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Abstract

Over the past decade there has been interest in the computer representation of global data based on multi-resolution
subdivisions of regular polyhedra. A simple and efficient indexing of the cells of such a subdivision, called A3-coordinates,
is introduced. These can be used to encode the 4 Æ 3n + 2 cells at the nth level of resolution of the octahedral aperture 3
hexagonal discrete global grid using n + 3 digits, each digit from the set {�1,0,1}.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

While research on mapping the earth goes back at least 2000 years, over the past decade there has been an
interest in the computer representation of global data based on multi-resolution subdivisions of regular poly-
hedra [1–8,10–12,14]. One of the most utilized is referred to as the aperture 3 hexagonal discrete global grid
(A3HDGG). This is a hierarchical sequence of progressively finer tessellations of a regular polyhedron or
sphere into mainly hexagons. Aperture 3 refers to the approximate ratio between the areas of hexagons in suc-
cessive tessellations in the sequence. In fact, this small ratio is one of the features that makes A3HDGG
appealing. There are various ways that the A3HDGG can be realized on the surface of the sphere, the goal
being to minimize distortion. One of the most frequently used is the Snyder projection, which is referred to
as ISEA3H—icosahedral Snyder equal area aperture 3 hexagonal discrete global grid [13]. Fig. 1 shows a
few levels of resolution.

The purpose of this paper is to suggest a computer efficient method for indexing the cells in the A3HDGG.
Although the method applies to subdivisions of the tetrahedron, octahedron, or icosahedron, it is especially
simple for the octahedron. So this paper will mainly focus on the octahedral aperture 3 hexagonal discrete
global grid, hereafter referred to as OA3HDGG. Our method is based on an elementary investigation of
the properties of the Cartesian coordinates of the barycenters of the cells in OA3HDGG.

The tessellation at the nth level of resolution in the OA3GDGG hierarchy has 4 Æ 3n + 2 cells. Our indexing
scheme references each cell at this level by first, what we call its A3-coordinates. This is an ordered triple (a, b,
c) of integers such that
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Fig. 1. ISEA3H.
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jaj þ jbj þ jcj ¼ 3
n
2 if n is even

jaj þ jbj þ jcj ¼ 3
nþ1

2

a � b � c mod 3
if n is odd:
Then the A3-coordinates are, in turn, encoded by a string of n + 3 digits, each digit an element of the set
{�1,0,1}.

Each hexagonal cell has six immediate neighbors. Moreover, OA3HDGG has a treelike structure, each hex-
agonal cell at level n having seven children at level n + 1 and 1 or 3 parents at level n � 1. The definitions of
these and other relevant terms appear in Section 2. Given the index of an arbitrary cell at any level, extremely
simple rules are given in Sections 3 and 4 for the following basic procedures that are essential to many global
grid applications.

Determine the location of the cell.
Determine the neighbors of the cell.
Determine the children of the cell.
Determine the parents of the cell.
Perform local arithmetic in the vicinity of the cell.

2. A3HDGG

The usual definition of the A3HDGG is recursive. Consider either a polyhedron or a sphere of radius 1
centered at the origin of R3. The barycenter of a triangle t with vertices {x1, x2, x3} on the surface of the poly-
hedron or on the sphere is given by
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bðtÞ ¼
ðx1 þ x2 þ x3Þ=jx1 þ x2 þ x3j if on the sphere;
1
3
ðx1 þ x2 þ x3Þ if on the polyhedron:

(

The addition is vector addition, and the norm is the usual Euclidean norm. Dividing by the norm in the first
formula insures that the barycenter remains on the surface of the sphere. In the second formula the barycenter
remains on the surface of the polyhedron.

By a tessellation T of a polyhedron or of the sphere, we mean a collection of closed, non-overlapping cells
that cover the surface. On a polyhedron the edges are straight lines and, on the sphere, arcs of great circles.
For a tessellation T the notation V (T) and E (T) is used for the set of vertices and edges, respectively. For a
tessellation T let
BðT Þ ¼ fbðtÞ j t 2 T g

denote the set of barycenters of its cells. The definition of A3HDGG is based on two basic operations on
tessellations.

1. The dual. For a tessellation T with vertex set V, the dual tessellation D (T) has vertex set b (T). Two vertices
of D (T) are joined by an edge if and only if the corresponding cells of T share an edge.

2. Central subdivision. The central subdivision C (T) of tessellation T has vertex set V (T) [ b (T). The edge set
of C (T) is the union of E (T) and the set of edges formed by joining b (t) to each vertex of t for all t 2 T.

Define a sequence (Tn, Hn) of dual pairs of tessellations on either the sphere or polyhedron as follows. First,
T0 is the polyhedron itself centered at the origin of R3 or its radial projection onto the surface of the sphere.
The sequence is then defined recursively by
Hn ¼ DðT nÞ;
T nþ1 ¼ CðH nÞ:
The sequence Hn of tessellations is the one called the A3HDGG. The number n is referred to as the level of
resolution of A3HDGG. A patch of the dual tessellations Tn and Hn, as well as the central subdivision oper-
ation, is shown in Fig. 2. Note that Vn : = V (Tn) is the set of cell centers of the tessellation Hn. Fig. 3 shows a
patch of two successive subdivisions Tn, Tn+1 and Hn, Hn+1. The following properties are either obvious or
easily proved by induction.

1. The tessellation Tn is a triangulation for each n, i.e., the faces are triangles. Moreover, if T0 is the octahe-
dron, then Tn contains exactly 20 Æ 3n triangles.

2. The nth level of resolution Hn of OA3HDGG contains exactly 4 (3n � 1) hexagons and 6 squares.
3. The sets of barycenters of cells of the A3HDGG are nested: V0 � V1 � V2 � � � �
4. Each hexagonal cell h of Hn intersects exactly seven cells of Hn+1, a central child (with the same barycenter

as h) and six neighboring children.
Fig. 2. Basic operations on a tessellation.



Fig. 3. Two successive subdivisions.
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5. Each cell h of Hn intersects either 1 or 3 cells of Hn�1, one cell in the case that h is a central child, three cells
in the case that h is a neighboring child. These cells at level n � 1 are called the parents of h.

3. OA3HDGG coordinate geometry

Subsequently in this paper, the initial triangulation T0 is the octahedron with vertices located at (±1,0,0),
(0,±1, 0), (0,0,±1) in R3. This section contains fundamental facts about the coordinate geometry of
OA3HDGG. As before, let Vn denote the set of vertices of the triangulation Tn, i.e., the set of barycenters
of the cells of Hn on the surface of the octahedron. All congruences in this paper are modulo 3. All the prop-
ositions below will be proved simultaneously at the end of this section.

Proposition 1. The set Vn of barycenters of cells of OA3HDGG at resolution n is given by
V n ¼
1

3
n
2
ða; b; cÞ : a; b; c 2 Z; jaj þ jbj þ jcj ¼ 3

n
2

n o
if n is even

1

3
nþ1

2

ða; b; cÞ : a; b; c 2 Z; jaj þ jbj þ jcj ¼ 3
nþ1

2 ; a � b � c
� �

if n is odd:

8><
>:
Proposition 1 gives the Cartesian coordinates of the cell centers of OA3HDGG on the surface of the octahe-
dron. A projection map (the possibilities not discussed here) provides the corresponding point on the sphere.
Define the A3-coordinates of any vertex of Tn, or the corresponding cell in Hn, as the ordered triple (a, b, c) of
integers as given in Proposition 1. In other words the A3-coordinates of a cell with center ð1=3

n
2Þ (a, b, c), n

even, or ð1=3
nþ1

2 Þ (a, b, c), n odd, is simply (a, b, c). When no confusion arises, no distinction will be made be-
tween a cell and its A3-coordinates.

Proposition 2. The vertices of Tn with A3-coordinates (a1, a2, a3) and (b1, b2, b3) are joined by an edge in Tn if and
only if
jai � bij 6 1; i ¼ 1; 2; 3 if n is even;

jai � bij 6 2; i ¼ 1; 2; 3 if n is odd:
A hexagonal cell has six cells immediately adjacent; these are called its neighbors. A square cell has four
neighbors.

Proposition 3. The neighbors of a cell in Hn with A3-coordinates (a1, a2, a3) have A3-coordinates (b1, b2, b3),

where, for i = 1, 2, 3,
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jai � bij 6
1 if n is even;

2 if n is odd:

�

Using Proposition 3 the six neighbors of a hexagonal cell (a, b, c) can be listed:
ðaþ 1; b� 1; cÞ; ðaþ 1; b; c� 1Þ; ða; bþ 1; c� 1Þ;
ða� 1; bþ 1; cÞ; ða� 1; b; cþ 1Þ; ða; b� 1; cþ 1Þ;

if n is even

ðaþ 2; b� 1; c� 1Þ; ða� 1; bþ 2; c� 1Þ; ða� 1; b� 1; cþ 2Þ;
ða� 2; bþ 1; cþ 1Þ; ðaþ 1; b� 2; cþ 1Þ; ðaþ 1; bþ 1; c� 2Þ

if n is odd:
The ±1’s in the above formula are to be understood subject to the following conventions. The sign changes if
the number before it is negative, and, if something is subtracted from 0, then the other signs in the ordered
triple change. (See the following examples.)

Example 1. The tessellation H3 of the octahedron consists of 104 hexagons and 6 squares. The six squares have
A3-coordinates (±9,0,0), (0, ±9,0), (0, 0,±9).

According to Proposition 1, the hexagonal cell with A3-coordinates (6,3,0) 2 H4, for example, has Carte-
sian coordinates ð2

3
; 1

3
; 0Þ.

According to Proposition 3, the six neighbors of cell (6,3,0) 2 H3 are
ð4; 4; 1Þ ð7; 1; 1Þ ð5; 2;�2Þ
ð4; 4;�1Þ ð7; 1;�1Þ ð5; 2; 2Þ:
The neighbors of the square cell (9,0,0) are (8,1,0), (8,�1,0), (8, 0,�1), and (8, 0,�1).

Example 2. The tessellation H4 consists of 320 hexagons and 6 squares. The six squares have coordinates
(±9,0,0), (0,±9, 0), (0,0,±9).

The hexagonal cell (6, 3,0) 2 H3 has Cartesian coordinates ð2
3
; 1

3
; 0Þ.

The six neighbors of cell (6,3,0) 2 H4 are
ð7; 2; 0Þ ð6; 2; 1Þ ð5; 4; 0Þ
ð5; 3; 1Þ ð6; 2;�1Þ ð5; 3;�1Þ:
The neighbors of the square cell (9,0,0) are (7,1,1), (7, 1,�1), (7,�1,1), (7,�1,�1).

Proposition 4.

1. The central child in Hn+1 of (a, b, c) 2 Hn is
3ða; b; cÞ if n is even

ða; b; cÞ if n is odd:

�

2. Cell (a, b, c) 2 Hn is a central child if and only if
a � b � c if n is even

a � b � c � 0 if n is odd:

�

3. The neighboring children of (a, b, c) are, in either the even or odd case, the neighbors of the central child as

given by Proposition 3.
Proposition 5. The parent in Hn�1 of a central child (a, b, c) 2 Hn is
ða; b; cÞ if n is even
1
3
ða; b; cÞ if n is odd:

(

Proposition 6. Let h = (a, b, c) 2 Hn be a neighboring child.
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1. For n even, the cell h has exactly three neighbors (d, e, f) with the property that d � e � f. These three are the

A3-coordinates of the parents of (a, b, c) in Hn�1.

2. For n odd, the cell h has exactly three neighbors (d, e, f) with the property that d � e � f � 0. For these three

the triples 1
3
ðd; e; f Þ are the A3-coordinates of the parents of (a, b, c).

Examples 1 and 2 (continued). According to Proposition 4, cell (5, 2,2) 2 H4 is a central child. According to
Proposition 5, the parent of (5, 2,2) 2 H4 is (5, 2,2) 2 H3.

According to Proposition 4, cell (15, 6,6) 2 H5 is a central child. According to Proposition 5, the parent of
(15,6,6) is (5, 2,2) 2 H4.

According to Proposition 4 the central child of h = (5, 2, 2) 2 H3 is (5,2,2) 2 H4, and the neighboring chil-
dren in H4 of h are
ð6; 1; 2Þ; ð6; 2; 1Þ; ð5; 3; 1Þ; ð5; 1; 3Þ; ð4; 3; 2Þ; ð4; 2; 3Þ:

The central child of h = (5, 2,2) 2 H4 is (15, 6,6) 2 H5. The neighboring children in H5 of h are
ð17; 5; 5Þ; ð13; 7; 7Þ; ð14; 8; 5Þ; ð16; 4; 7Þ; ð14; 5; 8Þ; ð16; 7; 4Þ:

According to Proposition 4, cell (5,2,2) 2 H3 is a neighboring child. According to Proposition 6, the parents in
H2 of (5, 2,2) 2 H3 are
ð2; 1; 0Þ; ð2; 0; 1Þ; ð1; 1; 1Þ:

The cell (4,3,2) 2 H4 is a neighboring child. The parents in H3 of (4, 3,2) 2 H4 are
ð5; 2; 2Þ; ð3; 3; 3Þ; ð4; 4; 1Þ:
Proof. Proposition 3 follows from Proposition 2, Proposition 5 from Proposition 4, and Proposition 4 part 3
from Proposition 3. The proof of Propositions 1 and 2 is by induction on the level n. For n = 0, 1 these are
easily checked. Assume that the propositions hold for level n. We will show that they hold for level n + 1.

By definition Vn+1 = Vn [ b (Tn). To prove Proposition 1 it is sufficient to show that the sets on the
right-hand sides in the proposition satisfy the same recurrence. Consider the case where n is even first. By
Proposition 2 applied to level n, any set of three vertices of a triangle in Tn can be expressed in terms of
A3-coordinates as
t ¼ ða; b; cÞ; ðaþ 1; b� 1; cÞ; ða; b� 1; cþ 1Þf g;

for some triple of integers such that jaj þ jbj þ jcj ¼ 3

n
2. The ±1’s in the above formula are to be understood

subject to the conventions stated after Proposition 3. For example {(6, 0, �3), (5, �1, �3), (6, �1, �2)} is such
a triangle by taking (a, b, c) = (6, 0, �3). The barycenter of the three vertices in t is bðtÞ ¼ 1

3
� 1

3n=2 (3a + 1,
3b � 2, 3c + 1). Therefore
bðT nÞ ¼
1

3ðnþ2Þ=2
ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

nþ2
2 ; a � b � c 6� 0

� �
:

The right-hand side (RHS) in Proposition 1 is given by
RHSnþ1 ¼ 1
3ðnþ2Þ=2 ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

nþ2
2 ; a � b � c

n o
;

RHSn ¼ 1
3n=2 ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

n
2

n o
;

¼ 1
3ðnþ2Þ=2 ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

nþ2
2 ; a � b � c � 0

n o
:

Hence RHSn+1 = RHSn [ b (Tn), which proves Proposition 1 in the case that n is even.
Now consider the case where n is odd. By Proposition 2 applied to level n any set of three vertices of a tri-

angle in Tn can be expressed in terms of A3-coordinates as
t ¼ fða; b; cÞ; ðaþ 1; bþ 1; c� 2Þ; ða� 1; bþ 2; c� 1Þg;
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for some triple of integers such that jaj þ jbj þ jcj ¼ 3
nþ1

2 and a � b � c. The ±1’s in the above formula are to
be understood subject to the same conventions as in the even case. For example {(4, 5,0), (3, 4,�2), (5, 3, �1)}
is such a triangle by taking (a, b, c) = (4, 5,0). The barycenter of the three vertices in t is
bðtÞ ¼ 1

3
� 1

3ðnþ1Þ=2 ð3a; 3bþ 3; 3c� 3Þ ¼ 1
3ðnþ1Þ=2 ða; bþ 1; c� 1Þ. Therefore
bðT nÞ ¼
1

3ðnþ1Þ=2
ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

nþ1
2 ; a 6� b 6� c 6� a

� �
:

The right-hand side (RHS) in Proposition 1 is given by
RHSnþ1 ¼ 1
3ðnþ1Þ=2 ða; b; cÞ : jaj þ jbj þ jcj ¼ 3

nþ1
2

n o
RHSn ¼ 1

3ðnþ1Þ=2 ða; b; cÞ : jaj þ jbj þ jcj ¼ 3
nþ1

2 ; a � b � c
n o

:

Hence RHSn+1 = RHSn [ b (Tn), which proves Proposition 1 in the case that n is odd.
Concerning Proposition 2, according to the construction given in Section 2 there are two types of edges

{x, y} at level n + 1. Either

1. x 2 Vn, y = b (t), where x 2 t 2 Tn, or
2. x = b (t), y = b (t 0), where t, t 0 are neighbors in Tn.

We will prove the type (1) case when n is even; the odd case is similar. By the induction hypothesis applied
to Propositions 1 and 2,
x ¼ 1

3n=2
ða; b; cÞ ¼ 1

3ðnþ2Þ=2
ð3a; 3b; 3cÞ
and t = {(a, b, c), (a + 1, b � 1, c), (a, b � 1, c + 1)} in terms of A3-coordinates. Then
y ¼ bðtÞ ¼ 1

3

1

3n=2
ð3aþ 1; 3b� 2; 3bþ 1Þ ¼ 1

3ðnþ2Þ=2
ð3aþ 1; 3b� 2; 3bþ 1Þ:
So the A3-coordinates of x and y differ by at most 2 in absolute value.
We now prove the type (2) case when n is odd; the even case is similar. By the induction hypothesis t =

{(a, b, c), (a + 1, b + 1, c � 2), (a � 1, b + 2, c � 1)} and t 0 = {(a, b, c), (a + 1, b + 1, c � 2), (a + 2, b � 1,
c � 1)} in terms of A3-coordinates. Then
x ¼ bðtÞ ¼ 1

3

1

3ðnþ1Þ=2
ð3a; 3bþ 3; 3c� 3Þ ¼ 1

3ðnþ1Þ=2
ða; bþ 1; c� 1Þ
and
y ¼ bðt0Þ ¼ 1

3

1

3ðnþ1Þ=2
ð3aþ 3; 3b; 3c� 3Þ ¼ 1

3ðnþ1Þ=2
ðaþ 1; b; c� 1Þ:
So the A3-coordinates of x and y differ by at most 1 in absolute value.
Concerning Proposition 4, a cell at level n and its central child at level n + 1 have the same barycenter.

Hence, by Proposition 1, that barycenter can be expressed as
1
3n=2 ða; b; cÞ ¼ 1

3ðnþ1þ1Þ=2Þ ð3a; 3b; 3cÞ if n is even;

3
nþ1

2 ða; b; cÞ; a � b � c if n is odd:
This proves parts 1 and 2 of Proposition 4.
Consider the n even case in Proposition 6. The cell (a, b, c) 2 Hn is a neighboring child, according to Prop-

osition 4, if and only if a, b and c lie in different congruence classes modulo 3. Without loss of generality
assume that (a, b, c) � (0,1,2), i.e., a � 0, b � 1, c � 2. Modulo 3 the coordinates of its neighbors, according
to Proposition 3, are (0, 0,0), (1, 1,1), (2, 2,2), (0, 2,1), (2,1,0), (1,0,2). The first three are of the form (d, e, f)
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where d � e � f. These are, by Proposition 4, central children. The A3-coordinates of the parent of each such
(d, e, f) is, according to Proposition 5, again (d, e, f). Since each such (d, e, f) 2 Hn is a neighbor of (a, b, c), the
parent (d, e, f) 2 Hn�1 overlaps cell (a, b, c) according to the construction in Section 2. Hence each such cell
(d, e, f) 2 Hn�1 is a parent of (a, b, c).

In the case that n is odd, (a, b, c) 2 Hn is a neighboring child, according to Proposition 4, if and only if
a � b � c f 0. Then (a, b, c) � (±1, ±1, ±1), i.e., a � ±1, b � ±1, c � ±1), the signs all the same. Modulo
3 the coordinates of its neighbors, according to Proposition 3, are (0, 0,0), (0, 0,0), (0, 0,0), (±1,±1,±1),
(±1,±1,±1), (±1,±1,±1). The first three are of the form (d, e, f) where d � e � f � 0. These are, by Propo-
sition 4, central children. The parent of each such (d, e, f) is, according to Proposition 5, 1

3
ðd; e; f Þ. Since each

such (d, e, f) 2 Hn is a neighbor of (a, b, c), the parent 1
3
ðd; e; f Þ 2 Hn�1 by definition overlaps cell (a, b, c).

Hence each such cell 1
3
ðd; e; f Þ 2 Hn�1 is a parent of (a, b, c). h

4. Local arithmetic

Using the A3-coordinates, a local vector arithmetic can be efficiently implemented. By ‘‘local’’ we mean
centered at any cell of OA3HDGG and restricted to a single face of the octahedron. By ‘‘vector arithmetic’’
we mean usual vector addition and multiplication by scalars for vectors contained on a single face of the
octahedron.

The octant of a triple (a, b, c) of integers is the ordered triple of signs (+ or �) of the three entries. The
octant of (5,�2,2), for example, is (+,�,+). Two vertices of the triangulation Tn lie on the same face of
the octahedron if and only if their A3-coordinates are in the same octant. Let x0 be a fixed cell h0 2 Hn given
by its A3-coordinates. Let x1 and x2 be the A3-coordinates of two other cells h1 2 Hn and h2 2 Hn in the same
octant as x0. Let v1 denote the vector pointing from the center of h0 to the center of h1; similarly v2 the vector
pointing from the center of h0 to h2.

Proposition 7.

1. The vector sum v1 + v2 points from x0 to
x1 þ x2 � x0;

where the sum of the xi in the above formula is the usual addition in R3. The formula is valid as long as

x1 + x2 � x0 lies in the same octant as x0.
2. For an integer k, the scalar product kv1 points from x0 to
kx1 þ ð1� kÞx0:
Example. Consider the vector v1 pointing from (9, 9,9) 2 H6 to (12, 5,10) 2 H6 and the vector v2 pointing from
(9,9,9) 2 H6 to (8,13,6) 2 H6. According to Proposition 7, v1 + v2 is a vector from (9, 9,9) to
ð12; 5; 10Þ þ ð8; 13; 6Þ � ð9; 9; 9Þ ¼ ð11; 9; 7Þ:

The vector 2v1 points from (9, 9,9) to
2ð12; 5; 10Þ � ð9; 9; 9Þ ¼ ð15; 1; 11Þ:
5. Indexing OA3HDGG using the balanced ternary

The balanced ternary is a base 3 positional number system using the digit set D = {�1,0,1}, with D often
referred to as the set of trits. Relevant to our application are the following properties of the balanced ternary.
Further information on the balanced ternary can be found in Knuth’s ‘‘The Art of Computer Programming’’
[9].

1. Every integer, positive or negative, has a unique representation in the balanced ternary. Moreover, every
integer between �3n/2 and 3n/2 has a unique representation of the form
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Xn�1

k¼0

dk3k;

where dk 2 D.
2. The negative of an integer in balanced ternary is obtained by merely changing the sign of each digit.
3. Two integers in balanced ternary are congruent modulo 3 if and only if they have the same last digit. In

particular, an integer is divisible by 3 if and only if the last digit in the balanced ternary is 0.

Example. The integer (1) (�1) (�1) = 9 � 3 � 1 = 5 and (�1) (1) (1) = �5. The integer (1) (�1)
(0) (0) (1) (�1) (0) is divisible by 3.

In the previous section it was shown that the Cartesian coordinates of the barycenter of each
OA3HDGG cell can be represented in terms of an ordered triple of integers called the A3-coordinates.
An indexing scheme for Hn is now introduced for referencing the cells at any level n using a string of
n + 3 trits. The basic operations detailed in Propositions 1–7 can then be performed base 3 with the digits
D. Such a string S of trits encodes the A3-coordinates (a, b, c) as follows. We consider the cases n even
and odd separately.

Even n = 2k. The first k + 1 trits in S represent the integer a.
The second k + 1 trits represent the integer b.
The third integer is given by the formula c = ±(3k � jaj � jbj), where the ±1 is the last trit in S.

Example. If n = 4 and S = (1) (�1) (�1) (0) (1) (0) (�1), then
a ¼ ð1Þð�1Þð�1Þ ¼ 5;

b ¼ ð0Þð1Þð0Þ ¼ 3;

c ¼ ð�1Þð9� 5� 3Þ ¼ �1;

ða; b; cÞ ¼ ð5; 3;�1Þ 2 H 4:
The basic operations are more efficiently carried out without converting from balanced ternary:
a ¼ ð1Þð�1Þð�1Þ;
b ¼ ð0Þð1Þð0Þ;
c ¼ �½ð1Þð0Þð0Þ þ ð�1Þð1Þð1Þ þ ð0Þð�1Þð0Þ� ¼ ð0Þð0Þð�1Þ:
In balanced ternary notation the location of the center of the cell encoded by the string
S = (1) (�1) (�1) (0) (1) (0) (�1) is, according to Proposition 1,
ðð1Þ:ð�1Þð�1Þ; ð0Þ:ð1Þð0Þ; ð0Þ:ð0Þð�1ÞÞ:

Odd n = 2k � 1. The first k + 1 trits in S represent the integer a.
The second k + 1 trits represent the integer b.
The third integer is given by the formula c = ±(3k � jaj � jbj), where the ± is chosen to make

a � b � c (mod 3).

Example. If n = 3 and S = (1) (�1) (�1) (0) (1) (�1), then
a ¼ ð1Þð�1Þð�1Þ ¼ 5;

b ¼ ð0Þð1Þð�1Þ ¼ 2;

c ¼ �ð9� 5� 2Þ ¼ �2 ¼ 2;

ða; b; cÞ ¼ ð5; 2; 2Þ 2 H 3:
To summarize:

• The location of any of the 4 Æ 3n + 2 cells at the nth level of resolution of OA3HDGG is uniquely encoded
by its A3-coordinates or as a string of n + 3 trits.
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