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For a hypergraph G with v vertices and e~ edges of size i, the average vertex degree is d(G) = 
=Eiedv. Call balanced if d(H)~--d(G) for all subhyoergraphs H of G. Let 

re(G0= max d(H). 
Hc=G 

A hypergraph F is said to be a balanced extension of G if GC F, F is balanced and tifF)--re(G), 
i.e. F is balanced and does not increase the maximum average degree. It is shown that for every 
hypergraph G there exists a balanced extension F of G. Moreover every r-uniform hypergraph has 
an r-uniform balanced extension. For a graph G let ext (G) denote the minimum number of vertices 
in any graph that is a balanced extension of G. If G has n vertices, then an upper bound of the form 
ext (G)<ctn ~ is proved. This is best possible in the sense that ext (G)=..c2n 2 for an infinite family 
of graphs. However for sufficiently dense graphs an improved upper bound ext (G)<csn can be 
obtained, confirming a conjecture of P. Erd6s. 

1.  I n t r o d u c t i o n  

A hypergraph G consists o f  a finite set V(G) o f  vertices and  a set  E(GO o f  
subsets o f  V(G) called edges. A subhypergraph o f  G, is a hypergraph  whose vertex 
set is a subset o f  V(G) and  the edge set is a subset o f  E(G). A hypergraph  G is called 
r-uniform i f  each edge has size r. So a 2-uniform hypergraph  is a graph.  A path in 
a hypergraph  is an al ternating sequence vtelv2e2.., v,_len_av, of  vertices and edges 
such tha t  each vertex belongs to the preceeding and succeeding edge. If, for  each 
pair o f  vertices, there is a pa th  joining them, then G is connected. A cycle in a hyper-  
graph is a pa th  with vx=v ~ and  vz . . . . .  v~_ t distinct. N o t e  tha t  if a hypergraph  
is acyclic then the intersection o f  any  two edges has cardinali ty at m o s t  1. The  degree 
of  a vertex in a hypergraph  is the number  o f  edges containing v; hence the average 
degree of  a hypergraph  G is 

1 1 
d(G) ---: v - - ~ 2 7  deg x = v - - ~ i e , ( G ) ,  

x ~ v ( a )  

where v(G) and e~(G) denote  the number  o f  vertices and edges o f  size i in G. I f  G 
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is runiform then this reduces to 

d(~) = re(G) 
~(~) �9 

If d(H)~=d(G) for all subhypergraphs H of G then G is called balanced. Let 

rn ( ~ )  = m a x  d ( H )  
H~G 

denote the maximum average de~ee of any subhypergraph of G. Obviously G 
balanced is equivalent to re(G)=d(G). For graphs, this concept of balance originates 
in Erdgs, R6nyi [1] and is crucial in the investigation of random graphs [3, 5]. In 
Fig. 1 graph G is not balanced: d(G)=14/5 and re(G)=3. Graph F i s  balanced, 
contains G as a subgraph and has average degree d(F)=3  =re(G). 

6 F 

Fig. 1 

A hypergraph F is said to be a balanced extension of G if G c  F, F is balanced 
and d(F)=m(G). In Fig. 1, F is a balanced extension of G. In Section 2 of this 
paper it is shown that every hypergraph G has a balanced extension F. Moreover 
for r->2 every r-uniform hypergraph has an r-uniform balanced extension. 

Given a graph G a problem posed in [2] is to find a balanced extension F 
with minimum number of vertices. Let ext (G)=min v(F), the minimum taken 
over all graphs F that are balanced extensions of G. In Section 3 we show that 
ext (G)<cn ~, where n=v(G). This upper bound is a consequence of the inductive 
construction used in the proof of the existence of F. Previously we thought that a 
smaller upper bound could be found. However, there exists a family of graphs G 
with ext (G)>n2/8. More precisely let 

Then 

a,, = max ext ((7). 
v(G) =n 

n ~ (1 +e)n ~ 
- - - . < a n - <  8 4 

The examples G giving the lower bound are sparse, in the sense that v(G) =n, 
e(G)=n+ 1 and hence d(G)=2(1 +l/n). In subsequent discussions, P. Erd6s con- 
jectured that for sufficiently dense graphs a tighter Upper bound holds. In particular 
he conjectured that if the number o f  edges is at least cn ~, then ext (G) is at most 
c'n. In Section 4 this is proved. The following question still remains open. 

Problem 1.1. Is it true that if e(G)>cn, c > l ,  then r (G)<c'n? 
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2. Balanced extensions of hypergraphs 

Let G be a hypergraph. Call a balanced extension F of G uniform if all edges 
in E (F) -E (G )  have the same size. I f  this common size is r, then F is called an 
r-uniform balanced extension. Note that F may be a uniform balanced extension of 
G, but not a uniform hypergraph 

Theorem 2.1. (a) Every hypergraph has a uniform balanced extension. 
(b) For every r>=2 every r-uniform hypergraph has an r-uniform balanced 

extension. 
In a part (a) of the theorem it is not possible to choose, a priori, the size 

of the edges in the extension. More generally, let A be a finite set of natural numbers. 
Call a balanced extension F of G a balanced A-extension if for every xEE(F)-E(G) ,  
IxlEA. For every A there is a hypergraph G which does not have a balanced A-exten- 
sion. To see this let ~ be the largest element of A. If  ~>1,  let G consist of  two 
edges of  size ~ intersecting in exactly one vertex and an isolated edge of size less 
than cr as in Fig. 2a. It is easy to check that G has no balanced A-extension. If  ~ =  1, 
the counterexample for A={1, 2} is trivially also a counterexample for A =  {I}. 

Let ( , )  denotes the greatest common divisor. In the case that A has only 
one element the following holds. 

Corollary 2.2. Let s~--2 be an integer. Any hypergraph G with m(G)=p/q, (p, q ) = l ,  
(p, s) = 1, re(G) >=s/( s -  1), has a balanced { s}-extension. 

The proof of this corollary is exactly the proof  of Theorem 2.1a. In the gen- 
eral case we conjecture the following. 

Conjecture. Let A={ax . . . . .  a,}. I f  (al . . . . .  a~)=l  then every hypergraph G with 
m(G)~max {at/(al-1)} has a balanced A-extension. 

63 
a) ~ e) 

Fig. 2 

From the counterexample above it is clear that a lower bound on re(G) is 
necessary. The assumptions ( p , s ) = l  in Corollary 2.2 and (al, ..., a , ) = l  in the 
conjecture are also necessary as shown by the following examples. Assume 
2[(al . . . .  , a,). Consider the hypergraph G with 4 edges as shown in Fig. 2b. Then 
m ( G ) = 2 > m a x  {ai/(a l -  1)}, and it can be checked that G has no balanced A-exten- 
sion. Next assume d=(al, ..., a , )~3  and let G be the graph consisting o f a  ( 2 d -  1)- 
cycle, a chord and an additional edge, as in Fig. 2c. Then m(G)=4d/(2d-1)> 
>max  {ad(a~-- 1)} and again it can be checked that G has no balanced A-extenslon. 
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The proof of Theorem 2.1 is inductive, the idea being that at each stage an 
extremely balanced hypergraph is adjoined. The existence of such a hypergraph is 
the subject of Theorem 2.6, which will be proved first. 

Lemma 2.3. I f  G is a connected r-uniform hypergraph with v vertices and e edges 
then (r-l)e>=v-1. 

Proof. Proceeding by induction on the number of edges, let H be a connected 
subhypergraph induced by e - 1  edges of G. Then (r--1)(e--1)~_v(H)-l. Since 
G is connected, adding the last edge yields r - l > = v ( G ) - v ( H ) .  Hence ( r - 1 ) e  -> 
_~v-- 1. i 

Call an r-uniform hypergraph G strongly balanced if 

e(H) e(G) 
v (H)-  1 v (G)-  1 

for all non-trivial (v(G)>l)  subhypergraphs H of G. Note that if G is strongly 
balanced, then G is balanced, but not necessarily the converse. Let 

e(H) 
m : m a x  

~ = ~  v(H) 
be called the degree of G and 

m* = max e(H) 
. ~  v ( H ) -  1 

the strong degree. Note that m differs from re(G) by a factor of  r. For many applica- 
tions it is convenient to work with a deficit function rather than the degree. For a 
hypergraph H consider a function f (H)wh ich  is a linear function in v(H) and 
e~(H), i= 1, 2 . . . . .  It is easily checked that f is modular in the sense that for any 
two hypergraphs H, H '  

f (HU H' )  = f ( H )  + f (H') - f  (HA H g. 

By union and intersection of H and H '  we mean the hypergraphs whose vertex 
and edge sets are the union and intersection, resp. of the vertex and edge sets of 
H and H'. The following examples of such linear functions play an important role 
in this paper and are called deficit functions. For any real number a let 

f~CH) = av(H)-Zie,(H) 

g.(H) = av(H)-e(H) 

ha(H) = a(vCH)- 1)--e(H). 

The next two lemmas are direct consequences of the modularity of these deficit 
functions. 

Lemma 2.4. (a) A hypergraph G is balanced with m(G)=a if and only i f  f~(G)=0 
and f~(H)~_O for all connected subhypergraphs H of G. 

(b) An r-uniform hypergraph G is balanced with m =a if  and only i f  go(G) =0  
and ga(H)>-0 for all connected subhypergraphs H of G. 
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(c) An r-uniform hypergraph G is strongly balanced with m* --a i f  and only i f  
he(G)=0 and ha(H)>=O for all subhypergraphs H of  G that cannot be expressed as 
HI>-H2 where HI(qH~ is asinglevertex. II 

Lemma 2.5. (a) I f  G is a balanced hypergraph then each connected component G~ 
of G is balanced and d(Gz)=d(G). 

(b) I f  G is a strongly balanced uniform hypergraph then G is connected. More- 
over, i f  G=G1UG2 and GIf~G2 consists of  a single vertex, then G1 and G~ are 
strongly balanced and have the same strong degree as G. l 

Given a hypergraph G we will often make use of the subhypergraph 

G =  U H  
//c_G 
$(n)=o 

where f(H)-----m(G)v(H)--Eie~(H). By the modularity of f ,  f (G)=0.  In other 
words G is the unique largest subhypergraph of G with maximum average degree. 

Theorem 2.6. For r~_2 there exists a strongly balanced r-uniform hypergraph with 
v vertices and e edges if  and only i f  

v -X ~ e ~ ( V ]  0 <  
r - -1  

Proof. The necessity of the inequality follows from Lemmas 2.3 and 2.5b. The 
proof in the other direction is by induction on v. The result is trivially true for the 
hypergraph with v=2. Assume the theorem is true for all uniform hypergraphs 
with n = v - 1  vertices. The graph case r=2 is proved in [4, Theorem 1]; so r_~3 
may be assumed. Four cases are considered separately. 

Case 1. e=n/(r- l ) .  Let G be the unique path with e edges of size r and n vertices. 

Case 2. n/(r-1)<e=n/(r-2) .  Partition n vemces mto e sets E~, E~' . . . .  , E~ of slzes 
r - 1  or r - 2 ,  thesets of size r - 2  being exactly those E[ with i~R={j:  [Y(x/e)l> 
> [ ( ] - - l ) x / e J , j = l  . . . .  ,e} where x=e(r- -1) -n .  Note that x_~l and e-x~_O 
and that there are x sets of size r--2 and e - x  of size r - l .  

Adjoin a new vertex re; let us be any vertex in El' and let 

fEtU{u,+I} if IE[I = r - I  

E ,  = ,r - - -i.E[U{ui+,}U{vo} if IE/I = r - 2 ,  

where addition in the index is modulo e. The edges E~ form an r-uniform hyper- 
graph 6; with v = n + l  vertices. By Lemma 2.4c, to prove that G is strongly balanced 
it is sufficient to check that ho(H)>=O with a=e/n and where H consists of e'<e 
edges with consecutive indices (rood e) starting with say N + I .  Note that for 
any such e" edges, less than e'x/e+l of them have indices in R. This is because 
the number of such integers in R is exactly the number ofintegersjsuch that N(x/e)< 
<j~_(N+e')x/e. There are less than e'x/e+ 1 =(N+e')x /e-N(x/e)+ 1 such L Now 

e �9 j, e t x  ~ ep ha(H ) ~_ --~ ---~-+ 1 = --(er-e-x-n)n = O. 
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Case 3. C 
n - l <  ( n )  
1--2 = e <  r - 1  

By the induction hypothesis let Go be an (r-1)-uniform hypergraph with 
n vertices and e edges. Let G be the r-uniform hypergraph formed by adjoining one 
vertex Vo to Go and letting the edge set be {EU {vo}[ECE(Go) }. It is easy to verify 
that G is a strongly balanced r-uniform hypergraph with v vertices and e edges. 

Case 4. 

1--1 -<eN r 

By induction let G1 be a strongly balanced (i"-0-uniform hypergraph with 
n vertices and el edges, where 

n - 1  e (~)}  
e I = max t ~----2 ' --'n e-- . 

F~ this t~ be p~ it must be verified that n -  lr------i- ~el<= ( n )  ' which is 1 

Similarly let G~ be an r-uniform hypergraph with the same n vertices as G1 and with 

(:) e2 edges where e2 = e - e l .  This ispossi ble because ~ e  <- Now let G be r _ ] - -  2 -  

the r-uniform hypergraph formed by adding one vertex Vo to the vertex set of G1 
and G~ and letting the edge set be 

{E U (v0}lECE(a )} U 
It is again routine to verify that G is a strongly balanced r-uniform hypergraph with 
v vertices and e edges. II 

Lemma 2.7. (a) For any non-balanced hypergraph, rn(G)> 1. (b) For any r-uniform 
hypergraph with a cycle, m(G)>-r/(r - 1). 

Proof. (a) Let G" be a subhypergraph of G with m(G)=d(G') and at least two 
edges. By Lemma 2.4a, G' may be assumed connected. Then v(G')<-Z ie~(G')-l. 

(b) Let C be a cycle in G. Then 

re(C) r 
re(G) >-_ d(C) ~_ re (C) -e (C)  = r--'---f-" II 

Proof of Theorem 2.1. Consider separately the case of an r-uniform hypergraph G 
containing no cycle. If G is connected, then G is already balanced. If  not, add edges 
of size r to appropriate components so that re(Gi)/v(Gi)=re(G) on each component 
Gi of (7. Then the resulting r-uniform hypergraph is balanced. 

Throughout the proof below r-uniform hypergraphs are assumed to have a 
cycle and parts (a) and (b) are proved simultaneously. Let G be a (r-uniform) hyper- 
graph. Let m(G)=p'/q" (m=p/q in the uniform case), (p', q ' )= l ,  (p, q )=l .  In 
the uniform case let s=r; otherwise choose s so large that m(G)>=s/(s-1) and 
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(p', s )=  1. This is possible by Lemma 2.7a. We will construct a sequence of uniform 
(r-uniform) extension G c G l c . . . c G  t such that m(G)=m(Gx) . . . . .  re(G,) and 

(1) v(Gi)-v(Gi) < v(Gi-1)-v(Gi-i), i = 1 . . . . .  t, Go = G, 

where t is the least index for which Gt=Gt, i.e. Gt is balanced. Below we 
describe only the construction of GI. The next steps are similar. Let f * =  
=min {f(H):  H c= G, f (H)>0}  and f(G*) =f*, where f (H)  =m (G) v (H) - • ie~(H). 

Note that m(G)>=f*>O. The first inequality comes from considering a subhyper- 
graph H obtained from G by adding an isolated vertex. By the modularity o f f  
we may assume, without loss of generality, that G*D G. Consider the equation 

(2) m (G) v -  se = m (G) - f *  

in integer variables v, e. If  G is r-uniform, thendividing equation (2) by r and clearing 
fractions we obtain 

(3) q e - P ( v -  1) = l 

where l is an integer. Otherwise equation (2) takes the form 

(4) q ' s e - p ' ( v -  1) = l' 

where I' is an integer. Both equations (3) and (4) have integer solutions (v, e) 
satisfying 

v - I  -<_e _<(v} 
( 5 )  s -  1 - " 

Concerning e<= {~J, equation (2)implies e-~m(G)v/s, and m(G)v/s<= {~1 for 

sufficiently large v. Note that v can be chosen arbitrarily large because if (v, e) is 
a solution of(3)  or (4), then so is (v+kq, e+kp) or (v+ksq', e+kp'), resp. Con- 
cerning the inequality e~_(v-1)/(s-1)  equation (2) and the choice of s imply 
e>=m(G)(v - 1)/s>-(v - 1)/(s-1).  If G is r-uniform, then the above inequality holds 
with s = r  using Lemma 2.7b. Now assume that v, e are chosen to satisfy (2) and (5). 
By Theorem 2.6 there is an s-uniform strongly balanced hypergraph B with v vertices 
and e edges. Let G1 be the hypergraph obtained by adjoining B to G so that V(B) n 
n V(G)= {x}, where x6 V(G*)-V(G). Equation (2) is now equivalent to 

f ( B  U O*) = f ( B  ) +f(G*) - f ( {x} )  = 0. 

Thus GI~=B>G * and so (1) holds. It only remains to show that for every HocG~ 
with Bo=HoNB# 0,f(H0)~0. Let vo=v(Bo) and eo=e(Bo). Because B is strongly 
balanced, eo/(Vo-1)<e/(v-1), which in turn, implies that s(e--eo)/(V--Vo)> 
>se/(v--1)>m(G); the last inequality follows from (2). Thus f(Bo)>f(B)~_O; the 
last inequality follows again from (2). If Go =1-Io N G $ ~ then f(Go)>=f(G*). There- 
fore in this case 

f(Ho) = f(Bo) +f(Go)-f(Bo n Go) > f (B )  +f(G*) - m (G) = 0 

by (2). If Go ~G, then f(Ho)=f(Bo)+f(G)>=f(B)>=O. | 
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3. Balanced extensions of graphs 

The subject of  this and the next section is the minimum number of  vertices, 
ext (G), in a graph that is a balanced extension of  a given graph G. Let n denote the 
number of  vertices of  G. In Theorem 3.2 we prove ext (G)<_-(1 +~)n2/4. At  first 
this seemed an extremely high estimate and a bound of  the form cn was conjectured. 
However the graph in Fig. 3 with n vertices - -  consisting of  an nl-cycle, nl=[n/2], 
a chord and n~ pendant edges, ne =In/2], is a counterexample. If  this graph is denoted 
by Gn, then ext (G,)>nZ/8 is also proved in Theorem 3.2. 

Fig. 3 

Lemma 3.1. Let G be a connected graph and S a subset of V(G) with ISI>I  such 
that the distance between any two vertices of  S is at least d. Then v(G)~_dlSI/2. 
Proof. For  vertex xE S let N(x)={y:  d(x, y)<d/2}. Then the N(x) are disjoint 
and Ia(x)l >=d/2. Therefore v(G)~_ z~ IN(x)l >-dlSI/2. 1 

xES 

Recall that 
a, = max ext(G). 

uCG) = n 

Theorem 3.2. For any e > 0  and n sufficiently large 

< a n < n g. 8 

Proof. Concerning the lower bound, let G, be the graph on Fig. 3, O the subgraph 
consisting of  the nl-cycle and chord and V the set of  pendant vertices of  <7,. Let 
F be any balanced extension of  G,, E the set of  edges in F - O  that have a vertex 
in O, and C1, C2 . . . .  the connected components of  F--E. Further let V~ = VN V(C~). 
Consider the case when I g~l = 1. Then C~ either contains a cycle or has a vertex in 
common with an edge in E. Otherwise Fhas  a pendant edge y and e(F-y ) /v (F- -y )> 
>e(F)/v(F) contradicting the balance of  F. Now F must contain a subgroup H 
of  the form in Fig. 4a or b. In either case 

n l +  1 1 - -  = m ( G ~ )  ~= n1+v+2 
n 1 n 1 + O 

where nl+v is the number of  vertices in H.  This implies v(C~)>=v~nl. Next con- 
sider the I V~[ ~_2. Then for any pair x, y of  vertices of  Vt, F has a subgraph of  the 
form in Fig. 4c. As above (nl+l)/nl>(nl+v+2)/(nx+v) and hence d(x,y)~_ 



BALANCED EXTENSIONS OF GRAPHS 287 

_~v- 1 ->n~-- 1. Therefore by Lemma 3.1 v(C~)_~ I V~l(n~- 1)/2. Summing we have 

v(F) >- n~(nx-1) t-n1 > n ~ + 2 n + 8  
2 - 8 

l / ,  "~% 
! t 

o) b) c) 

Fig. 4 

Concerning the upper bound, choose any 5>0  and consider two cases: 
m(G)>=~n and m(G)<~n. In the first case let Cr be as in Section 2. If  O=v(G) 

f - - %  

and ~=e(G),  then ~-<{~J implies 0>-~n and hence e(G)~_~>~m(G)/2>e.~n~/2. 

Now Theorem 4.2 of  Section 4 applies yielding ext (G)< cn. (For clarity of  exposi- 
tion, Theorem 4.2 is stated in the next section.) In the other case, m(G)<en, con- 
sider the equation 

(1) re(v-  1 ) - e  = - g *  

where g*=min  {gin(H): HcG,  gm(H)>O} and m and gm are defined in Section 2, 
i.e. m=m(G)/2. Note that, as in the proof  of  Theorem 2.1, m_~g*>0. Letting 
m=p/q and g*=t/q, ( p , q ) = l  

(2) qe-pv = t -p .  

Note that q~0 .  Using the construction of  the balanced extension F of  G in Theo- 
rem 2.1 

(3) v(F) ~_ (n-~)v~ Sr~ ' 

where (v*, e*) is the smallest solution of  equation (1) satisfying v*-I-<_e*~_ 2 " 

If m ~ l  any solution (v, e) of  equation (1) satisfies v -  l~_e. If  m <  1, then G 
is a tree and is already balanced. Note also that for every solution of  (1) with v =~ 2m + 1 

we have e~_mv~_l; I ; where the first inequality is a consequence of  (1). If  (v, e) 

is any solution of (2) then so is (v+sq, e+sp). Hence 

(4) v* ~- 2m+q < ~n+q. 

From (3) we have v(F)<=(n-q)(en+q)+n, which is maximum when q=n(1-e)/2 
and v(F)~_n~(l+5)2/4. II 
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4. Balanced extensions of dense graphs 

In the previous section it was shown that 

< a n < n* ' .  8 

Despite this result it seems that dense graphs have balanced extensions with less 
than order n 2 vertices. In private communication, P. Erd6s conjectured that if G 
has at least cn 2 edges, then G has a balanced extension with c'n vertices. This is 
the content of the following Theorem 4.2. The graphs G in Section 3, for which 
ext (G)>n2/8, have degree d(G)=2(l  +I/n). Theorem 4.2 does not apply in this 
case because the hypothesis of this theorem is d(G)>cn. The following question, 
stated in Problem 1.1 in the introduction, remains open: For sufficiently large 
graphs G with d(G)>=c>2, is it always true that ext (G)~_c'n? 

The following lemma is used in the proof of Theorem 4.2. From Section 2 
recall the deficit function g ( H ) = m v ( H ) - - e ( H )  where m=e(G)/v(G). 

Lemma 4.1. I f  G is a graph such that joining two vertices of  G by an edge results in 
a subgraph H with g(H)<-O, then g(G)~_v(G)-v(G). 

Proof. Assume G is such a graph. Let H o = ~  and let H~ minimize g over all sub- 
graphs of G properly containing H~_a, i = 1, 2 . . . . .  Then Hy = G for some j ~  v (G)- 
-v(G). We prove by induction on i that g(Ht)=i. Trivially g(Ho)=0. Assume 
g(Hi)<=i. Adding an edge u to G with at least one end in V(Ht+I)-- V(H~), which 
is always possible, must result in a subgraph N + u  of G+u with g(N+u)<-O. 
This means that g(N)-<l and g(H~+I)<--g(H~UN)<=g(H~)+g(N)~_i+I. | 

Theorem 4.2. I f  a graph G has n vertices and more than cn ~ edges, 0< c< 1/2, then 
there is a balanced extension of  G with less than c'n vertices where the constant c' 
depends only on c. 

Proof. The idea of the proof below is to first construct a sequence of graphs G = Foc 
c F1c  F2c . . .  c F, such that 

(i) rn(Fo) = m ( F ~ )  . . . .  = re (F , )  

(ii) v ( F ~ ) - v ( F ~ _ l )  < 2 n  i = 1, 2 . . . .  , t - 1  

v ( F , ) - v ( F , _ O  < 5 -~n 

(iii) v(F,)-v(F,)  < el, cl constant. 

(iv) t <= c~, c~ constant. 

Next the construction of Theorem 2.1b (applied to graphs) is used with at most 
c 1 steps. We claim 

(v) Eeach such step increases the total number of vertices by less than 2n. 
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Now the resulting balanced extension F of G is such that 

v,F) ~-- v(CO+ [v(Fi)-v(F~_l)]+2eln ~_ n+2%n+-~n+2exn < c'n 
t=1 

for a constant c'. 
The construction of/71 is as follows (the construction of the other F is the 

same). Recall m=e(G)/v(G)=p/q, ( p , q ) = l  and let d=[m]. Suppose there is 
a set S c= V(G)- V(G) with ISI =d. Without loss of generality it may be assumed 
from Lemma 4.1 that 

(1) g(G) <_- v(G)-v(6~). 

Adjoin to O a set W consisting of d new vertices, and join each vertex of W to all 
vertices of S. Call the graph obtained O0. To Go add a new vertex u~ and join it to 
all vertices of W. If  

sl = min g ( H +  u0 -~ 1, 
llc-o o 

(where H+ul denotes the induced subgraph) the join ul to any point in ~, thereby 
reducing s 1 byl.  Denote by (71 the graph induced by G o and u~. Note that re(G1)= 
=m(Go)=m(G). If still ~->1 add a new vertex us and join it to all vertices of W 
and to any vertex in ~J. If 

e~ = min g(H+ul+u~ ~- 1 
Hc=G o 

add an edge from uo to ul, thereby reducing s2 by 1. Let G2 denote the graph induced 
by GI and u2. Continue adding new vertices ua, u4, ... joining each to all vertices 
in W, to a vertex in G and possibly joining us to us-l, until for some j we have ej< 1. 
For the resulting graph G~ we have re(G j) =re(G) because, for any subgraph H ~Gj ,  
g(H)>=g(HNGo)>-O if IV(H)NWI~_d-2 and 

g(H)  g(Huc) g((Hu ul+... + 0 

if I V(H) f') WI =>d- 1 and us is the last u~ in H. Using equation (I) we obtain 

0 ~ g(Go+ul+...+uj) ~ g(Go)+(m-d)j-(2j--2)  = 

which implies 

= g ( G ) + d ( m - d ) + ( m - d ) j - ( 2 j - 2 )  ~_ 

<v(G)= . . . .  v(G)+d+(m d)j (2j 2) 

(2) j ~_ o(G)-v(G)+d+ 2 
2 - ( m - d )  ~= v(G)-f~(G)+d + 2. 

Let/-/denote a subgraph that realizes the minimum, i.e. g (H) =aj and let H =  H * +  
+W*+Ul+.. .+u i where H*=HNG and W*=V(H)NW. Note that by the 
modularity o f g  we may assume that G C_H. Now 

(3) [W*[ _~ d -  1 ; 
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otherwise 1 ~_g(H*+ W*)+I~_g(H*+ W*+uO<-g(H)< 1. Also if s=IV(H) f )S]  
then 1 >g (H)  ~g(H*)  +] W*] ( m - s )  + j ( m - ]  W*I)- (2 j -  I) which, with equations 
(2) and (3) implies 

(4) d-s  <-_ v(G)-v(C) _~ 
d I-_ +1. 

(5) v (r  -~ 2m + 1. 

Together with inequality (4) this implies d - s < ( n + l ) / d .  Also by the assumption 
of the theorem 

d > m - l ~ _  e ( G ) - l > c n - 1 ;  
v(G) (6) 

so i f  n >  1 then 
r 

(7) 
n + l  

d - s  < c n -  1 < cl 

where cl is constant. Note that (6) implies s_~l for n>cl/c. Now continue the 
construction of F 1. Referring to inequality (3) let W o be any ( d -  1)-element subset 
of W i f  IW*l=d and take Wo=W* if IW*l=d-1 .  Add a vertexuj+a to G 1 
and join it to all vertices of 14Io and to uj,. If f(H+u~+l)>-I add an edge from 

~j + 1 to any vertex in G. Let Gj + 1 = GI + u i + 1.Continue adding vertices uj + 3, uj + a . . . . .  
oining each ut to each vertex of Wo and to u~-i and possibly to a vertex in G, forming 

G~. Repeat until, for some l ,g(H+uj+~+.. .+ui)=O. If sj=a/q and m - d = b / q  
then the number of steps l - j  in the above procedure is the least positive solution 
to the congruence a+xb==_O (rood q). Since (b, q )= l  we have 

(8) t - j  ~ q. 

Take F~=Gt. This completes the construction, w e  now substantiate the claims 
(i)---(v) made at the beginning of the proof. First, rn(F1)=m(G ) is equivalent to 
g(H')>=O for all subgraphs H" of Ft. For H" C=G o this is obvious. By induction 
assume that for any H ' ~ G i ,  H ' ~ G o  we have g(H')~g(H+u~+l+...+u~)>-O. 
Then for any H"  ~ G~ + ~ we have g(H")  =g (H" + u 1 + ~ +... + u~ d-l)~0, where H '  ~ G, 
and the claim is proved. Second, by the construction 

(9) v(F1)-v(G) = d +j  + ( I - j )  ~_ d+ v(G)--v(G)+d + 1 + q -  1, 

the inequality following from (2) and (8). Using (5) and q<=n we have v(Fx)-  
--v(Fo)~_2n. Third, by the construction and (6) and (7) 

(10) v(F1)-vCPl) ~ v ( G ) - v ( C ) - s  

< v(~)  - v ( b D - ( a - c l )  

<v(G)  v(~) cn+cl 

In particular for n>ct/c, v ( G ) - v ( ~  ~) is decreased by at least d-c~>O. This 
allows the estimates (2), (4) and (9) to hold for the subsequent constructions of 
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Fz, Fa, .... Ft-x where t is defined as follows. Take t to be the least integer such that 

v(F,_l)-v(Ft_x) < d. 

By (10) this can be accomplished with t-l<[1/c]=c~. To construct Ft add 
d-(v(Ft_O-v(Ft_l)) new vertices to Ft-1, and call the resulting graph F'. Notice 
that F '  can be extended to a graph F", satisfying Lemma 4.1 (by adding edges only) 
and such that F " = F ' .  Now proceed exactly as in the construction of/71 above to 
obtain Ft. By the second line of (10) v(Ft)-v(Ft)<cl. Claim (v) follows from the 
left side of (4) in the proof of Theorem 3.2 and (5) above. I 

For a graph G call a balanced extension F induced if G is an induced sub- 
graph of F. The proof of Theorem 1 in [4] confirms that every graph G has an induced 
balanced extension F with v(F)~_cn 2 where n=v(G). 

Problem 4.3. Does Theorem 4.2 remain valid for induced extensions? 
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