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a b s t r a c t

The concepts of a splicing machine and of an aparalled digraph are introduced. A splicing
machine is basically a means to uniquely obtain all circular sequences on a finite alphabet
by splicing together circular sequences froma small finite set of ‘‘generators’’. The existence
and uniqueness of the central object related to an aparallel digraph, the strong component,
is proved, and this strong component is shown to be the unique fixed point of a natural
operator defined on sets of vertices of the digraph. A digraph is shown to be a splicing
machine if and only if it is the strong component of an aparallel digraph. Motivation comes,
on the applied side, from the splicing of circular sequences on a finite alphabet and, on the
theoretical side, from the Banach fixed point theorem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite, directed graph on vertex set V . An edge in G, directed from vertex x to vertex y is denoted (x, y). With
respect to vertex x, the edge (x, y) is an out-edge. A walk is always a directed walk. The length of a walk p, if finite, is the
number of edges in p. A circuit is a closed walk. A cycle is a circuit with no repeated vertices (except the first and the last);
i.e., a cycle does not cross itself.

Themain objects in this paper are aparallel digraphs and splicingmachines, whose definitions are givenbelow. The concepts
of aparallel digraph and splicing machine are closely connected; the exact relationship is discussed in Section 3. Motivation
comes, on the applied side, from the splicing of circular sequences from a finite alphabet and, on the theoretical side, from
the Banach fixed point theorem. Although we do not claim a direct application, circular RNAs (circRNAs) are abundant and
are expressed in thousands of human genes. See [4] and references therein for an overview of the subject.

Modeling recombinant DNA behavior using formal language theory dates back at least to 1987 [8], andmany subsequent
papers have been written on the subject of such splicing systems, for example [5,6,10]. Although splicing of sequences is
common to both, our splicing machine is not substantially related to these splicing systems. In particular, formal languages
are not involved. From the other direction, fixed point theorems have been investigated via directed graphs; see for
example [1] and references therein. These results also are largely independent of those in this paper.

Fig. 1 shows a 2-colored (black and red) digraph with the property that each vertex has exactly one outgoing edge
colored black and exactly one outgoing edge colored red. (There are loops at vertices 1 and 8.) If the successive colors
along a walk p are (c1, c2, c3, . . . , cn), then we say that p has type (c1, c2, c3, . . . , cn). Consider a sequence of colors, say
C = (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0), where 0 stands for black and 1 for red. In the figure, the circuit with successive
vertices 2, 5, 3, 2, 1, 1, 5, 7, 4, 6, 3, 6, 7, 8, 4, 2 is of type C . In fact, this particular digraph has the following property: (1)
for any finite binary sequence C of colors, no matter how long, there is a circuit in the digraph of type C; (2) for any such
sequence C of colors, the circuit in the digraph of type C is unique; and (3) there are no ‘‘extra’’ edges in the digraph in the
sense that every edge appears in some circuit. Since every circuit in a digraph can be obtained by ‘‘splicing’’ cycles together,
we will refer to such a digraph as a splicing machine, defined formally in Definition 3. Basically, in a splicing machine, any
circular sequence of colors can be uniquely obtained by splicing together a subset of the finitely many cycle sequences.
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Fig. 1. A spicing machine. (The color red appears in the online version of this paper.)

Fig. 2. Small aparallel digraphs with two colors. (The color red appears in the online version of this paper.)

1.1. Aparallel digraphs

Definition 1. Let [N] = {1, 2, . . . ,N} for N ≥ 1, and call [N] the set of colors. A colored-digraph G = (V , E, c) is a finite
directed graph with vertex set V , edge set E, and edge coloring c : E → [N] such that every vertex has exactly N out-edges,
one out-edge of each color. Multiple edges and loops are allowed.

For a colored-digraph Gwhose edges are colored in [N] and a walk p = x0, x1, . . . , finite or infinite, the type of p, denoted
Cp, is defined as

Cp = (c(x0, x1), c(x1, x2), c(x2, x3) . . . ).

Given a sequence C = (j1, j2, . . .), finite or infinite, of colors, and a vertex x0 ∈ V , there is a unique walk, denoted pC (x0), of
type C . The same vertex may, of course, appear many times in pC (x0).

If an infinitewalk p has successive vertices x0, x1, x2, . . . and an infinitewalk p′ has successive vertices x′

0, x
′

1, x
′

2, . . . , then
we say that p and p′ are parallel if xi ̸= x′

i for all i ≥ 0. Let [N]
∗ denote the set of all finite sequences of colors and [N]

∞ the set
of all infinite sequences of colors. Given a sequence C ∈ [N]

∞, parallel walks pC (x0) = x0, x1, . . . and pC (y0) = y0, y1, . . . ,
with the same color sequence C ∈ [N]

∞, will be called C-parallel.

Definition 2. A colored-digraph G is called aparallel if G has no pair of C-parallel walks for all C ∈ [N]
∞. Such a colored-

digraph will be referred to as an aparallel digraph.

Note that, if G is aparallel, then it must be connected as an undirected graph. Four small aparallel digraphs withN = 2 are
shown in Fig. 2. Several infinite families of aparallel digraphs are provided in the examples below. The terminology ‘‘Cantor
set’’ and ‘‘Sierpinski triangle’’ in Examples 2 and 3 will be explained in Example 6 of Section 2. The examples below are also
revisited in Example 7 and Example 8.

Example 1 (Discrete Interval). Consider the following infinite family G(2k) for k = 1, 2, . . . , of 2-colored-digraphs. Let
V = {0, 1, 2, . . . , 2k−1}. The edges colored 1 are

(
n, ⌊ n

2⌋
)
and the edges colored 2 are

(
n, ⌊ n

2⌋ + k
)
for n = 0, 1, 2, . . . 2k−1.

The colored-digraph G(2k) is not, in general, aparallel. For example, it will follows from Lemma 1 in Section 2 that G(6) is not
an aparallel digraph because both p12(1) and p12(2) are cycles in G(6). However, if k is a power of 2, then G(2k) is aparallel.
This will be proved in Example 8 of Section 5. The aparallel digraph G(4) is the rightmost one in Fig. 2; digraph G(8) is the
one in Fig. 1.
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Fig. 3. The two circular sequences on the left are spliced at the points indicated by red circles. (The color red appears in the online version of this paper.)

Example 2 (Discrete Cantor Set). Consider the following infinite family H(3k) for k = 1, 2, . . . , of 2-colored-digraphs. Let
V = {0, 1, 2, . . . , 3k−1}. The edges colored 1 are

(
n, ⌊ n

3⌋
)
and the edges colored 2 are

(
n, ⌊ n

3⌋ + 2k
)
for n = 0, 1, 2, . . . 2k−1.

That H(3k) is aparallel if k is a power of 3 will be proved in Example 8 of Section 5.

Example 3 (Discrete Sierpinski Triangle). Let k be a positive integer and V = {(x, y) ∈ N × N : x + y < k}. The edges colored
1 of a family S(k) of 3-colored-digraphs are

(
(m, n), (⌊m

2 ⌋, ⌊m
2 ⌋)

)
; the edges colored 2 are

(
(m, n), (⌊m

2 ⌋ + k, ⌊m
2 ⌋)

)
; and the

edges colored 3 are
(
(m, n), (⌊m

2 ⌋, ⌊m
2 ⌋ + k)

)
. If k is a power of two, then S(k) is an aparallel digraph.

Example 4 (Colored-Digraphs that are not Aparallel). Cayley graphs [7] are colored-digraphs, the number N of colors being
the cardinality of the generating set of the underlying group of the Cayley graph. Cayley graphs, however, are not in general
aparallel digraphs because the necessary condition for being aparallel provided in Proposition 1 of Section 2 usually fails to
hold.

1.2. Splicing machines

A circular sequence in [N] is a sequence of the form

(j1, j2, . . . , jn) = (j2, j3, . . . , jn, j1) = (j3, j4, . . . , jn, j1, j2) = · · · = (jn, j1, . . . , jn−2, jn−1),

where j1, . . . , jn ∈ [N]. Let [N]
o denote the set of all circular sequences. Two circular sequences C = (j1, j2, . . . , jm) and

C ′
= (j′1, j

′

2, . . . , j
′
n) are said to be spliced at position (s, t) to obtain the circular sequence

C • C ′
= C•{s,t}C ′

= (j1, j2 . . . , js, j′t+1, j
′

t+2, . . . , j
′

t , js+1, js+2, . . . , jn).

Using clockwise orientation, Fig. 3 shows a splicing of two circular sequences. It is easy to verify that splicing operations are
commutative and associative: C • C ′

= C ′
• C and (C • C ′) • C ′′

= C • (C ′
• C ′′). Therefore, the circular sequence obtained by

multiple splicing does not depend on the order of splicing.
The basic idea behind a splicing machine is for the splicing of circular sequences to take place within a digraph. If

γx = z, x1, . . . , xs, z and γy = z, y1, . . . , yt , z are two circuits of a digraph (in terms of their successive vertices) with
common vertex z, then the circuit γ = z, x1, . . . , xs, z, y1, y2, . . . , yt , z is said to be obtained by splicing γx and γy at vertex
z. Let G be a digraph whose edges have colors in the set [N]. If γ is a circuit of G, then the mapping γ ↦→ Cγ assigns to
each circuit of G a circular sequence. When no confusion arises, we may use the terminology ‘‘splicing two circuits in G’’ and
‘‘splicing the corresponding circular sequences in [N]

o’’ interchangeably. Of course, in this context the splicing positions of
two circular sequences is restricted to be a vertex of G.

Let G be a digraph with edges colored in the set [N]. To insure that, for every vertex v and any sequence C of colors, there
is a walk of type C starting at v, it will be assume that, for every vertex v and every color c ∈ [N], there is an out-edge colored
c. It is not assumed apriori, however, that there is at most one out-edge colored c. The number of out-edges from v colored
c will be referred to as themultiplicity of c at v. Given such a digraph Gwith edges colored in the set [N], we may ask: what
circular sequences can be obtained by splicing together cycles of G? Since any circuit in a digraph can be obtained by splicing
cycles, this is equivalent to asking about the set

ΓG = {Cp : p is a circuit in G}

of circuit types of G. For such a graph G to be a splicing machine, defined formally below, it is required that every circular
sequence can be uniquely obtained by splicing a set of cycles of G.

Definition 3. A splicing machine for [N] is a digraph G, with possible loops and multiple edges, such that, for every vertex,
every color has multiplicity at least 1, and such that
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Fig. 4. Splicing machine; see Example 5. (The color red appears in the online version of this paper.)

(1) ΓG = [N]
o,

(2) for any C ∈ [N]
o, the circuit in the digraph of type C is unique, and

(3) every edge of G appears in some circuit (hence some cycle) of G.

The set

CG = {Cp : p is a cycle in G}

of cycle types is called the set of generators. Condition (3) in the definition is a minimality requirement: if G satisfies
conditions (1) and (2) but has an edge e that does not appear in a circuit, then e can be removed without violating conditions
(1) and (2).

Example 5. As will be proved in Section 3, the colored-digraph G in Fig. 4 is a splicing machine. The set of generators
is CG = {0, 1, 10, 110, 100, 0011}, where 1 stands for red and 0 for black. The cycles in G corresponding to the circular
sequences in CG are denoted E, A, C, B,D, F . The cycles A, B, C,D, E are labeled; F is the cycle 1,2,4,3,1. The average length of
the generators is 2 1

3 . The circular sequence (0, 0, 0, 1, 0, 1) of length 6, for example, is obtained by the splicing D•4E•3C . The
corresponding circuit after splicing is 3, 2, 4, 4, 3, 2, 3. Although not required by Definition 3, the digraph G in this example
is an aparallel digraph.

1.3. Organization and results

The central object associated with an aparallel digraph is the strong component. The proof of its existence and uniqueness
(Theorem 1), and an investigation of its properties is the subject of Section 2. In particular, the strong component is the
unique fixed point of a natural operator defined on the set of subsets of V (Theorem 2).

The objective of a splicingmachine is to obtain, in an efficient way, from a finite set C of generators, all circular sequences.
The main result of Section 3 is that G is a splicing machine if and only if it is the strong component of an aparallel digraph
(Theorem 3). This section also addresses questions about the efficiency of splicing machines.

There is a natural way to address the vertices of a aparallel digraph. This is explained in Section 4, in particular Corollary 2.
Although the paper is completely graph theoretic, one motivation is the Banach fixed point theorem [2] from analysis,

namely, a contraction on a complete metric space has a unique fixed point. This connection is explained in Section 5, in
particular by Theorems 4 and 5.

Open areas of research related to the notions in this paper appear in Section 6.

2. The strong component

Recall that [N]
∗ denotes the set of all finite sequences of colors. If C ∈ [N]

∗, then Cn
:= C C C · · · C denotes the n times

concatenation of C , and C = C C C · · · denotes the infinite concatenation. For C ∈ [N]
∗, the terminal vertex of the walk

pC (x0) is denoted tC (x0).

Lemma 1. If G is an aparallel digraph and pC (x) and pC (y) are both circuits in G, then x = y.

Proof. Assume byway of contradiction that pC (x) and pC (y) are both circuits in G. If x ̸= y, then pC (x) and pC (y) are C-parallel
walks, contradicting the definition of aparallel. □

Proposition 1. Let G be an aparallel digraph. For every C ∈ [N]
∗ there is a unique circuit in G of type C. In particular, for every

j ∈ [N] there is a unique loop in G colored j.

Proof. Uniqueness follows from Lemma 1. Concerning existence, let xn = tCn (x0) for n ≥ 1, where x0 ∈ V . Since V is finite,
it must be the case that xi = xj for some j > i. If j > i+ 1, then xi+1 ̸= xi and pC (xi) and pC (xi+1) are C-parallel, contradicting
the aparallel property. Therefore xi+1 = xi, which implies that pC (xi) is a circuit in G of type C . □
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Fig. 5. The vertices of the strong component of S(4); edges have been omitted.

It follows from Lemma 1 that, in an aparallel digraph, the uniqueness of a circuit γ of type C as a sequence in [N]
∗ is

equivalent to the uniqueness of γ of type C as a circular sequence in [N]
o.

The set ofmaximal strongly connected subgraphs of a digraph, each called a strong component, partitions the vertex set [3].
Call a strong component trivial if it consists of just one vertex with no loop. (A strong component that is a single vertex with
loop(s) is non-trivial.) Given a subset X ⊆ V of a colored-digraph G = (V , E, c), by abuse of language, we often do not
distinguish between X and the subgraph of G induced by X .

Theorem 1. Given an aparallel digraph G = (V , E, c), there exists a unique non-trivial strong component A of G. Moreover

(1) G has no edge (a, b) for which a ∈ A and b ∈ V \ A;
(2) there is no circuit in G containing a vertex in V \ A; and
(3) for every C ∈ [N]

∞ and x ∈ V , the walk pC (x) eventually enters and remains in A.

Proof. By Proposition 1 there is a strong component that contains a loop colored 1 ∈ [N] at vertex, say a. Let A be the strong
component containing a. This strong component is non-trivial since it contains a loop.

Assume, by way of contradiction, that A fails to satisfy property (1). Consider an edge (a, b) for which a ∈ A and b ∈ V \A.
There can be no walk from b to a vertex of A; otherwise the maximality of A is contradicted. Therefore the walks p1(a)
(repeated loop) and p1(b) are parallel, contradicting the assumption that G is aparallel.

We next prove that A satisfies property (2). If C ∈ [N]
∗ is such that pC (x) is a circuit such that x ∈ V \ A, then pC (x) and

pC (a) are parallel for any a ∈ A, contradicting that G is aparallel.
To prove the uniqueness of A, assume, by way of contradiction, that there is a non-trivial strong component B ̸= A. Since

B is strongly connected, there is a circuit in B, contradicting property (2) which was proved in the paragraph above.
Concerning property (3), it follows from property (1) that, once a walk enters A, it remains in A. Assume, therefore, that

there is a C ∈ [N]
∞ and an x ∈ V \ A such that pC (x) is contained in V \ A. Then, for any a ∈ A, the walks pC (x) and pC (a) are

parallel, contradicting that G is aparallel. □

Properties (1–3) in Theorem 1 motivate the following terminology.

Definition 4. Given an aparallel digraph G = (V , E, c), the unique non-trivial strong component A of Gwill be referred to as
simply the strong component of G.

For each of the colored-digraphs in Fig. 2 and the colored-digraph of Example 1, the strong component is the digraph
itself.

Example 6 (Discrete Cantor Set and Discrete Sierpinski Triangle Revisited). In Example 2, if the strong component of H(3k) is
denoted by Ak, then

Ak =
{
a ∈ {0, 1, 2, . . . , 3k

− 1} : the base 3 representation of a does not contain the digit 1
}
.

The strong component is a discrete version of the Cantor set. If these points of Ak are scaled by 1/3k and plotted on the real
line, then, as k → ∞, the sets Ak approach (in the Hausdorff metric) the classical Cantor set. This geometric description is
by way of motivation; it is not intrinsic to the definition of Ak.

A similar situation holds for Example 3. If the points of the strong component Ak of S(2k) are scaled by 1/2k and plotted
in R2, then, as k → ∞, the strong components Ak approach (in the Hausdorff metric) a Sierpinski triangle (see Fig. 5).

Corollary 1. Let G = (V , E, c) be an aparallel digraph with strong component A, and let C ∈ [N]
o. The unique circuit in G of type

C, as insured by Proposition 1, is contained in A.

Proof. Statement (2) of Theorem 1 implies that there is no circuit that contains a point of V \ A. □
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Let G = (V , E, c) be a colored-digraph. Define a map T : H(V ) → H(V ) from the set H(V ) of all non-empty subsets of V
to itself as follows. For x ∈ V and X ⊆ V , define

T (x) = {y ∈ V : (x, y) ∈ E} and T (X) =

⋃
x∈X

T (x). (1)

The set T (x) is just the set of out-neighbors of x. Let T n(X) = T ◦T ◦· · ·◦T (X), where it is an n-fold composition, and T 0(X) = X .
The set T n(X) is the set of vertices of V reachable from a vertex of X by some walk of length n. Call a subset X ∈ H(V ) a fixed
point of T if T (X) = X .

Theorem 2. An aparallel digraph G with strong component A has the following properties:

(1) A is the unique fixed point of T , and
(2) there is an integer n0 such that T n(X) = A for every X ⊆ V and every n ≥ n0.

Proof. Statement (1): By statement (1) of Theorem 1, there is no edge (a, b) with a ∈ A and b ∈ V \ b. Therefore T (A) ⊆ A.
Given any two vertices a1, a ∈ A, strong connectivity implies there is a path from a1 to a in A. If a2 is the vertex on this path
just before a, then a ∈ T (a2). Therefore A ⊆ T (A) and hence T (A) = A.

Statement (2): If n1 = |V \ A| and x ∈ V , then it follows from Theorem 1 that any walk of length n1 must terminate in A.
Therefore

T n(X) ⊆ A for every X ⊆ V and every n ≥ n1. (2)

Let a be the vertex of the loop colored 1, whose existence is insured by Proposition 1. By Corollary 1, vertex a lies in A.
From Eq. (2), the fact that a ∈ T (a), and by the strong connectivity of A, there is an n2 ≥ n1 such that

a ∈ T n(X) for every X ⊆ V and every n ≥ n2. (3)

From a ∈ T (a), it also follows that {a} ⊆ T (a) ⊆ T 2(a) ⊆ · · · . From this and from the strong connectivity of A it follows that
there is an n0 ≥ n2 such that

T n(a) = A for all n ≥ n0. (4)

From Eqs. (2), (3), and (4) it follows that T n(X) = A for every X ⊆ V and every n ≥ n0.
To prove the uniqueness of the fixed point of T , assume that T (A1) = A1 and T (A2) = A2. By what was proved above, we

have A1 = T n0 (A1) = A = T n0 (A2) = A2. □

3. Splicing machines

The subject of this section is the relationship between aparallel digraphs and splicing machines.

Lemma 2. If G is a spicing machine on [N], then G is a colored-digraph, i.e., each vertex has exactly one out-edge of each color.

Proof. Assume, by way of contradiction, that there is a vertex v that has two out-edges colored, say 1. By condition (3) in
Definition 3, there is a circuit, say γ , whose first edge (v, v′) is colored 1 and where γ is of type, say C . Let xn, n ≥ 0, be
vertices on a walk α such that (i) x0 = v, (ii) there is a walk from xi to xi+1 is of type C , and (iii) the first edge of α is not
(v, v′). Since the vertex set of G is finite, it must be the case that xj = xk for some k > j. Let γ ′ be the subcircuit of α from
xj to xk = vj. Unless vj = v, this however, contradicts condition (2) in Definition 3 because γ ′ and γ spliced k − j times are
both of type Ck−j. If vj = v, then let γ ′ be the subcircuit of α from v to vj = v. Again γ ′ and γ contradict condition (2) in
Definition 3. □

Theorem 3. A directed graph G is a splicing machine if and only if G is the strong component of an aparallel digraph.

Proof. Assume that G is the strong component of an aparallel digraph. Let C be any circular sequence. According to
Proposition 1, there is a unique circuit in G of type C . Therefore, conditions (1) and (2) in Definition 3 hold. By the strong
connectivity of G, every edge in G lies on a circuit in G. Therefore, condition (3) in Definition 3 holds.

Conversely, assume that G is a splicing machine. By Lemma 2, G is a colored-digraph. It is first shown, by contradiction,
that Gmust be connected as an undirected graph. By condition (1) in Definition 3 there is a loop l in G colored 1 in undirected
component, say G1. Let γ be a walk in a different undirected component G2 of type 111 · · · . Since G2 is finite, there must be
a circuit in G2 of type 1k for some k ≥ 1. This, however, contradicts condition (2) in Definition 3 because there would be two
circuits in G of type 1k, the first obtained by splicing the l loop k times.

It is next shown that G is strongly connected. By way of contradiction, assume two strong components G1 and G2 and p a
path from G1 to G2. Since there can be no path from G2 to G1, no edge on p is contained in a circuit, contradiction condition
(3) in Definition 3.
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Fig. 6. Addresses of the vertices of Gwhere black = 1, red = 2. (The color red appears in the online version of this paper.)

Finally it is shown that G is an aparallel digraph. Consider the graph G2 whose vertex set is {(x, y) : x, y ∈ V , x ̸= y} and
whose edge set is

{((x, y), (ti(x), ti(y))) : x, y ∈ V , i ∈ [N]} .

Assume, by way of contradiction, that p and p′ are C-parallel walks in G, starting at vertices v0 and v′

0, respectively. If
C = (c1, c2, c3, . . .), let vi := t(c1,c2,...,ci)(v0) and v′

i := t(c1,c2,...,ci)(v
′

0) for i ≥ 1, and let u0 := (v0, v
′

0), u1 := (v1, v
′

1), u2 :=

(v2, v
′

2), . . . . Now u0, u1, u2, . . . is a walk in G2. Since G2 is finite, there are integers k > j such that uj = uk. This implies that
vj, vj+1, . . . , vk = vj and v′

j , v
′

j+1, . . . , v
′

k = v′

j are circuits of the same type, contradicting condition (2) in Definition 3. □

The digraphs in Figs. 1 and 4 are both strong components of aparallel digraphs; hence both are splicing machines. Using
0 for black and 1 for red, the set of generators of the splicing machine in Fig. 4 is C1 = {{0, 1, 10, 110, 100, 0011}}. The set
of generators of the splicing machine in Fig. 1 is C2 = {{0, 1, 10, abcd}}, where a can take the value 0 or 10, b can take the
value 0 or 100, c can take the value 1 or 01, and d can take the value 1 or 011; hence C2 has 19 elements. The average length
of the generators in C2 is about 6.1 in contrast to about 2.3 for the generators in C1.

Factors relevant to the ‘‘efficiency’’ of a splicing machine G include the following:

(1) The number n of vertices in G should be small. Note that, if the splicing machine has n vertices with N , the number of
colors, fixed, then the number of edges is nN , linear in n.

(2) The number of cycles in G should be small.
(3) The number of splices required to obtain a given circular sequence C should be small.
(4) The average length of the cycles inG should be large. In a splicingmachinewith a fixed number of vertices, the average

number of splices required to obtain a circular sequence is likely inversely proportional to the average length of the
cycles in the splicing machine.

Of course, these are conflicting goals. The splicingmachine that consists of a single vertex andN loops at this vertex obviously
has small order, namely n = 1. On the other hand, to obtain a circular sequence of length kwith this splicingmachine requires
k splices, the largest possible. Question 3 in Section 6 pertains to the above parameters.

4. Address map

A scheme is developed in this section for addressing the vertices of the strong component of an aparallel digraph. An
address is an element of [N]

∗. Basically, a sequence C ∈ [N]
∗ is an address of vertex a in the strong component if all walks of

type C lead to a, independent of the initial vertex.

Definition 5. Given an aparallel digraph G with strong component A and a vertex a ∈ A, a sequence C ∈ [N]
∗ is called an

address of a if tC (x) = a for all x ∈ V .

Let C be an address of a ∈ A and C ′
∈ [N]

∗ be an arbitrary finite color sequence. Clearly, the concatenation C C ′ is an
address of tC ′ (a); and clearly C ′ C is another address of a. This motivates the following definition.

Definition 6. Given an aparallel digraphGwith strong component A and a vertex a ∈ A, a sequence C = (j1, j2, . . . , jk) ∈ [N]
∗

is called aminimal address of a if tC (x) = a for all x ∈ V , but tj2j3···jk (x) ̸= a for some x ∈ V .

Fig. 6 shows minimal addresses of the vertices of the strong components of two aparallel digraphs. Edges labeled 1 are
colored black; edges labeled 2 are colored red. Note that, for the strong component on the right, a minimal address does not
have to be unique. We next show that every vertex in the strong component of an aparallel digraph has an address, hence a
minimal address.

Let [N]
k denote the set of sequences of length k of elements of [N].

Proposition 2. Let G = (V , E, c) be an aparallel digraph with strong component A. There is an integer K such that for any m ≥ K
and for any C ∈ [N]

m we have tC (x) = tC (y) for every x, y ∈ V .
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Proof. Let k = |A|
2; let C = (j1, j2, . . . , jk); and let x, y ∈ A. Consider the sequence of ordered pairs in A × A defined by

(x0, y0) = (x, y), (x1, y1) = (tj1 (x), tj1 (y)), (x2, y2) = (tj1,j2 (x), tj1,j2 (y)), . . . ,
(xk, yk) = (tC (x), tC (y)).

Since A is finite, there must be two terms, say (xs, ys) and (xt , yt ), s < t, in this sequence that are identical. If xs ̸= ys, then
letting C ′

= (js+1, . . . , jt ), the walks pC ′ (xs) and pC ′ (ys) are C ′-parallel, contradicting that G is aparallel. Therefore xs = ys,
which implies that tC (x) = tC (y).

In the paragraph above, x, y ∈ A. Now consider any x, y ∈ V . By statement (2) of Theorem 2, there is an n such that
tC (x) ∈ A for every C ∈ [N]

n and every x ∈ V . Therefore, if C ∈ [N]
m for any m ≥ K = n + k, then tC (x) = tC (y) for all

x, y ∈ V . □

Definition 7. Given an aparallel digraph G with strong component A and constant K as in Proposition 2, let [N]
≥K

=⋃
m≥K [N]

m. Define a map π : [N]
≥K

→ A, called the address map, by

π (C) = tC (x),

which is independent of x ∈ V by Proposition 2.

Corollary 2. Every vertex in the strong component of aparallel digraph has a minimal address.

Proof. Since Tm(A) = A for all m by Theorem 2, the map π is surjective. Every string in π−1(a) is an address of the vertex
a ∈ A. Since every a ∈ A has an address, every such a has at least one minimal address. □

Define an inverse shift map si : [N]
∗

→ [N]
∗ by si(C) = C i for i ∈ [N]. Given K as in Proposition 2 and Definition 7, it is

routine to check that the following diagram commutes.

si
[N]

≥K
→ [N]

≥K

π ↓ ↓ π

A → A
ti

(5)

Interpreting the diagram: appending i ∈ [N] to the end of an address of a point x is an address of a point y that is adjacent to
x and such that c(x, y) = i.

Example 7 (Discrete Interval and Discrete Cantor Set Revisited). For the colored-digraphs G(2k), k ≥ 0, and H(3k), k ≥ 0,
of Examples 1 and 2, denote the respective strong components by AG,k and AH,k, respectively. Addresses for the vertices of
AG,k and AH,k are used to show that AG,k and AH,k are isomorphic as colored-digraphs. Here isomorphism, denoted by ≈, is a
bijection of the vertex sets that preserves directed edges and colors.

The vertices of AG,k are VG,k := {0, 1, 2, . . . , 2k−1
}, and the vertices of AH,k are VH,k :=

{
a ∈ {0, 1, 2, . . . , 3k

− 1} : the base
3 representation of a does not contain the digit 1}. Let a ∈ AG,k and let a = αk−1αk−2 · · · α0, the right hand side being the
binary representation of a. If βi = αi + 1 for i ≥ 0, it is not hard to show that

π (β0 β1 · · · βk−1) = a,

in other words β0 β1 · · · βk−1 is an address of a.
Likewise, let a ∈ AH,k and let a = αk−1αk−2 · · · α0, the right hand side being the ternary representation of a. Let βi = 1 if

αi = 2 and otherwise βi = αi = 0, for all i ≥ 0. It is not hard to show that

π (β0 β1 · · · βk−1) = a,

in other words β0 β1 · · · βk−1 is an address of a.
Note that |VG,k| = |VH,k| = 2k, and the set of all address of vertices in VG,k and in VH,k are both [2]k. If, in terms of vertex

addresses, the map φ : VG,k → VH,k is defined by φ(C) = C for all C ∈ [2]k, then the commutative diagram (5) implies that
φ is an isomorphism and

AG,k ≈ AH,k

for all k ≥ 1. Although the geometric motivation is quite different for the two families G(2k) and H(2k) of colored-digraphs,
their strong components are isomorphic.

5. Banach fixed point theorem

The connection between aparallel digraphs and the Banach fixed point theorem is the subject of this section. Let
d : V × V → R be a metric on the space V . A function f : V → V is a contraction on the metric space (V , d) if there is
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a real number 0 ≤ r < 1 such that d(f (x), f (y)) ≤ r d(x, y) for all x, y ∈ V . According to the Banach fixed point theorem, a
contraction on a complete metric space has a unique fixed point.

The situation becomes more interesting when there is more than one contraction on (V , d). Let F = {f1, f2, . . . , fN} for
N ≥ 1, be a set of contractions on a metric space V . In the fractal literature, F is called an iterated function system. Taking a
graph theoretic point of view, define G(V ,F) to be a digraph with vertex set V and, for every two points x, y ∈ V , there is
an edge from x to y colored i ∈ {1, 2, . . . ,N} if and only if v = fi(u). The digraph G(V ,F) is a colored-digraph in the sense
of Definition 1, except that V may be infinite. In particular, the definition of aparallel digraph carries over to this infinite
setting.

Consider the special case of a discrete metric space. A metric space (V , d) is discrete if, for each point x ∈ V , there is a
ball centered at x containing only x, i.e., if and only if the metric induces the discrete topology on V . The compact subsets
of a discrete metric space are the finite subsets. A metric space (V , d) is uniformly discrete if there exists an ϵ > 0 such that
for each point x ∈ V there is a ball of radius ϵ centered at x containing only x. For a finite space V , discrete and uniformly
discrete are equivalent.

Remark 1. A standard example of a discrete metric on a set V is

d0(x, y) =

{
1 if x ̸= y
0 if x = y.

This metric, however, is not relevant in our context because any contraction on (V , d0) must be a constant function.

Theorem 4. If (V , d) is a uniformly discrete metric space for which each function in F = {f1, f2, . . . , fN} is a contraction on V
with respect to d, then G(V ,F) is an aparallel digraph.

Proof. Assume that G(V ,F) is not an aparallel digraph. Then there exists C = (j1, j2, . . .) ∈ [N]
∞ and C-parallel walks

PC (x0) = x0, x1, x2, . . . and PC (y0) = y0, y1, y2, . . . and an 0 ≤ r < 1 such that

d(x0, y0) ≥
1
r
d(fj1 (x0), fj1 (y0)) =

1
r
d(x1, y1)

≥
1
r2

d(fj2 (x1), fj2 (y1)) =
1
r2

d(x2, y2)

≥ · · · ≥
1
rn

d(xn, yn) ≥ · · · ,

which implies that the metric space is not uniformly discrete. □

Note that a discrete metric space is complete. Let F = {f1, f2, . . . , fN} be a set of contractions on a discrete metric space
(V , d). The unique fixed point of the contraction fi ∈ F is the unique vertex of G(V , F ) on which there is a loop colored i (as
guaranteed by Proposition 1). The operator

T (X) =

⋃
f∈F

f (X)

defined on finite non-empty subsets X of V , often called theHutchinson operator [9], is exactly the operator T : H(X) → H(V )
in Eq. (1) when V is finite. By Theorem 2, the unique fixed point of T is the strong component of G(V ,F).

For V finite, the converse of Theorem 4 holds. Recall that two colored-digraphs are isomorphic, denoted by ≈, if there is
a bijection of the respective vertex sets that preserves directed edges and colors.

Theorem 5. If G = (V , E, c) is a (finite) aparallel digraph, then there exists a discrete metric d : V × V → R and a set F of
contractions on V such that G(V ,F) ≈ G(V , E, c).

Proof. Given a (finite) aparallel digraph G = (V , E, c), define functions fj : V → V for j = 1, 2, . . . ,N by setting fj(u) = v

for each u ∈ V , where (u, v) is the unique edge colored c . Let F = {f1, f2, . . . , fN}. By construction G(V ,F) ≈ G(V , E, c).
To define the metric for which each f ∈ F is a contraction, consider the graph G2 whose vertex set is

( V
2

)
= {{x, y} : x ̸=

y ∈ V } and whose edge set is

{({x, y}, {f (x), f (y)}) : x, y ∈ V , f ∈ F} .

Lemma 1 implies that G2 is acyclic. Therefore the ordering on
( V
2

)
, defined by {a, b} ⪯ {c, d} if and only if there exists a

(directed) path in G2 from {c, d} to {a, b}, is a partial order. Consider a linear extension

{x1, y1}≺∗
{x2, y2}≺∗

{x3, y3}≺∗
· · · ≺

∗
{xn, yn}
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of this partial order, where n =
⏐⏐( V

2

)⏐⏐. It is clearly possible to define d : V × V → R so that, for all x, y ∈ V ,

d(x, x) = 0
d(x, y) = d(y, x)
d(x1, y1) < d(x2, y2) < d(x3, y3) < · · · < d(xn, yn)
d(xn, yn) < 2 d(x1, y1).

This function d is clearly a discrete metric on V . To show that each f ∈ F is a contraction, let x, y ∈ V . By the definition
of the partial order, we have {f (x), f (y)} ≺ {x, y}. (Note that it is not possible that {f (x), f (y)} = {x, y} by Lemma 1.) By the
definition of linear extension, we have {f (x), f (y)}≺∗

{x, y}, which implies that d(f (x), f (y)) < d(x, y). Since this is true for
every pair x, y and since V is finite, there is an 0 ≤ r < 1 such that d(f (x), f (y)) < r d(x, y) for all x, y ∈ V . □

Example 8 (The Discrete Interval and the Discrete Cantor Set Revisited). We show that each colored-digraph in the family
G(2k), k ≥ 1, of Example 1 (the discrete interval) and in the family H(3k), k ≥ 1, of Example 2 (the discrete Cantor set) is
an aparallel digraph.

For G(2k), define a function d : V × V → R on its vertex set V = {0, 1, 2, . . . , 2k
− 1} as follows. Let d(n, n) = 0 for all

n ∈ V ; let d(0, 1) = 1; and for every n ∈ V , n > 1, let d(n − 1, n) = s, where s is the largest integer such that n ≡ 0 mod 2s.
In general, for n > m, set d(m, n) = d(n,m) =

∑n
i=m+1d(i − 1, i). It is not hard to check that d is a metric on V for which the

functions f1 and f2 defined in Theorem 5 are contractions. By that theorem, G(2k) is an aparallel digraph for k ≥ 1.
Likewise, for H(3k), define a function d : V × V → R on its vertex set V = {0, 1, 2, . . . , 3k

− 1} as follows. Let d(n, n) = 0
for all n ∈ V ; let d(0, 1) = 1; and for every n ∈ V , n > 1, let d(n − 1, n) = s, where s is the largest integer such that
n ≡ 0 mod 3s. In general, for n > m, set d(m, n) = d(n,m) =

∑n
i=m+1d(i − 1, i). Again, it is not hard to check that d is a

metric on V for which the functions f1 and f2 defined in Theorem 5 are contractions. By that theorem, H(3k) is an aparallel
digraph for k ≥ 1.

6. Open problems

Several questions on aperiodic digraphs and splicing machines naturally arise.

Question 1. Several families of splicingmachines are provided in previous sections. Find additional constructions of splicing
machines.

Question 2. Find an algorithm to determinewhether or not a given set C ⊂ [N]
o is the set of generators of a splicingmachine.

Question3. For a splicingmachineG, leth(G, k) denote the averagenumber of splicings required to obtain a circular sequence
of length k. Some sequences, like 111 · · · 1 will take k splicings, somemay take no splicing. What bounds can be obtained for

h(n,N, k) := min h(G, k),

where the minimum is taken over all splicing machines on n vertices and N colors? What can be said about the extremal
cases, the aparallel digraphs that attain the minimum?

The average number of splices may be inversely proportional to the average length of the cycles in a splicing machine. So
one can ask about bounds on

C(n,N) := max C(G),

where C(G) is the average length of the cycles in splicing machine G, and the maximum is taken over all slicing machines on
n vertices and N colors? For N fixed, does limn→∞C(n,N)/n exist?

Question 4. Let G = (V , E, c) be an aparallel digraph. By Theorem 5, there exists a metric d : V × V → R on V and a set F
of contractions on V such that G(V ,F) ≈ G(V , E, c). Define the contractivity of G by

r(G) = min
d

max
{
d(f (x), f (y))

d(x, y)
: x, y ∈ V , f ∈ F

}
,

where the minimum is taken over all aparallel metrics d on V . What bounds can be obtained for r(G)?
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