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ABSTRACT 

For n sufficiently large the order of a smallest balanced extension of 
a graph of order n is, in the worst case, [(n + 3)*/8). 0 1993 John Wiley 
& Sons, Inc. 

1. INTRODUCTION 

Graphs in this paper will be finite, undirected, without loops and multiple 
edges. Throughout u(G) = IV(G)l and e(G)  = IE(G)I. Let d(G)  denote 
the density of graph G 

Call G balanced if d ( H )  I d ( G )  for all subgraphs H of G. Balanced graphs 
originated in the work of Erdos and RCnyi on random graphs [3], in a 
result giving the probability that a random graph contains a given graph 

*This paper was written during the first author's visit to Department of 
Mathematics, University of Florida, Gainesville, in the fall of 1990. 
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G. Subsequently, other applications of balanced graphs to random graph 
theory have appeared in papers by Bollobis [2],  Karonski and Rucinski [5], 
Ruciriski and Vince [8], and Spencer [lo]. If G is not balanced, then G 
contains a subgraph with greater density than G. In particular, let m(G) be 
the maximum density of a subgraph of G 

m(G) = max d ( H ) .  
H L G  

Note that G is balanced if and only if m(G) = d(G). Throughout the paper, 
m(G) will be called the global density of G. 

Any graph G can be embedded as a subgraph of a balanced graph F ;  for 
example, take F to be the complete graph on the vertices of G. It is not so 
obvious that F can be chosen so as not to increase the global density. A 
graph F is called a balanced extension of G if 

(1) G C F ,  
(2) F is balanced, and 
(3) d ( F )  = m(G). 

It was proved by Gyori, Rothschild, and Rucinski [4], and independently by 
Payan [7], that every graph has a balanced extension. The first proof of the 
existence of balanced extensions was simplified by Rucinski and Vince [8] 
by introducing strongly balanced graphs, and in [9], inspired by a question 
of Erdos, the authors go on to ask for the minimum balanced extension of 
a graph. More precisely, let ext(G) denote the minimum number of vertices 
in any balanced extension of G 

ext(G) = min{v(F): F is a balanced extension of G}. 

An interesting interpretation of ext(G) was pointed out in [7]. The 
bicircular matroid of a graph is the matroid whose independent sets are 
the edge-sets of the subgraphs with at most one cycle in each component. 
Edmonds’ matroidal generalization of the Nash-Williams arboricity theorem 
[ l ,  p. 489, cor. 11, when applied to the bicircular rnatroid, states that the 
edges of G can be covered by [m(G)1 subgraphs, each with at most one 
cycle in each component. Thus, if d(G) = m(G) = [rn(G)1, then the edges 
of G can be covered by d(G) edge-disjoint subgraphs, each with exactly 
one cycle in each component. Let m(G) = s / t .  Upon replacing each edge 
of G by t parallel edges, we arrive at the conclusion that ext(G) is the 
smallest number of vertices in a supergraph of G that can be covered by s 
subgraphs, each with exactly one cycle in each component, in such a way 
that each edge of G belongs to exactly t of the subgraphs. 

Let n always denote the order of a graph G. The constructive proof in 
[8] gives the bound ext(G) < (1 + o(1)) (n2/4). Erdos conjectured that for 
sufficiently dense graphs the bounds on ext(G) can be improved, in fact that 
ext(G) is linear in n. In this direction Rucinski and Vince [9] proved that 
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if e(G) > cn2, 0 < c < i, then ext(G) < c’n where c’ depends only on 
c .  Luczak and Rucidski [6] used nonconstructive random graph techniques 
to extend this result to less dense graphs. They showed that for some, quite 
large, constant c any graph G with sufficiently many vertices satisfies 

If e(G) > cn2 for some constant c then m(G) > cn. Therefore, the second 
part of the [6] result implies the result of Rucinski and Vince from [9]. If 
the global density of G is small, however, say of order m(G) = 1 + (c’/n), 
the first part of the result only yields a (c/c’)n2 bound. The problem of 
proving an appropriate bound in the disturbing gap between 1, and 47 
remains open. If m(G) 5 1 then all connected components of G are trees 
or unicyclic graphs. In this case it is easy to show that ext(G) I 2 n .  As 
soon as m(G) > 1 the situation changes; there are graphs with ext(G) as 
large as n2/8. 

The aim of this paper is to find ext(G) in the worst case. Let us, therefore, 
define the extension number 

1 1 

ext(n) = max ext(G). 
u(G)=n 

The results described above give the bounds n2/8 < ext(n) < (1 + o(1)) X 
(n2/4), which appeared in [9]. As a consequence of the result proved in 
the present paper, it turns out that asymptotically n2/8 is the correct order 
of ext(n). Moreover, our main result gives an exact value of ext(n) for n 
sufficiently large. 

Theorem. For n sufficiently large 

In the existence proof in [8], the balanced extension F of G can be 
constructed so that G is an induced subgraph of F .  Likewise, our theorem is 
strong in the sense that, for n sufficiently large, the following holds. Every 
graph G has a balanced extension F with order at most L(n + 3)2/Sj and 
such that G is an induced subgraph of F .  On the other hand, there exists a 
graph G whose any balanced extension F has order at least [(n + 3)2/8J, 
whether or not G is required to be an induced subgraph of F .  

Because the proof of the theorem is somewhat involved, the lower bound, 
as well as a sketch of the upper bound, are contained in Section 2. This 
is intended as motivation for the main Lemma 5 in Section 3 and to give 
insight into the detailed proof of the Theorem in Section 4. 
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2. THE LOWER BOUND AND A SKETCH OF THE UPPER BOUND 

Proof o[ the Lower Bound. To show the lower bound ext(n) 2 
[(n + 3) /8], it is sufficient to construct, for sufficiently large n,  a graph 
G, such that v(F) I [(n + 3)2/8] for any balanced extension F of G,. 
This is done as follows. For every n 2r 7, let n = nl + n2 be the unique 
partition of n into the sum of two integers such that 1 5 122 - nl 5 4 
and n l  is odd. (For n = 0, 1, 2, 3 (mod 4) the value of 122 is, respectively, 
(n/2) + 1 ,  (n  + 3)/2, (n/2) + 2, (n  + 1)/2.) Let graph G, consist of an 
n2-cycle, a chord, and n1 pendant vertices adjacent to the same vertex of 
the cycle (G11 appears in Figure la). We will show that 

3 5 ext(G,) I i n 2  + ~n + 8. 
1 3 This will give the lower bound ext(n) 2 l(n + 3)2/8J, since x n 2  + ~n + 

8 differs by only 
Assume F is a balanced extension of G,. Since d ( F )  = m(G,) = 1 + 

(l/n2) > 1, it is easy to show that every vertex of F has degree at least 2. 
Obviously, for each vertex w of G,, deg,(w) I degGn(w). Moreover, since 

5 from (n + 3)2/8. 

(b) 
FIGURE 1 
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n1 is odd, either this inequality is strict for at least one of the n2 vertices 
of the cycle or deg,(w) 2 3 for at least one of the remaining u ( F )  - n2 
vertices of F .  Hence, 

2 

= (nl + 2) + 6 + ~ ( u ( F )  - 3) + 1 

degGn(w) + n1 + 2(u(F)  - n)  + 1 
wEV(G.) 

= n1 + 3 + 2 v ( F ) ,  

which is equivalent to 

nl + 3 1 1 2  3 5 
v ( F )  1 = -n2(n1 + 3) 1 - n  + - n  + -, 

2(m(G,) - 1) 2 8 4 8 

which, in turn, implies u(F)  1 [(n + 3)'/8]. I 

Because the proof of the upper bound ext(n) I L(n + 3)2/8] is more 
complicated than that of the lower bound, a sketch of the proof is given 
here. It must be shown that any graph G with n vertices (sufficiently 
large) has a balanced extension F with u ( F )  I [ (n  + 3)2/8]. The following 
definition is required. For any graph G ,  let G o ,  called the balanced core 
of G ,  be the largest subgraph in G that realizes the global density m(G).  
In fact, the balanced core is the union of all subgraphs of G that achieve 
its global density, i.e., Go = U { H :  d ( H )  = m(G)}.  Note that a graph G is 
balanced if and only if Go = G .  Figure l b  shows a balanced extension F 
of G11 that achieves the above lower bound so that ext(Gll) = 24. With 
the graph G l l  as an example, the idea of the proof of the upper bound 
is as follows. The balanced extension F of a graph G is built in stages 
G = Fo, F 1 ,  F2, . . . , F, = F .  At each stage (the last stage is a special case) 
a graph Bi is adjoined to the previous graph Fi-l at exactly two vertices 
not in F;-l to form the new graph F i .  In the example, B1 and B2 are paths 
on 6 vertices. At the last stage B3 is a cycle on 6 vertices. In the example 
m ( G l l )  = 7/6 and at each stage the balanced core F; of Fi consists of the 
subgraph induced by all nonpendant vertices. In general, at each successive 
stage, FP includes the previous balanced core FP-1 and the adjoined graph 
Bi. At each stage (except possibly the last and except the special case when 
Go is a complete graph) at least two additional vertices of the original G 
are included in the balanced core. When all vertices of the original G are 
included, the procedure terminates. So at the last stage F" = F and hence F 
is balanced. At each stage the adjoined graph Bi must be, in a certain sense, 
extremely balanced to ensure that the balanced property is not destroyed and 
also must be small to ensure the desired upper bound. The construction of 
such graphs is the purpose of Section 3 and Lemma 5 in particular. If the 
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graphs Bi are adjoined to just one vertex of G instead of two, as in [8], the 
number of stages, in the worst case, doubles and the procedure results in 
only an n 2 / 4  upper bound for ext(n). 

Comment. The only known graphs G that achieve the maximum extension 
number are those whose balanced core satisfies e(G") = v(G") + 1. On the 
other hand, the best lower bound we can get on ext(G) for graphs with at 
least two more edges than vertices in their balanced core is of the order of 
n2/12, a jump from n 2 / 8 .  In fact, for every k 1 2 and n sufficiently large 
there is a graph G,,k whose core has k more edges than vertices and for 
which 

It seems that by a suitable refinement of the methods in this paper one can 
prove that this is indeed the correct asymptotic value of ext(G) in the worst 
case. This would mean that in the asymptotic behavior of ext(n) jumps do 
occur. 

3. DOUBLE ROOTED BALANCED GRAPHS 

This section primarily concerns the construction of highly balanced graphs 
B(u, e ) ,  with u vertices and e edges, and with two roots bl and b2, needed in 
the proof of the main theorem. It will be assumed throughout this section that 
v > 4 .  Define r equidistributed points (modulo s) on the set {1,2, . . . , s} as 
follows: 

Denote by C(s,t)  the graph with vertex set {1,2,. . . , s }  and edge set 
{ { i , j } :  li - j l  I t}, where the subtraction is modulo s. Denote by D(s , t )  
the graph obtained by joining two new vertices bl and b2 to all vertices 
of C(s,t).  Denote by A ( s , t )  the graph obtained by joining a new vertex 
bl to all the even elements of C(s,t)  and a new vertex b2 to all the odd 
elements of C(s, t).  The graphs B = B(u,  e )  and their roots are now defined 
by cases. In several of these cases, integers s, k ,  r are defined by s = u - 2 
and e = sk  + r ,  where 0 5 r < s. 

Case 1. e = v - 1. Here B is a path. The two end points of B are the 
roots bl and b2. 

Case 2. e = v, u even. Here B is a cycle. Two diametrically opposite 
vertices of the cycle are the roots bl and b2. 



BALANCED EXTENSIONS OF GRAPHS 423 

Case 3. e = u + 1. Here B consists of a cycle {1,2,. . . , u }  with a chord 
joining vertices 1 and [u/2]. The vertices [u/4’) and [3u/4] are the roots bl 
and b2. 

Case 4. u + 2 5 e < 2u - 4 (or e = s + r ,  4 5 r < s). Here B 
is obtained from the cycle C(s ,  1) by adding two extra vertices bl and 
b2 of equal degree Lr/2J joined to the elements of R in an alternating 
fashion. In addition, if r is odd, one long chord from u, = s to [s/2] 
is added. More precisely, E(B)  = E(C(s ,  1)) U {{bi, ui}: i = j (mod 2), 
i = 1,2,j  = 1,2,. . . ,2Lr/2J} U {s, [s/21}, the last union only if r is odd. 

Case 5. 2 v - 4 5 e < 3 u - 6 ,  u > 6  (or e = 2 s + r ,  O 5 r <  
s, s > 4). Here B is obtained from A(s, 1) by adding the set of r edges 
L = {{i,i + 2},i E R }  where addition is modulo s. 

Case 6. 

(or e = ks + r ,  0 5 r < s, 3 I k 5 [(s + 3)/21). Here B is obtained 
from D(s ,  k - 2) by adding the set of r edges L = {{i, i + k - l) ,  i E R }  
where addition is modulo s. 

Case 7. (u(v - 2))/2 < e S (;) - 1, u even. Here B is obtained from 
the complete graph K,-1 by adding an extra vertex bl and any e - (vil) 
edges from bl to Kw-l .  The other root b2 is any vertex in Kv-l not adjacent 

Note that every pair (u,  e) ,  u - 1 5 e 5 (i) - 1, falls into one of the 
seven cases except (5,7), (5,8),(6,8), (6,9), (6, lo), (6, ll), and { (u,  e) :  e = 
u,  u odd}. The latter set of pairs is treated as a special case in the proof 
of the main theorem. Note also that in all cases the roots bl and b2 are 
nonadjacent. The crucial properties of the graphs B(u ,e )  are stated in 
Lemma 5 below. Letting u = u(G),  e = e(G), the following notation will 
be used in the lemmas. For i = 0, 1, or 2 and i < u ,  

to bl. 

e 
u - i ’  di(G) = - 

whereas if u = i define di(G) = 0. Note that do = d is the ordinary density. 
Also, for a given graph G the deficit functions of graph H with respect to 
G are defined by 
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The degree of vertex u in graph G will be designated by deg,(u). The proofs 
of Lemmas 1-4 follow immediately from the definitions and the first three 
lemmas are similar to results that appear in [8] and [9]. The exception in 
Lemma 1 (because v(K2) = 2 = i) will never occur hereafter. 

Lemma 1. f i ( H )  2 0 if and only if d i (H)  5 di(G), with the single 
exception i = 2, G = H = K2. I 

Lemma 2. 
Then f i ( H )  5 f i ( H  - u)  if and only if di(G) I deg,(u). 

Let u be any vertex of a graph H with at least three vertices. 

Lemma 3. For graphs H1 and H2 

Lemma 4. 
modulo s contains less than x r / s  + 1 elements from R ( s , r ) .  

A set of x consecutive elements from the set {1,2,. . . , s} 
I 

Lemma 5. For every pair of integers ( v ,  e) ,  u - 1 I e I (;) - 1, with 
u 2 10 and with the exception of { (u ,e) :  e = u,  u odd}, there exists a 
graph B = B(u, e )  containing two distinguished nonadjacent vertices bl and 
b2 with the following properties: 

(1) d ( H )  I d(B)  for all subgraphs H of B. 
(2) d l ( H )  5 dl (B)  for all subgraphs H containing at least one of the 

( 3 )  & ( H )  5 d;?(B) for all subgraphs H containing both vertices bl 

Remark. If e = v, u odd, we take for B a cycle of length Y - 1 with 
a pendant edge. The vertex of degree one is then bl and the vertex 
diametrically opposite the neighbor of bl on the cycle is b2. It is easy 
to check that this graph satisfies conditions (1) and (3)  of Lemma 5, but not 
condition (2). This graph will be used in the proof of the main theorem. 

vertices bl or b2. 

and b2. 

Proof. The following principles are used in the proof. Let fi, i = 0, 1,2, 
be the deficit functions with respect to B. In checking each of the seven 
cases there is, due to Lemma 1, the freedom to prove, for all the relevant 
subgraphs H of B,  either that f i ( H )  2 0 or that d i ( H )  5 di(B) ,  whichever 
is more convenient. 

It is easy to check that if condition (3) holds for a particular subgraph 
H ,  then condition (2) also holds for H ;  likewise, if condition (2) holds 
for H ,  then so does condition (1). Thus if H contains both vertices 
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bl and b2, only condition (3) is checked; if H contains one of the 
vertices b, or b2, then only condition (2) is checked; and if H contains 
neither of the vertices bl and b2, then condition (1) is checked. Also 
in checking condition (1) it may be assumed that H is connected. To 
see this, suppose H = H1 U H 2 ,  where H1 and H2 are disjoint. Then by 
Lemma 3 we have fo(H1 U H 2 )  = fo(H1) + fo(H2).  If the left-hand side 
is negative, then at least one of the terms on the right-hand side must 
also be negative. Similarly, concerning condition (2) it may be assumed 
that H is not the union of two graphs that intersect at exactly one of 
the vertices bl or b2; and concerning condition (3) it may be assumed 
that H is not the union of two graphs that intersect exactly at vertices 
bl and b2. The above facts imply that C = H - {bl,b2} can always be 
assumed connected. In this proof x always denotes the number of vertices 
in C. 

Moreover, it is sufficient to prove conditions (1)-(3) only for a subgraph 
H of B that minimizes the deficit function f i .  It will always be assumed 
that H is such a subgraph. By this special choice of H and Lemma 2, no 
vertex u of H has deg,(u) < di(B) and no vertex not in H has more than 
di (B)  neighbors in H .  In particular, H contains no pendant vertex as long 
as di(B) > 1. 

Now each of the three conditions in the lemma must be checked for each 
of the cases of B ( v ,  e )  defined above. The cases (1)-(3) and (7) are routine 
to check. In checking case (4), let the x vertices on C(s, 1) form t arcs of 
consecutive vertices. Since C is connected, t = 1 or 2. Let 7 be the number 
of elements of R among these x vertices. By Lemma 4,T 5 ( rx / s )  + t .  To 
check condition (3) in the lemma 5 (x  - t + T)/x 5 1 + ( r / s )  = 
d2(B). If both bl and b2 are in H ,  then condition (2) follows from condition 
(3). Otherwise assume that, say, bl is in H and that b2 is not. Then, by 
Lemma 2, there is at most one element of {ui, . . . , u2[r,2j} with an even index 
among the x vertices on C(1, s), because otherwise b2 has at least 2 > d l (B)  
neighbors in H .  This restricts H to a few possible forms. Checking them 
case by case confirms that e ( H )  = x + 1 or x + 2. Moreover, if e ( H )  = 
x + 1, then x 2 (3s/2r), whereas if e ( H )  = x + 2, then x 2 (3slr). 
In either case d l ( H )  5 1 + (2r/3s) 5 1 + ( ( r  - l)/(s + 1)) = dl (B)  if 
s 2 8 (i.e., v 2 10). If at least one of bl or b2 is in H ,  then condition (1) 
follows from condition (2). Otherwise d ( H )  5 1 + (l/s) < d(B) .  

To prove case (5),  first consider condition (3). Since C is connected, 
either consecutive vertices among these x are spaced one apart or two 
apart. The second possibility can be eliminated by Lemma 2 because the 
intermediate vertex would have at least 3 > dz(B) neighbors in H .  Using 
Lemma 4 we have &(H)  5 (l/x) (2x - 1 + (xr / s )  + 1) = 2 + ( r / s )  = 

d2(B). If both bl and b2 are in H ,  then condition (2) follows from 
condition (3). Otherwise assume that bl is in H and that b2 is not in H .  
Using Lemma 4 we have d l ( H )  5 (l/x)x - 1 + ( x  + 1)/2 + ( r x / s )  + 
1) = (3/2) + (1/2x) + ( r / s )  I 2  + ( r  - 2)/(s + 1) = d l ( B )  for s 2 8 
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(i.e., u 2 10) and x L 3. (For x = 2 we have d l ( H )  5 (3/2) < d l (B) . )  
To check condition (1) it again may be assumed that neither bl nor b2 are 
in H ,  and that H is connected. Then d&Z) 5 ( l / x ) ( x  + ( rx / s ) )  5 &(I?> 
for s 2 4 (i.e., v 2 6). 

In case (6) we shall prove that all subgraphs of B,  and not only those 
containing bl and b2, satisfy (3). This, by the remarks above, will imply 
conditions (1) and (2). Let F denote the number of edges of R contained 
in H .  The proof proceeds by induction on k .  First consider k = 3.  If 
x L 4, then by Lemma 2 vertices bl and b2 are in H since 4 L d2(B).  
The cases x < 4 can be routinely checked. As in case (5) ,  consecu- 
tive vertices among the x vertices are spaced one apart. Now &(H)  I 
(1/x)(3x - 1 + F) I 3 + ( r / s )  = dz(B). For k > 3, assume that condi- 
tion (3) holds for all subgraphs H of B(s + 2, sk + r ) ,  i.e., f 2 ( H )  2 0 for 
all subgraphs H .  Let H’ be any subgraph of B(s + 2, s (k  + 1)  + r )  and 
let H be the subgraph of B(s + 2, sk + r )  induced by the vertices of H’. 
Then e(H’)  I e ( H )  + x implies f2(H’) - f z ( H )  = [ (k  + 1 + (r /s))x - 
e (H’ ) ]  - [ (k  + ( r / s ) )x  - e ( H ) ]  2 x - x = 0. Thereforefz(H/) 2 f 2 ( H )  
L 0. I 

4. MAIN RESULT 

This section is entirely devoted to a detailed proof of the upper bound in 
the main theorem. The lower bound was proved in Section 2. 

Theorem. For n sufficiently large 

Proof of the Upper Bound. To obtain the bound ext(n) 4 ( n  + 3)’/8, 
let G be an n-vertex graph. We may assume that 1 < m = m(G) < 4.25, 
since outside this range ext(G) is linear in n (cf. Section 1). A balanced 
extension F of G will be constructed in stages so that v(F) I (n  + 3)’/8. 
Set no = v(G”) and express m = p / q ,  where p and q are relatively prime 
integers. A sequence of graphs 

will be constructed such that F is a balanced extension of G and for 
i = 1 ,  ..., t .  

(1) Fi-l is an induced subgraph of Fi;  
(2) m(Fi) = m; 
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- 
(3) setting ni = u(Fi) ,  np = u(FP), Ei = ni - n;, A; = 2. 1 - 1  - ni ,  

i = 0, 1, ..., t ;  
(a) ni - ni-l 5 q + 8 and A i  2 max(2,q - 7) - 1, 
(b) ni - niPl 5 no - 2 and A i  2 2, or 
(c) n; - n;-1 5 no - 1 and A; 2 1-option (c) possible only for 

i = t - 1 or if Go is a complete graph. 

Moreover, both bounds in (a) can be improved by 1 except when 
i = t - 1. Note that Ti0 = n - no, and by (3), Zi is reduced at each stage 
by at least 1. At the first t such that E, = 0 we have FP = F, that, by the 
comments in Section 2 and assuming condition (2), implies that F,  is the 
desired balanced extension of G. It follows from (3) that, for n large enough, 
u ( F )  5 (n + 3)2/8. To see this first note that 

Four cases will be considered. Note that q divides no, so that, unless q = no 
we have q 5 no/2. 

1. If max(q + 8,n0 - 1) I 17 (it is easy to check that this includes the 
case when G is complete), then t 5 n and u ( F )  I n + 17n = 18n. 

2. If q I n 0 / 2  and max(q + 8,n0 - 1) > 17, then either 
(a) q L 10 and q + 8 1 2 q  - 2 5 no - 2, 
(b) no 2 20 and q + 8 5 (no/2) + 8 5 no - 2, 
(c) no = 19,q = 1 and q + 8 I 9  I no - 2. 
In any case, q + 8 I no - 2 and r I ~ ( n  - no + l), and conse- 
quently, 

1 

the last inequality obtained by maximizing with respect to no. The 
extra “1” here and in Case 4 below comes from the possibility that 
n,-l - nt-2 = no - 1 and not no - 2. 

3. If q = no and (3a) holds for at least one i, then t I 1 + 
~ ( n  - no - (q  - 7) + 1) and 1 

4. Finally, if q = no and (3a) never occurs, we obtain the critical bound 
again: 

1 (n + 312 
8 u(F)  I n + - ( n  - no + l ) (n” - 2) + 1 5 

2 
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It now suffices to describe the construction of the graphs Fi’s, and verify 
conditions (1)-(3). The first Fi’s serve to remove the isolated vertices of 
G if there are at least two of them. (Clearly, Go has no isolated vertices.) 
Assume that il, . . . , is, s 2 2, are the isolated vertices of G. Set so = s if 
Go is complete and so = Ls/2] otherwise. We build F j ,  j = 1,.  ..,so, by 
adjoining to F j - ,  a copy of Go in such a way that it contains ij and no - 1 
new vertices if Go is complete and it contains nonadjacent izjPl, iz;, and 
no - 2 new vertices otherwise. Clearly, F j - l  is an induced subgraph of 
F j .  It is routine to check that the new balanced core Fj” is a disjoint union 
of j copies of Go, so that condition (2) holds. Also n, - n j - l  = no - 2 
or no - 1, and A j  = 2 or 1, respectively, verifying condition (3b) or (3c). 
Thus, for i 2 so, there will be at most one isolated vertex in Fi. 

Next the transition from Fi to F i + l ,  for so 5 i I t - 1, will be described. 
In order to unify our description, add an extra pendant vertex to F t - l ,  if 
necessary, to ensure that EtPl 2 2 (this adds a “1” to the bounds in (3a) and 
(3c) for i = t - 1). Hence, we may assume that Ei 2 2 for all i 2 so. The 
relevant deficit function to use in the proof is f ( H )  = m v ( H )  - e ( H ) ,  i.e., 
the deficit function f o  with respect to Go already defined in Section 2. In 
particular, both Lemmas 1 and 3 remain valid for f .  Notice that m(Fi) = m 
if and only if both f(H) 1 0 for all subgraphs H of Fi and f(H0) = 0 for 
some subgraph HO of Fi. Let 

f *  = min{f(H): H C Fi, IV(H)\V(FP)I 2 2) .  

Applying the modularity o f f  one can check that the minimum is always 
achieved by a subgraph containing the balanced core FP, i.e., 

f* = min{ f ( H ) :  FP C H C F i ,  v(H) - v(FP) 1 2 ) .  

Note that 

(4) 0 < f *  I 2m - 1, 

where the upper bound follows by taking FP plus two vertices and one edge 
for H .  This is always possible because there are at least two vertices outside 
the balanced core and at most one isolated vertex among them. Consider 
the equation in variables v and e :  

(5)  mu  - e = 2m - f*. 

For any solution ( v , e )  of ( 5 )  it follows from (4) that 

(6) m ( v  - 2) < e 5 mu - 1. 

Since m = p / q  we can express f * = r / q ,  where p ,  q ,  and r are positive 
integers. On clearing fractions, (5)  becomes a linear Diophantine equation, 
and because p and q are relatively prime, it has infinitely many integer 
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solutions of the form (uo + sq, eo + s p ) ,  where (uo,eo)  is any particular 
solution. Hence there is always a solution ( u , e )  satisfying 

(7) 1 0 5 u I q + 9 .  

In addition, 

follows from (6), (7), and the fact that 2m + 1 < 10 (recall that m < 4.25). 
Let F* be a subgraph of Fi realizing the minimum f*, i.e., FP C F* C 
Fi ,  u* = u(F*)  - u(FP) 2 2, and f ( F * )  = f*. Let x , y  E V(F*)\V(FP). 
Let B be the graph B(u, e )  in Lemma 5 of Section 2 unless u = e ,  u odd, 
in which case let B be the graph described in the remark following 
Lemma 5. (Inequality (8) allows us to apply Lemma 5.) We construct 
Fi+l by attaching a copy of B to Fi in such a way that bl and b2 are 
identified with x and y ,  and that Fi and B are otherwise disjoint. Note 
that G is an induced subgraph of Fi+l at each stage. In the case when 
u = e is odd, if x is the only vertex of V(F*)\V(FP) joined by an 
edge to FP, we must identify x with bl and not with b2. (We will need 
this special requirement at the very end of the proof.) In either case, by 
Lemma 3 and by (5)  we have f ( F *  U B )  = f* + mu - e - 2m = 0, and 
so, provided (2) is true, F* U B C Fi",,. This means that Ai 2 u*. Thus to 
verify condition (3) we must show that u* I max(2,q - 7). Recall that 
by the definition of F*, u* 1 2. Also it follows from (5 )  and the fact 
that p and q are relatively prime that, for any solution (u',e') of (9, 
u' + u* - 2 is a multiple of q .  Hence u' + u* - 2 2 q if u' > 0. If 
u,  the solution satisfying (7), is not greater than q, then (3b) (or (3c)) 
holds. Otherwise, u' = u - q is another solution of (5), 0 < u' 5 9, and 
therefore u* 2 q - u' + 2 2 q - 7. To complete the proof of (3) observe 
that ni - ni-l = u - 2 5 q + 7 by inequality (7). Now it only remains 
to check condition (2) rn(Fi+l) = m, i.e., that for every subgraph H of Fi+l  
we have f ( H )  I 0. We assume inductively that m(Fi )  = m .  Thus there is 
nothing to check if H Fi .  So assume that at least one vertex of H is not 
in Fi. There is no loss of generality in assuming that H 3 FP because 
if f(H) < 0 then f ( H  U FP) = f(H) + f ( F P )  - f(H n FP) < 0. Let 
HB = H n B, HF = H fl Fi, vo = u(HE),  and eo = e (HB) .  Recall that 
u = u(B) and e = e(B).  Clearly, V ( H E )  f l  V ( H F )  = V ( H )  n { x , y }  and 
Hs fl HF contains no edge. Consider 3 cases. 

Case I. V ( H )  n { x , Y }  = 0. 

In this case f(H) = f(HF U H B )  = f ( H F )  + f(HB). Since HF Fi ,  
we know that f(HF) 2 0. By (6) and property (1) of Lemma 5, we have 
e" VO 5 5 < m; therefore f(H) 2 f(HB) I 0. 

Case 2. V ( H )  _> { x , y } .  
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Now, f(H) = ~ ( H F  U HB) = f ( H F )  + f(HB) - 2m and f ( H F )  2 f* 
since IV(HF)\V(FP)I 2. By (6)  and property (3) of Lemma 5,  

e e - eo e 
I- R - 2 -  > m .  e0 

u o - 2  u - 2  u - u o  u - 2  

The last inequality implies f ( H B )  > f(B), so f(H) > f* + mu - e - 
2m = 0 by (5). 

Case 3. V ( H )  n {x,y} = {x}, say. 

Assume first that e # u or u is even. In this case refine (4) to 

(9) 0 < f* f ( H F )  + m 9 

by taking, if f ( H F )  < f*,  H F  plus a vertex in the definition of f* .  (Note that 
f ( H F )  < f* implies that V(HF)\V(F;) = {x}.) By (5) and (9) combined 
and by condition (2) of Lemma 5,  

f (HF)  S m + -  I -  5 m + -  e f (HF) e0 

u o - 1  u - 1  u - 1  210 - 1 ’  

which gives f(H) = f ( H F  U H B )  = ~ ( H F )  + $(HE) - m 2 0. 

condition (2) of Lemma 5,  note that (5)  now becomes 
Turning to the special case u = e ,  u odd, where we cannot apply 

(10) f* + u(m - 1) - 2m = 0. 

Also f(B) = u(m - l), eo 5 U O ,  and eo = uo implies uo 2 u - 1. If 
eo < uo, then 

since uo 2 2 and m > 1. If eo = uo = u,  i.e., if H B  = B, then, by (9) and 
(lo), 

Thus, it only remains to check the case eo = uo = u - 1. Since f(HB) > 0 
and f ( H F )  2 0, we are done if either f(HF) L m or f ( H B )  2 m. If 
m 2 9/8, then ~ ( H B )  L m for u L 10, which is the case by inequality (7). 
Otherwise, i.e., when ~ ( H F )  < m < 9/8, we claim that (9) can be further 
improved to yield f* 5 f(HF) + m - 1. In this case, using (5), 

f(H) = f ( H F )  + (u  - 1)(m - 1) - m L (f* - m + 1) 

+ (2m -f*) - ( m  - 1) - m = 2  - m > O .  
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To prove the claim, observe that if f ( H F )  < min(m,f*), then x is joined to 
the core FP by at least one edge. (Recall that if f(HF) < f*, then x is the 
only vertex of HF outside Fr. Thus, if there is no edge between x and FP, 
then ~ ( H F )  = m.)  On the other hand, bl  is not identified with x, since this 
would mean that HB = B, contradicting eo = uo = u - 1. Thus, according 
to the rule imposed on the attachment of B to Fi, there must be another vertex 
in F* but outside FP joined by an edge to FP. Adding this vertex and edge 
to H F  results in a subgraph H’ with f(H’) 5 f(HF) + m - 1. The proof 
is now complete. 
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