 𝜖. In other

words, ℱ∘𝑘(𝐵) lies in an 𝜖-neighborhood of 𝐴. □

5. An IFS with an attractor is
topologically contractive

The goal of this section is to establish the implication (3) ⇒ (4)
in Theorem 1.1. We will show that if an affine IFS has an attractor
as defined in Definition 2.7, then it is a topological contraction.
The proof uses notions involving convex bodies.

Definition 5.1. A convex body 𝐾 is centrally symmetric if it has
the property that whenever 𝑥 ∈ 𝐾, then −𝑥 ∈ 𝐾.

A well-known general technique for creating centrally symmetric
convex bodies from a given convex body is provided by the next
proposition.

Proposition 5.2. If a set 𝐾 is a convex body in ℝ𝑚, then the set
𝐾 ′ = 𝐾 −𝐾 is a centrally symmetric convex body in ℝ𝑚.

Definition 5.3 (Minkowski Norm). If 𝐾 is a centrally symmetric
convex body in ℝ𝑚, then the Minkowski norm on ℝ𝑚 is defined by

∥𝑥∥𝐾 = inf {𝜆 ≥ 0 : 𝑥 ∈ 𝜆𝐾}.
The next proposition is also well known.

Proposition 5.4. If 𝐾 is a centrally symmetric convex body in
ℝ𝑚, then the function ∥𝑥∥𝐾 defines a norm on ℝ𝑚. Moreover, the
set 𝐾 is the unit ball with respect to the Minkowski norm ∥𝑥∥𝐾 .

Definition 5.5 (Minkowski Metric). If 𝐾 is a centrally symmetric
convex body in ℝ𝑚 and ∥𝑥∥𝐾 is the associated Minkowski norm,
then define the Minkowski metric on ℝ𝑚 by the rule

𝑑𝐾(𝑥, 𝑦) := ∥𝑥− 𝑦∥𝐾 .

While R. Tyrrel Rockafellar [15] refers to such a metric as a
Minkowski metric, the reader should be aware that this term is also
associated with the metric on space-time in the theory of relativity.
Since, for any convex body 𝐾, there are positive numbers 𝑟 and 𝑅
such that 𝐾 contains a ball of radius 𝑟 and is contained in a ball
of radius 𝑅, the following proposition is clear.
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Proposition 5.6. If 𝑑 is a Minkowski metric, then 𝑑 is Lipschitz
equivalent to the standard metric 𝑑𝐸 on ℝ𝑚.

Proposition 5.7. A metric 𝑑 : ℝ𝑚×ℝ𝑚 → [0,∞) is a Minkowski
metric if and only if it is translation invariant and distances behave
linearly along line segments. More specifically,

(5.1) 𝑑(𝑥+ 𝑧, 𝑦 + 𝑧) = 𝑑(𝑥, 𝑦) and 𝑑(𝑥, (1− 𝜆)𝑥+ 𝜆𝑦) = 𝜆𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦, 𝑧 ∈ ℝ𝑚 and all 𝜆 ∈ [0, 1].

Proof: For a proof, see [15, pp. 131–132]. □

Definition 5.8 (Topologically Contractive IFS). An IFS ℱ =
{ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁} is called topologically contractive if there is a
convex body 𝐾 such that ℱ (𝐾) ⊂ 𝑖𝑛𝑡(𝐾).

The proof of Theorem 5.10 relies on the following lemma which
is easily proved.

Lemma 5.9. If 𝑔 : ℝ𝑚 → ℝ𝑚 is affine and 𝑆 ⊂ ℝ𝑚, then
𝑔(𝑐𝑜𝑛𝑣(𝑆)) = 𝑐𝑜𝑛𝑣(𝑔(𝑆)).

Theorem 5.10 (The Existence of an Attractor Implies a Topo-
logical Contraction). For an affine IFS ℱ = {ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁},
if there exists an attractor 𝐴 ∈ ℍ of the affine IFS ℱ = {ℝ𝑚;
𝑓1, 𝑓2, ..., 𝑓𝑁}, then ℱ is topologically contractive.

Proof: The proof of this theorem unfolds in three steps.

(1) There exists a convex body 𝐾1 and a positive integer 𝑡 with
the property that ℱ∘𝑡 (𝐾1) ⊂ 𝑖𝑛𝑡 (𝐾1).

(2) The set 𝐾1 is used to define a convex body 𝐾2 such that
𝐿𝑛 (𝐾2) ⊂ 𝑖𝑛𝑡 (𝐾2) , where 𝑓𝑛(𝑥) = 𝐿𝑛𝑥 + 𝑎𝑛 and 𝑛 =
1, 2, . . . , 𝑁 .

(3) There is a positive constant 𝑐 such that the set 𝐾 = 𝑐𝐾2

has the property ℱ (𝐾) ⊂ 𝑖𝑛𝑡 (𝐾).

(1): Let 𝐴 denote the attractor of ℱ . Let 𝐴𝜌 = {𝑥 ∈ ℝ𝑚 :
𝑑ℍ({𝑥} , 𝐴) ≤ 𝜌} denote the dilation of 𝐴 by radius 𝜌 > 0. Since we
are assuming lim𝑘→∞ 𝑑ℍ(ℱ∘𝑘(𝐴𝜌), 𝐴) = 0, we can find an integer 𝑡
so that 𝑑ℍ(ℱ∘𝑡(𝐴1), 𝐴) < 1. Thus,

(5.2) ℱ∘𝑡(𝐴1) ⊆ 𝑖𝑛𝑡(𝐴1).
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If we let 𝐾1 := 𝑐𝑜𝑛𝑣 (𝐴1), then

ℱ∘𝑡 (𝐾1) =
∪
𝑖1∈Ω

∪
𝑖2∈Ω

⋅ ⋅ ⋅
∪
𝑖𝑡∈Ω

(𝑓𝑖1 ∘ 𝑓𝑖2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝑖𝑡) (𝑐𝑜𝑛𝑣(𝐴1))

=
∪
𝑖1∈Ω

∪
𝑖2∈Ω

⋅ ⋅ ⋅
∪
𝑖𝑡∈Ω

𝑐𝑜𝑛𝑣 (𝑓𝑖1 ∘ 𝑓𝑖2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝑖𝑡(𝐴1))

(by Lemma 5.9)

⊆
∪
𝑖1∈Ω

∪
𝑖2∈Ω

⋅ ⋅ ⋅
∪
𝑖𝑡∈Ω

𝑐𝑜𝑛𝑣 (𝑖𝑛𝑡(𝐴1))

= 𝑐𝑜𝑛𝑣(𝑖𝑛𝑡(𝐴1))

(by inclusion (5.2))

⊆ 𝑖𝑛𝑡(𝑐𝑜𝑛𝑣(𝐴1)) = 𝑖𝑛𝑡 (𝐾1) .

This argument completes the proof of (1).

(2): Consider the set

𝐾2 :=
∑𝑡−1

𝑘=0(𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1)− 𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1))).
The set 𝐾2 is a centrally symmetric convex body because it is a
finite Minkowski sum of centrally symmetric convex bodies. If any
affine map 𝑓𝑛 in ℱ is written 𝑓𝑛(𝑥) = 𝐿𝑛𝑥+ 𝑎𝑛, where 𝐿𝑛 : ℝ𝑚 →
ℝ𝑚 denotes the linear part, then

𝐿𝑛(𝐾2) =

𝑡−1∑
𝑘=0

𝐿𝑛

(
𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1)− 𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1))

)
(since 𝐿𝑛 is a linear map)

=
𝑡−1∑
𝑘=0

(
𝑐𝑜𝑛𝑣(𝐿𝑛

(
ℱ∘𝑘 (𝐾1)

)
)− 𝑐𝑜𝑛𝑣(𝐿𝑛

(
ℱ∘𝑘(𝐾1)

)
)
)

(by Lemma 5.9)

=
𝑡−1∑
𝑘=0

(
𝑐𝑜𝑛𝑣(𝑓𝑛

(
ℱ∘𝑘 (𝐾1)

)
)− 𝑐𝑜𝑛𝑣(𝑓𝑛

(
ℱ∘𝑘(𝐾1)

)
)
)

(since the 𝑎𝑛s cancel)

⊆
𝑡−1∑
𝑘=0

(
𝑐𝑜𝑛𝑣(ℱ∘(𝑘+1) (𝐾1))− 𝑐𝑜𝑛𝑣(ℱ∘(𝑘+1)(𝐾1))

)
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=
(
𝑐𝑜𝑛𝑣(ℱ∘𝑡(𝐾1)− 𝑐𝑜𝑛𝑣(ℱ∘𝑡(𝐾1))

)
+

𝑡−1∑
𝑘=1

(
𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1)− 𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1))

)
⊆ (𝑖𝑛𝑡 (𝐾1)− 𝑖𝑛𝑡 (𝐾1))

+
𝑡−1∑
𝑘=1

(𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1)− 𝑐𝑜𝑛𝑣(ℱ∘𝑘(𝐾1)))

(by step (1))

= 𝑖𝑛𝑡(𝐾2).

The second to last inclusion follows from the fact that
𝑓𝑛

(ℱ∘𝑘 (𝐾1)
) ⊂ ℱ∘(𝑘+1) (𝐾1). The last equality follows from the

fact that if 𝒪 and 𝒞 are symmetric convex bodies in ℝ𝑚, then
𝑖𝑛𝑡(𝒪) + 𝒞 = 𝑖𝑛𝑡 (𝒪 + 𝒞). We have now completed the proof of
step (2).

(3): It follows from step (2) and the compactness of𝐾2 that there
is a constant 𝛼 ∈ (0, 1) such that 𝑑𝐾2(𝐿𝑛(𝑥), 𝐿𝑛(𝑦)) < 𝛼𝑑𝐾2(𝑥, 𝑦)
for all 𝑥, 𝑦 ∈ ℝ𝑚 and all 𝑛 = 1, 2, . . . , 𝑁 .

Let

𝑐 >
𝑟

(1− 𝛼)
,

where 𝑟 = max{𝑑𝐾2(𝑎1, 0), 𝑑𝐾2(𝑎2, 0), . . . , 𝑑𝐾2(𝑎𝑁 , 0)}. If 𝑥 ∈ 𝑐𝐾2

and 𝑓(𝑥) = 𝐿𝑥+ 𝑎 is any function in the IFS ℱ , then

∥𝑓(𝑥)∥𝐾2
= 𝑑𝐾2 (𝑓 (𝑥) , 0)

= 𝑑𝐾2 (𝐿𝑥+ 𝑎, 0) ≤ 𝑑𝐾2 (𝐿𝑥+ 𝑎, 𝐿𝑥) + 𝑑𝐾2 (𝐿𝑥, 0)

= 𝑑𝐾2 (𝑎, 0) + 𝑑𝐾2 (𝐿𝑥, 0) (by equation (5.1))

< 𝑟 + 𝛼𝑑𝐾2 (𝑥, 0) = 𝑟 + 𝛼 ∥𝑥∥𝐾2

≤ 𝑟 + 𝛼𝑐 < (𝑐− 𝛼𝑐) + 𝛼𝑐 = 𝑐.

This inequality shows that ℱ (𝑐𝐾2) ⊂ 𝑖𝑛𝑡(𝑐𝐾2). □

6. A non-antipodal affine IFS is hyperbolic

Let 𝑆𝑚−1 ⊂ ℝ𝑚 denote the unit sphere in ℝ𝑚. For a convex body
𝐾 ⊂ ℝ𝑚 and for 𝑢 ∈ 𝑆𝑚−1 there exists a pair {𝐻𝑢,𝐻−𝑢} of distinct
supporting hyperplanes of 𝐾, each orthogonal to 𝑢 and with the
property that they both intersect ∂𝐾 but contain no points of the
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interior of 𝐾. The pair {𝐻𝑢,𝐻−𝑢} is usually referred to as the two
supporting hyperplanes of 𝐾 orthogonal to 𝑢. (See [13, p. 14].)

Definition 6.1 (Antipodal Pairs). If 𝐾 ⊂ ℝ𝑚 is a convex body
and 𝑢 ∈ 𝑆𝑚−1, then define

𝒜𝑢 := 𝒜𝑢(𝐾) = (𝐻𝑢 ∩ ∂𝐾)× (𝐻−𝑢 ∩ ∂𝐾) and

𝒜 := 𝒜(𝐾) =
∪

𝑢∈𝑆𝑚−1

𝒜𝑢.

We say that (𝑝, 𝑞) is an antipodal pair of points with respect to 𝐾
if (𝑝, 𝑞) ∈ 𝒜.

Definition 6.2 (Diametric Pairs). If 𝐾 ⊂ ℝ𝑚 is a convex body,
and 𝑢∈𝑆𝑚−1, then define the diameter of 𝐾 in the direction 𝑢 to
be

𝐷(𝑢) = max{∥𝑥− 𝑦∥2 : 𝑥, 𝑦∈𝐾,𝑥− 𝑦 = 𝛼𝑢, 𝛼 ∈ ℝ}.
The maximum is achieved at some pair of points belonging to ∂𝐾
because 𝐾 ×𝐾 is convex and compact, and ∥𝑥− 𝑦∥2 is continuous
for (𝑥, 𝑦) ∈ 𝐾 ×𝐾. Now define

𝒟𝑢 = {(𝑝, 𝑞) ∈ ∂𝐾 × ∂𝐾 : 𝐷(𝑢) = ∥𝑞 − 𝑝∥2} and

𝒟 =
∪

𝑢∈𝑆𝑚−1

𝒟𝑢.

We say that (𝑝, 𝑞) ∈ 𝒟𝑢 is a diametric pair of points in the direction
of 𝑢 and that 𝒟 is the set of diametric pairs of points of 𝐾.

Definition 6.3 (Strictly Convex). A convex body 𝐾 is strictly
convex if, for every two points 𝑥, 𝑦 ∈ 𝐾, the open line segment
joining 𝑥 and 𝑦 is contained in the interior of 𝐾.

We write 𝑥𝑦 to denote the closed line segment with endpoints at
𝑥 and 𝑦 so that 𝑦 − 𝑥 is the vector, in the direction from 𝑥 to 𝑦,
whose magnitude is the length of 𝑥𝑦.

Theorem 6.4. If 𝐾 ⊂ ℝ𝑚 is a convex body, then the set of antipo-
dal pairs of points of 𝐾 is the same as the set of diametric pairs of
points of 𝐾, i.e.,

𝒜 = 𝒟.

Proof: First, we show that 𝒜 ⊆ 𝒟. If (𝑝, 𝑞) ∈ 𝒜, then 𝑝 ∈
𝐻𝑢 ∩ ∂𝐾 and 𝑞 ∈ 𝐻−𝑢 ∩ ∂𝐾 for some 𝑢 ∈ 𝑆𝑚−1. Clearly, any
chord of 𝐾 parallel to 𝑝𝑞 lies entirely in the region between 𝐻𝑢 and

TopologyP
Sticky Note

TopologyP
Sticky Note
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𝐻−𝑢 and therefore cannot have length greater than that of 𝑝𝑞. So
𝐷(𝑞 − 𝑝) = ∥𝑞 − 𝑝∥ and (𝑝, 𝑞) ∈ 𝒟𝑞−𝑝 ⊆ 𝒟. For use later in the
proof, note that if 𝐾 is strictly convex, then 𝑝𝑞 is the unique chord
of maximum length in its direction.

Conversely, to show that 𝒟 ⊆ 𝒜, first consider the case where 𝐾
is a strictly convex body. For each 𝑢 ∈ 𝑆𝑚−1, consider the points
𝑥𝑢 ∈ 𝐻𝑢 ∩ ∂𝐾 and 𝑥−𝑢 ∈ 𝐻−𝑢 ∩ ∂𝐾. The continuous function
𝑓 : 𝑆𝑚−1 → 𝑆𝑚−1 defined by

𝑓(𝑢) =
𝑥𝑢 − 𝑥−𝑢

∥𝑥𝑢 − 𝑥−𝑢∥2
has the property that ⟨𝑓(𝑢), 𝑢⟩ > 0 for all 𝑢. In other words, the
angle between 𝑢 and 𝑓(𝑢) is less than 𝜋

2 . But it is an elementary
exercise in topology (see, for example, [14, Problem 10, p. 367])
that if 𝑓 : 𝑆𝑚−1 → 𝑆𝑚−1 maps no point 𝑥 to its antipode −𝑥, then
𝑓 has degree 1 and, in particular, is surjective. To show that𝒟 ⊆ 𝒜,
let (𝑝, 𝑞) ∈ 𝒟𝑣 for some 𝑣 ∈ 𝑆𝑚−1. By the surjectivity of 𝑓 there
is 𝑢 ∈ 𝑆𝑚−1 such that 𝑓(𝑢) = 𝑣. According to the last sentence of
the previous paragraph, 𝑥𝑢𝑥−𝑢 is the unique longest chord parallel
to 𝑣. Therefore, 𝑝 = 𝑥𝑢 and 𝑞 = 𝑥−𝑢 and consequently, (𝑝, 𝑞) ∈ 𝒜𝑢.

The case where 𝐾 is not strictly convex is treated by a standard
limiting argument. Given a vector 𝑣 ∈ 𝑆𝑚−1 and a longest chord
𝑝𝑞 parallel to 𝑣, we must prove that (𝑝, 𝑞) ∈ 𝒜. Since 𝐾 is the
intersection of all strictly convex bodies containing 𝐾, there is a
sequence {𝐾𝑘} of strictly convex bodies containing 𝐾 with the
following two properties.

(1) There is a longest chord 𝑝𝑘𝑞𝑘 of 𝐾𝑘 parallel to 𝑢 such that
lim𝑘→∞ ∥𝑝𝑘 − 𝑞𝑘∥2 = ∥𝑝− 𝑞∥2 , and the limits lim𝑘→∞ 𝑝𝑘 = 𝑝 ∈ 𝐾
and lim𝑘→∞ 𝑞𝑘 = 𝑞 ∈ 𝐾 exist.

By the result for the strictly convex case, there is a sequence
of vectors 𝑢𝑘 ∈ 𝑆𝑚−1 such that 𝑝𝑘 = 𝐾𝑘 ∩ 𝐻𝑢𝑘

(𝐾𝑘) and 𝑞𝑘 =
𝐾𝑘 ∩𝐻−𝑢𝑘

(𝐾𝑘). By perhaps going to a subsequence

(2) lim𝑘→∞ 𝑢𝑘 = 𝑢 ∈ 𝑆𝑚−1 exists.

It follows from item (1) that ∥𝑝− 𝑞∥2 = ∥𝑝− 𝑞∥2 and 𝑝 − 𝑞 is
parallel to 𝑣. Therefore, 𝑝𝑞, as well as 𝑝𝑞, are longest chords of
𝐾 parallel to 𝑣. It follows from (2) that if 𝐻 and 𝐻 ′ are the
hyperplanes orthogonal to 𝑢 through 𝑝 and 𝑞, respectively, then
𝐻 and 𝐻 ′ are parallel supporting hyperplanes of 𝐾. Therefore,
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necessarily 𝑝 ∈ 𝐻 and 𝑞 ∈ 𝐻 ′, and consequently, (𝑝, 𝑞) ∈ 𝒜𝑢 ⊂
𝒜. □

Definition 6.5 (Non-Antipodal IFS). If 𝐾 ⊂ ℝ𝑚 is a convex
body, then 𝑓 : ℝ𝑚 → ℝ𝑚 is non-antipodal with respect to 𝐾 if
𝑓(𝐾) ⊆ 𝐾, and (𝑥, 𝑦) ∈ 𝒜 (𝐾) implies (𝑓(𝑥), 𝑓(𝑦)) /∈ 𝒜 (𝐾). If
ℱ = {ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁} is an iterated function system with the
property that each 𝑓𝑛 is non-antipodal with respect to 𝐾, then ℱ
is called non-antipodal with respect to 𝐾.

The next proposition gives the implication (4) ⇒ (5) in Theo-
rem 1.1. The proof is clear.

Proposition 6.6 (A Topological Contraction Is Non-Antipodal).
If ℱ = {ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁} is an affine iterated function system
with the property that there exists a convex body 𝐾 ⊂ ℝ𝑚 such that
𝑓𝑛(𝐾) ⊂ 𝑖𝑛𝑡(𝐾) for all 𝑛 = 1, 2, . . . , 𝑛, then ℱ is non-antipodal
with respect to 𝐾.

The next theorem provides the implication (5) ⇒ (1) in Theo-
rem 1.1.

Theorem 6.7. If the affine IFS ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is non-
antipodal with respect to a convex body 𝐾, then ℱ is hyperbolic.

Proof: Assume that 𝐾 is a convex body such that 𝑓 is non-
antipodal with respect to 𝐾 for all 𝑓 ∈ ℱ . Let 𝐶 = 𝐾 − 𝐾
and let 𝑓(𝑥) = 𝐿𝑥 + 𝑎 ∈ ℱ , where 𝐿 is the linear part of 𝑓 . By
Proposition 5.2, the set 𝐶 is a centrally symmetric convex body
and

𝐿(𝐶) = 𝐿(𝐾)− 𝐿(𝐾) = 𝑓(𝐾)− 𝑓(𝐾) ⊆ 𝐾 −𝐾 = 𝐶.

We claim that 𝐿(𝐶) ⊂ 𝑖𝑛𝑡(𝐶). Since 𝐶 is compact and 𝐿 is
linear, to prove the claim, it is sufficient to show that 𝐿(𝑥) /∈ ∂𝐶
for all 𝑥 ∈ ∂𝐶. By way of contradiction, assume that 𝑥 ∈ ∂𝐶
and 𝐿(𝑥) ∈ ∂𝐶. Then the vector 𝑥 is a longest vector in 𝐶 in its
direction. Since 𝑥 ∈ 𝐶 = 𝐾 −𝐾, there are 𝑥1, 𝑥2 ∈ ∂𝐾 such that
𝑥 = 𝑥1−𝑥2, and (𝑥1, 𝑥2) ∈ 𝒟(𝐾) = 𝒜(𝐾), where the last equality is
by Theorem 6.4. So (𝑥1, 𝑥2) is an antipodal pair with respect to 𝐾.
Likewise, since 𝐿𝑥 is a longest vector in 𝐶 in its direction, there are
𝑦1, 𝑦2 ∈ ∂𝐾 such that 𝐿𝑥 = 𝑦1 − 𝑦2, and (𝑦1, 𝑦2) ∈ 𝒟(𝐾) = 𝒜(𝐾).
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Therefore,

𝑓(𝑥2)− 𝑓(𝑥1) = 𝐿(𝑥2)− 𝐿(𝑥1) = 𝐿(𝑥2 − 𝑥1) = 𝐿𝑥 = 𝑦1 − 𝑦2,

which implies that (𝑓𝑛(𝑥1), 𝑓𝑛(𝑥2)) ∈ 𝒟(𝐾) = 𝒜(𝐾), contradicting
that 𝑓 is non-antipodal with respect to 𝐾.

If 𝑑𝐶 denotes the Minkowski metric with respect to the centrally
symmetric convex body 𝐶, then by Proposition 5.4, 𝐶 is the unit
ball centered at the origin with respect to this metric. Since 𝐶 is
compact, the containment 𝐿(𝐶) ⊂ 𝑖𝑛𝑡(𝐶) implies that there is an
𝛼 ∈ [0, 1) such that ∥𝐿𝑥∥𝐶 < 𝛼 ∥𝑥∥𝐶 for all 𝑥 ∈ ℝ𝑚. Then

𝑑𝐶(𝑓(𝑥), 𝑓(𝑦)) = ∥𝑓(𝑥)− 𝑓(𝑦)∥𝐶 = ∥𝐿𝑥− 𝐿𝑦∥𝐶
= ∥𝐿(𝑥− 𝑦)∥𝐶 < 𝛼 ∥𝑥− 𝑦∥𝐶 = 𝛼𝑑𝐶(𝑥, 𝑦).

Therefore, 𝑑𝐶 is a metric for which each function in the IFS is a
contraction. By Proposition 5.6, 𝑑𝐶 is Lipschitz equivalent to the
standard metric. □

7. An answer to the question of Kameyama

We now turn to the proof of Theorem 1.2, the theorem that set-
tles the question of Kameyama. If 𝑋 ⊆ ℝ𝑚 and ℱ =
(𝑋; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is an IFS on 𝑋, then the definitions of coding
map and point-fibered for ℱ are exactly the same as definitions 2.4
and 2.5, with ℝ𝑚 replaced by 𝑋. The proof of Theorem 1.2 requires
the following proposition.

Proposition 7.1. If 𝑋 ⊆ ℝ𝑚 and ℱ = (𝑋; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is an
IFS with a coding map 𝜋 : Ω → ℝ𝑚 such that 𝜋(Ω) = 𝑋, then ℱ is
point-fibered on 𝑋.

Proof: By Definition 2.5, we must show that lim𝑘→∞ 𝑓𝜎1 ∘ 𝑓𝜎2 ∘
⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘

(𝑥) exists, is independent of 𝑥 ∈ 𝑋, and is continuous
as a function of 𝜎 = 𝜎1𝜎2 ⋅ ⋅ ⋅ ∈ Ω. We will actually show that
lim𝑘→∞ 𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘

(𝑥) = 𝜋(𝜎).
Since 𝜋 is a coding map, we know by Definition 2.4 that 𝑓𝑛 ∘

𝜋(𝜎) = 𝜋 ∘ 𝑠𝑛(𝜎), for all 𝑛 = 1, 2, . . . , 𝑁 . By assumption, if 𝑥 is any
point in 𝑋, then there is a 𝜏 ∈ Ω such that 𝜋(𝜏) = 𝑥. Thus,

lim
𝑘→∞

𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘
(𝑥)= lim

𝑘→∞
𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘

(𝜋(𝜏))

(since 𝜋(𝜏) = 𝑥)
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= lim
𝑘→∞

𝜋(𝑠𝜎1 ∘ 𝑠𝜎2 ∘ ... ∘ 𝑠𝜎𝑘
∘ 𝜏)

(by diagram (2.1))

= 𝜋( lim
𝑘→∞

𝑠𝜎1 ∘ 𝑠𝜎2 ∘ ... ∘ 𝑠𝜎𝑘
∘ 𝜏)

(since 𝜋 is continuous)

= 𝜋(𝜎). □

Theorem 7.2. If ℱ = (ℝ𝑚; 𝑓1, 𝑓2, ..., 𝑓𝑁 ) is an affine IFS with a
coding map 𝜋 : Ω → 𝑋, then ℱ is point-fibered when restricted to
the affine hull of 𝜋(Ω). In particular, if 𝜋(Ω) contains a non-empty
open subset of ℝ𝑚, then ℱ is point-fibered on ℝ𝑚.

Proof: Let 𝐴 := 𝜋(Ω). Since 𝑓𝑛(𝐴) ⊆ 𝐴 for all 𝑛, the restric-
tion of the IFS ℱ to 𝐴, namely ℱ∣𝐴 := (𝐴; 𝑓1, 𝑓2, . . . , 𝑓𝑁 ), is well
defined. It follows from Proposition 7.1 that ℱ∣𝐴 is point-fibered
and, because the coding map for a point-fibered IFS is unique,

𝜋(𝜎) = lim
𝑘→∞

𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘
(𝑎)

for (𝜎, 𝑎) ∈ Ω × 𝐴. It only remains to show that the restriction
ℱ∣aff(𝐴) := (aff(𝐴); 𝑓1, 𝑓2, . . . , 𝑓𝑁 ) of the affine IFS ℱ to the affine
hull of 𝐴 is point-fibered.

Let 𝑥 ∈ aff(𝐴), the affine hull of 𝐴. It is well known that any
point in the affine hull can be expressed as a sum, 𝑥 =

∑𝑚
𝑝=0 𝜆𝑝𝑎𝑝 for

some 𝜆0, 𝜆1, ..., 𝜆𝑚 ∈ ℝ such that
∑𝑚

𝑝=0 𝜆𝑝 = 1 and 𝑎0, 𝑎1, ..., 𝑎𝑚 ∈
𝐴. Hence, for (𝜎, 𝑥) ∈ Ω× aff(𝐴),

lim
𝑘→∞

𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘
(𝑥) = lim

𝑘→∞
𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘

(

𝑚∑
𝑝=0

𝜆𝑝𝑎𝑝),

= lim
𝑘→∞

𝑚∑
𝑝=0

𝜆𝑝𝑓𝜎1 ∘ 𝑓𝜎2 ∘ ⋅ ⋅ ⋅ ∘ 𝑓𝜎𝑘
(𝑎𝑝)

=

𝑚∑
𝑝=0

𝜆𝑝𝜋(𝜎) = 𝜋(𝜎). □

Theorem 1.2 now follows easily from Theorem 7.2 and Theo-
rem 1.1.

Proof of Theorem 1.2: Let 𝐴 := 𝜋(Ω) and let dim aff(𝐴) =
𝑘 ≤ 𝑚. It is easy to check from the commuting diagram (2.1)
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that 𝑓(𝐴) ⊆ 𝐴 for each 𝑓 ∈ ℱ implies that 𝑓(aff(𝐴)) ⊆ aff(𝐴) for
each 𝑓 ∈ ℱ . Since aff(𝐴) is isomorphic to ℝ𝑘, Theorem 1.1 can
be applied to the IFS ℱ∣aff(𝐴) := (aff(𝐴); 𝑓1, 𝑓2, ...𝑓𝑁 ) to conclude
that, since it is point-fibered, ℱ∣aff(𝐴) is also hyperbolic. □

Note that the IFS (ℝ; 𝑓), where 𝑓(𝑥) = 2𝑥+1, is not hyperbolic
on ℝ, but it is hyperbolic on the affine subspace {−1} ⊂ ℝ.

8. Concluding remarks

Recently it has come to our attention that another condition,
equivalent to conditions (1)− (5) in Theorem 1.1, is (6) ℱ has joint
spectral radius less than one. (We define the joint spectral radius
(JSR) of an affine IFS to be the joint spectral radius of the set of
linear factors of its maps.) This information is important because
it connects our approach to the rapidly growing literature about
JSR; see, for example, [3], [5], and works that refer to these.

Since Example 3.3 and the results presented by Vincent Blondel,
Jacques Theys, and Alexander Vladimirov [4] indicate there is no
general fast algorithm which will determine whether or not the
joint spectral radius of an IFS is less than one, we believe that
Theorem 1.1 is important because it provides an easily testable
condition that an IFS has a unique attractor. In particular, the
topologically contractive and non-antipodal conditions (conditions
(4) and (5)) provide geometric/visual tests, which can easily be
checked for any affine IFS. In addition to yielding the existence of an
attractor, these two conditions also provide information concerning
the location of the attractor. (For example, the attractor is a subset
of a particular convex body.) We also anticipate that Theorem 1.1
can be generalized into other broader classes of functions, where
the techniques developed for the theory of joint spectral radius will
not apply.
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