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1 Introduction 

The purpose of this paper is to investigate bi-affine iterated function systems and fractal 
homeomorphisms between their attractors. The class of bi-affine functions from R2 to R2 
is more general than affine transformations but less general than quadratic 
transformations. These are the functions f : R2 → R2 that are, for a fixed x or a fixed y, 
affine in the other variable: 

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 1 2

(1 ) , (1 ) , ,

 and , (1 ) (1 ) , ,

f x x y f x y f x y

f x y y f x y f x y

− + = − +

− + = − +

α α α α

α α α α
 (1) 

for all x1, x2, y1, y2, α ∈ R. Interpreted geometrically, these equations mean that 

1 horizontal and vertical lines are taken to lines 

2 proportions along horizontal and vertical lines are preserved. 

This elementary class of functions, with connections to classic geometric results of 
Brianchon and Lampert dating back to the 18th century, proves extremely versatile for 
the applications described in this paper. 

Our main motivation for investigating bi-affine functions comes from the 
representation and transformation of certain fractal images. A standard method for 
constructing a deterministic self-referential fractal is by an iterated function system (IFS). 
The attractor of the IFS maybe a fractal. Barnsley (2009a, 2009b) has introduced a 
method for transforming the attractor of one IFS to the attractor of another IFS, a method 
that has applications to digital imaging such as image encryption, filtering, compression, 
watermarking, and various special effects. Figure 1 explained in more detail in Section 5, 
is obtained by applying such transformations – called fractal homeomorphisms. In 
constructing a fractal homeomorphism it is convenient to use an IFS whose maps have 
nice geometric properties but that are not too complicated. Linear transformations are 
easy to work with and have the property that lines are taken to lines. Affine 
transformations are not much more complicated than linear transformations and do not 
have the restriction that the origin be taken to the origin. There is a tradeoff; the  
more properties required, the more complicated the mapping. In the fractal geometry 
literature, in particular for fractals constructed using an iterated function system, affine 
transformations are frequently used. For the applications described in Section 5, requiring 
slightly more general functions, bi-affine functions are ideally suited. 

The paper is organised as follows. The geometry of bi-affine functions is the subject 
of Section 2. Theorem 1 gives basic properties of a bi-affine function, in particular 
properties of the folding line and folding parabola. Theorem 2 gives a geometric 
construction for finding the image of a given point under a bi-affine function and 
precisely describes the 2-to-1 nature of a bi-affine function. Section 3 provides 
background on iterated function systems and their attractors. It is a classic result that, if 
an IFS is contractive, then it has an attractor. Theorem 3 gives fairly general conditions 
under which a bi-affine IFS is contractive. Fractal homeomorphism between the attractors 
of two IFSs is the subject of Section 4. The construction of a fractal homeomorphism 
depends on finding shift invariant sections of the coding maps of the two IFSs.  
Theorem 4 states that any such shift invariant section comes from a mask (the terms 
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coding map, section, shift invariant, and mask are defined in Section 4). Theorem 5 
concerns how to obtain a fractal homeomorphism between two attractors from the 
respective sections. The visual representation of a fractal homeomorphism for bi-affine 
IFSs is the subject of Section 5. Theorem 6 states that a particular type of bi-affine IFS 
can be used to construct fractal homeomorphisms. The main issue is proving the 
continuity of the map and its inverse. The pictures in Figure 1 are obtained by this 
method. 

Figure 1 Two fractal homeomorphisms applied to the original picture  

 

2 Geometry of bi-affine functions 

Boldface letters represent vectors in R2. A function f : R2 → R2 is called bi-affine if it has 

the form 

( , ) .f x y x y xy= + + +a b c d  (2) 

It is easy to verify that the class of bi-affine functions is exactly the class characterised by 
the two properties listed in the introduction. The class of bi-affine functions is not closed 
under composition, but the composition of a bi-affine and an affine function is bi-affine. 

Call a bi-affine function non-degenerate if d ≠ 0 and neither b nor c is a scalar 
multiple of d. In particular, neither b nor c is the zero vector. If d = 0, then f is 
‘degenerate’ in the sense that it is affine and well understood. If d ≠ 0 and both b and c 
are scalar multiples of d, then f is ‘degenerate’ in the sense that the range of f degenerates 
to a line. If d ≠ 0 and just one of b and c is a scalar multiple of d, then f is ‘degenerate’ in 
the sense that the image of the folding line, as defined in the next section, is just a point, a 
fact that can be verified by equation (4) in the proof of Theorem 1. 

Basic properties of bi-affine functions are described in this section. According to 
statement 2 of Theorem 1 below, the image of a line L under a bi-affine function  
is a parabola. Such a parabola can be degenerate in the sense that it is either a line  
(focal distance 0) or a line that doubles back on itself (focal distance ∞). The first case 
occurs if and only if L is parallel to either the x or y-axis. An example of the second case 
is (X, Y) = f(x, y) = (−x + xy, −1 − y + xy), in which case the image of the line y = x + 1 is 
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given by the parametric equation X = t2, Y = t2 −2, a degenerate parabola with vertex at 
(0, −2) that doubles back along the line y = x − 2. 

For vectors a and b, let |a b| denote the determinant of the matrix whose columns are 
a and b. For a non-degenerate bi-affine function f, call the line Lf with equation 

|  | |  |  |  |x y+ =b d d c c b  (3) 

the folding line of the function f. Note that, by the non-degeneracy of f, neither |b d| nor  
|d c| is zero, and hence the folding line is not parallel to either the x or y-axis. The 
terminology ‘folding line’ is justified by the next theorem, in particular statement 4. The 
image Pf = f(Lf) of the folding line is called the folding parabola, which, according to 
statement 3 is non-degenerate. Let L+ and L− denote the closed half spaces above and 
below Lf, respectively. 

Theorem 1: If f is a non-degenerate bi-affine map, then 

1 any line parallel to either coordinate axis is mapped to a line 

2 any line is mapped to a, possibly degenerate, parabola 

3 the folding parabola Pf := f(Lf) is non-degenerate 

4 the map f is injective when restricted to either L+ or L−. 

Proof: Statement (1) follows from the fact that, for a fixed x or a fixed y, a bi-affine 
function is an affine function in the other variable. 

The image of a line under a bi-affine transformation has a parametric equation of the 
form f(t) = u + vt + wt2, which is a, possibly degenerate, parabola. 

To show that Pf is non-degenerate, first note that the image of the line Lf under f is 
given by the parametric equation (X(x), Y(x)) with parameter x by 

( ) ( )

( )

2

2

( , ) ( , )
1 |  | |  | |  | |  | |  |  |  |

|  |
1 |  | |  | 2 |  |  |  | ,

|  |

X Y f x x

x x

x x

=

⎡ ⎤= + + − + −⎣ ⎦

⎡ ⎤= + + −⎣ ⎦

d c a c b c d c b b d c c b d b d d
d c

d c a c b c d b c b d d 
d c

 (4) 

the first equality obtained simply by substituting from equation (3) into equation (2) and 
the second equality by a direct calculation. The tangent vector to this parabola is 

2 |  |( ) ( ).
|  |

T x x= −
d b c d

d c
 

By the non-degeneracy of f, the vectors c and d are linearly independent, implying that 
the direction of the tangent vector is not constant. Hence the parabola is not degenerate. 

The Jacobian determinant of a bi-affine function is |b d|x + |d c|y − |c b|, which is 
nonzero except on the folding line. It follows from the inverse function theorem that f is 
injective when restricted to either L+ or L−. � 
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A parabola P divides the plane into two regions; let lP  denote the closed region ‘outside’ 
P (and including P). The set mfP  will be called simply the parabolic region of f. For a 

point p = (x, y) ∈ R2, let 

* |  | |  | |  | |  |, .
|  | |  |

y x⎛ ⎞− −
= ⎜ ⎟
⎝ ⎠

c b d c c b b dp
b d d c

 (5) 

Figure 2 The location of the point p* with respect to the folding line Lf (see online version  
for colours) 

 
 

 

This somewhat complicated formula is merely an analytic expression of the simple 
geometry shown in Figure 2. Statement 3 in Theorem 2 below makes precise the 2-to-1 
nature of a bi- affine function given in statement 4 of Theorem 1. Statement 1 in  
Theorem 2 is illustrated in Figure 3. Statement 2 gives a geometric construction of the 
image of a given point under a bi-affine function and is illustrated in Figure 4. 

Figure 3 Folding parabola Pf, parabolic region m,fP  tangent line TA (see online version  
for colours) 
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Figure 4 The image of a point p under a bi-affine function (see online version for colours) 

 

Note: The point f(p) has ‘coordinates’ (A, B). 

Theorem 2 Assume that f is a non-degenerate bi-affine map. We use the notation Va for 
the line x = a and Hb for the line y = b. 

1 if A = (a, b) is any point on the folding line Lf and TA is the tangent line to Pf at f(A), 
then TA = f(Va) = f(Hb) 

2 if p = (a, b) ∈ R2, then f(p) = TA ∩ TB, where A = Lf ∩ Va and B = Lf ∩ Hb 

3 f(L+) = f(L−) = mfP  and, in particular, f(p) = f (p*) for all p = (x, y) ∈ R2. 

Proof: Concerning statement 1, any horizontal or vertical line L intersects Lf in a single 
point. Therefore f(L) intersects f(Lf) = Pf in a single point, which implies that f(L) is 
tangent to Pf. Since the intersections Pf ∩ f(Va) and Pf ∩ f(Hb)both consist of the same 
single point, f(Va) and f(Hb) both equal the tangent line TA to Pf at f(A). 

By statement 1, the point f(p) lies both on the tangent to Pf at f(A) and on the tangent 
to Pf at f(B). This proves statement 2. 

Consider p and p* as in Figure 2. Statement 2 implies that f(p) = TA ∩ TB = f(p*). In 
particular f(L+) = f(L−). Since the union of all tangents to Pf is the parabolic region mfP  of 

f, we have f(L+) = f(L−) = f(R2) = m.fP  � 

It is a consequence of Theorem 2 that the parabolic region can be coordinatised as 
follows. Each point m

fP∈p  has a unique set {A, B} of (unordered) coordinates where A 
and B are points on the folding line. Specifically p = TA ∩ TB. This is illustrated in 
Figures 4 and 5. 
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Figure 5 Coordinatisation of mfP  (see online version for colours) 

 

Notes: ( ),    1 11,i iA f A i′ = ≤ ≤  and p′ = f(p). The point p′ has coordinates {A3, A9}. 

Figure 6 Construction of the folding parabola: focus F and directrix D (see online version  
for colours) 

 

The folding parabola Pf can be constructed geometrically as follows (see Figure 6). 
Choose four pairwise distinct points A1, A2, A3, A4 on the folding line and construct the 
four tangent lines 

1 2 3 4
,  , , .A A A AT T T T  It is a direct consequence of the classic Brianchon 

Theorem (actually the converse) that there is a unique parabola with these lines as 
tangents. According to what has been shown above, this must be the folding parabola. 
The parabola can be explicitly constructed using a theorem of Lambert. According to 
Lambert, the circumcircle of a tangent triangle of a parabola (see Figure 6) goes through 
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the focus of the parabola. So the focus F is determined as the intersection of three  
such circumcircles. Then reflect F about two of the tangents to get two points on the 
directrix. 

3 Iterated function systems 

This section reviews the standard notation and definitions related to IFS. These concepts 
are then applied to the bi-affine case. 

Let X be a complete metric space. If fm : X → X, m = 1, 2, . . ., M, are continuous 

mappings, then F = (X; f1, f2, ..., fM) is called an IFS. An IFS that consists of bi-affine 

functions will be called a bi-affine IFS. To define the attractor of an IFS, first define 

( ) ( )
f

B f B
∈

= ∪
F

F  

for any B ⊂ X. By slight abuse of terminology we use the same symbol F for the IFS, 

the set of functions in the IFS, and for the above mapping. For B ⊂X, let Fk(B) denote 

the k-fold composition of F, the union of 
1 2

( )
ki i if f f BD D"D  over all finite words  

i1 i2  ik of length k. Define F0(B) = B. A non-empty compact set A ⊂X is said to be an 

attractor of the IFS F if 

1 F (A) = A 

2 limk→∞ Fk(B) = A, for all compact sets B ⊂X, where the limit is with respect to the 

Hausdorff metric. 

Attractors for bi-affine IFSs consisting, respectively of 2, 3 and 4, functions are shown in 
Figure 7. 

Figure 7 Attractors of IFSs consisting of two, three, and four bi-affine functions, respectively 

    

A function f : X → X is called a contraction with respect to a metric d if there is an s,  

0 ≤ s < 1, such that d(f(x), f(y)) ≤ sd(x, y) for all x, y ∈ Rn . An IFS with the property that 
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each function is a contraction will be called a contractive IFS. In his seminal paper 
Hutchinson (1981) proved that a contractive IFS on a complete metric space has a unique 
attractor. Theorem 3 below gives fairly general conditions under which a bi-affine IFS is 
contractive. 

Let 
 denote the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1). The shape of the 
image of 
 under a non-degenerate bi-affine map f depends on the location of the folding 
line Lf relative to 
. It follows from Theorem 2 that there are three possible cases as 
shown in Figure 8. It is only in Case 1 (Lf disjoint from the interior of 
) that the image 
of the sides of 
 form a convex quadrilateral. If this is the case, call f proper. 

Figure 8 The image of the sides of the unit square (on the left) is shown by thick lines  
(on the right): A′ = f(A), B′ = f(B), C′ = f(C), D′ = f(D) (see online version for colours) 

 

Note that the unique bi-affine function taking (0, 0), (1, 0), (1, 1), (0, 1) to the points p0, 
p1, p2, p3, respectively, is 

( ) ( ) ( )0 1 0 3 0 2 0 1 3( , ) .f x y x y xy= + − + − + + − −p p p p p p p p p  (6) 

Theorem 3: Let f(x, y) = p0 + (p1 − p0)x + (p3 − p0)y + (p2 + p0 − p1 − p3)xy be a proper, 
non-degenerate bi-affine function. If there is an s, 0 ≤ s < 1, such that 
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1 2 1 1,    2 ,    2 2i i i i i i is s s+ + + −− ≤ − ≤ + − ≤p p p p p p p  

for i = 0, 1, 2, 3 (mod 4), then f is a contraction on 
. 
In terms of the quadrilateral p0 p1 p2 p3, the first of the three inequalities states that 

each side has length less than or equal to s, the second that each diagonal has length less 
than or equal to 2 ,s  and the third that the vector sum of any two incident sides has 
length less or equal to 2 .s  For a bi-affine function taking 
 into itself, for example, 
these conditions are not too restrictive. Two lemmas help in proving Theorem 3. 

Lemma 1: If f is a proper, non-degenerate bi-affine function, then f is injective when 
restricted to 
. 

Proof: By the comments above, the folding line Lf lies outside the interior of the square 

. The lemma then follows by statement 4 of Theorem 1.  � 

Lemma 2: Let f be a non-degenerate bi-affine function that is injective on 
, and let  
W ⊆ 
 be any rectangle with sides parallel to the x and y-axes and with diagonal of 
length ρ(W). Further let ρ1(W) and ρ2(W) be the lengths of the two diagonals of f(W) and 
let 

( ) ( )
0

0 1 2: ( )
max max ( ), ( ) .

W W
M W W

ρ ρ
ρ ρ ρ

=
=  

For any 0 2,ρ ≤  if W0 is a rectangle that maximises M(ρ0), then W0 and 
 have a 
common vertex. 

Proof: If one side of W0 lies on the line x = 0 or x = 1 and another side lies on y = 0 or  
y = 1, then the proof is complete. So, without loss of generality, assume that W0 has no 
side that lies on x = 0 or x = 1. Let V0 be the rectangle bounded by the lines x = 0, x = 1 
and the lines determined by the upper and lower sides of W0. Let A, B, C, D be the 
vertices of f(V0). Then by the conditions 1 in the introduction, there is an α  
such that the four vertices of f(W0) are (1 − α)A + αB, (1 − α − ∆)A + (α + ∆)B,  
(1 − α − ∆)C + (α + ∆)D, (1 − α)D + αC, where ∆ is the horizontal length of W0.  
As α varies between 0 and α0, the rectangle W0 shifts left or right, from the extreme  
left side of 
 to the extreme right side of 
. The lengths of the two diagonals of f (W0) 
are |U1 + (B + C − A − D) α| and |U2 + (B + C − A − D) α|, where vectors U1  
and U2 depend on A, B, C, D and ∆. As α varies in the range 0 ≤ α ≤ α0, the quantities  
U1 + (B + C − A − D) α and U2 + (B + C − A − D) α describe (parallel) line segments. 
Hence the maximum of |U1 + (B + C − A − D) α| and |U2 + (B + C − A − D) α| occur at an 
end, i.e. α = 0 or α = α0, contradicting the assumption that W0 has no side that lies on  
x = 0 or x = 1. � 
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Proof (of Theorem 3): It is sufficient to show that there is an s, 0 ≤ s < 1 such that  
|f (x, y) − f(x′, y′)| ≤ s |(x, y) − (x′, y′)|. Let W0 be the rectangle whose diagonal is the line 
segment joining (x, y) and (x′, y′). By Lemma 1, the function f is injective on 
, and by 
Lemma 2, the quantity 

( )
( )

( )
( , ) ,

: , ( , ) ,
( , ) ,

f x y f x y
R x y x y

x y x y

′ ′−
′ ′≠

′ ′−
 

is maximised when W0 and 
 have a common vertex, i.e. when W0 lies on the corner of 

. Without loss of generality, it may be assumed to be the lower left corner. Otherwise, 
replace f with the composition of f with the rotation that moves the lower left corner to 
the relevant corner. Now let ∆x = |x′ − x| and ∆y = |y′ − y|. With b = p1 − p0, c = p3 −p0,  
d = p2 + p0 − p1 − p3 and setting r = ∆y/∆x, we have two possible formulas for R: 

2
2 2

2 2

( , ) ( , ) 1 |  |
| ( , ) | 1

f x y f x y
R r r x

x y r

′ ′Δ Δ −
= = + + Δ

Δ Δ +
b c d  

or 
2

2 2
2 2

( ,0) (0, ) 1 | | .
| ( , ) | 1

f x f y
R r

x y r
Δ − Δ

= = −
Δ Δ +

b c  

Since 0 < ∆x ≤ 1, the quantity R2 in the first formula is maximised when either ∆x = 0 or 
∆x = 1. So it is now sufficient to prove that 

2 2 2
2 2 20

1 1 1max |  | , |  | , | | 1.
1 1 1r

r r r r
r r r>

⎛ ⎞= + + + − <⎜ ⎟+ + +⎝ ⎠
b c b c d b c  

The inequalities in the statement of the theorem, in terms of b, c, d are that |b|, |c|, |b + d|, 
|c + d| are all less than or equal to s and |b − c|, |b + c + d|, |b + c|, |b − c + d|, |c − b + d|, 
|b + c + 2d| are all less than or equal to 2 .s  Maximising the three quantities over r, in 
order to verify the above inequality, is a not quite trivial calculus problem whose details 
are omitted. 
 

Example 1: Consider a bi-affine IFS F = {
; f1, f2, f3, f4}, where the four functions are 
determined by the images of the four vertices of 
 as shown in Figure 9. Each of the four 
images fi(
), i = 1, 2, 3, 4, of the square contains exactly one vertex of 
. The attractor of 
F is 
 itself. For ‘most’ choices of the centre and side points, F satisfies the conditions 
of Theorem 3 and hence F is a contractive IFS. Why this simple example should be of 
interest is the subject of the next two sections. 
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Figure 9 This IFS consists of four bi-affine functions (see online version for colours) 

 

Notes: Points labelled with lower case letters are the images of points labelled with upper 
case letters. The attractor is the unit square. 

4 Fractal homeomorphism 

In the case of a contractive IFS, it is possible to assign to each point of the attractor an 
‘address’. Given two IFSs F and G with respective attractors AF and AG, a fractal 
homeomorphism is basically a homeomorphism h : AF → AG that sends a point in AF to 
the point in AG with the same address. To make this notion precise, let F = (X; f1, f2, ..., 

fN) be a contractive IFS on a complete metric space X with attractor A. Let  

Ω = {1, 2, . . ., N}∞ denote the set of infinite strings using symbols 1, 2, . . ., N, and for  
σ ∈ Ω, let σ|k denote the string consisting of the first k symbols in σ. Moreover, if  
σ = i0 i1, i2 , then we use the notation 

0 1| : .
n ni i if f f fσ = D D"D  

Now define a map π : Ω → A, called the coding map, by 

|( ) : lim ( ).
kk

f xσπ σ
→∞

=  

It is well known (Atkins et al., 2010; Hutchinson, 1981) that the limit above exists and is 
independent of x ∈ X. Moreover π is continuous, onto, and satisfies the following 

commuting diagram for each n = 1, 2, . . ., N. 
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n

n

s

f

π π
→

↓ ↓
→X X

Ω Ω
 (7) 

The symbol sn : Ω → Ω denotes the inverse shift map defined by sn(σ) = nσ. A section of 
the coding map π is a function τ : Ω → A such that π  τ is the identity. A section selects, 
for each x ∈ A, a single address in Ω from the ones that come from the coding map. Call 
the set Ωτ := τ(A) the address space of the section τ. Let S denote the shift operator on Ω, 
i.e., S(nσ) = σ for any n ∈ {1, 2, . . ., N} and any σ ∈ Ω. A subset W ⊂ Ω will be called 
shift invariant if σ ∈ W implies that S(σ) ∈ W . If Ωτ is shift invariant, then τ is called a 
shift invariant section. The following example demonstrates the naturalness of shift 
invariant sections. 

Example 2: Consider the IFS F = (R; f0, f1) where 0
1( )
2

f x x=  and 1
1 1( ) .
2 2

f x x= +  The 

attractor is the interval [0, 1]. An address of a point x is a binary representation of x. In 

choosing a section τ one must decide, for example, whether to take 1 .01
4

τ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 or 

1 .00111 .
4

τ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

"  If the section τ is shift invariant, this would imply, for example, that if 

1 .00111 .
4

τ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

"  then 1 .0111 ,
2

τ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

"  not 1 .100 .
2

τ ⎛ ⎞ =⎜ ⎟
⎝ ⎠

"  Call an IFS injective if 

each function of the IFS is injective. 

Lemma 3: With notation as above, a section τ of an injective IFS is shift invariant if and 
only if, for any x ∈ A, if τ(x)|1 = n, then 1( )( ) ( )( ).nS x f xτ τ −=D D  

Proof: Given the right hand statement above, we will prove that τ is shift invariant. 
Assume that nσ ∈ Ωτ. Then there is an x ∈ A such that τ(x) = nσ, and hence 

1 1( )( ) ( )( ) ( )( )).n nS x f x f xσ τ τ τ− −= = =D D  Thus σ ∈ Ωτ. 
Conversely, assume that τ is shift invariant. Assume that x ∈ A and τ(x) = nσ for some 

σ ∈ Ω. By shift invariance, there is a y ∈ A such that τ(y) = σ. Now 

( )|( )( ) ( ) lim ( )

( ( ( ))) ( ).
kn k

n n

x x n f f A

f y f y

σπ τ π σ

π τ
→∞

= = =

= =

D
 

Therefore 1( )ny f x−=  and 

( ) ( )1 1( )( ) ( ) ( ) ( ) ( ).n nS x S n y r x f xτ σ σ τ τ τ− −= = = = =D D  
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Theorem 4 below states that every shift invariant section of an injective IFS can be 
obtained from a mask. For an IFS F with attractor A, a mask is a partition M = {Mi, 1 ≤ i 
≤ N} of A such that Mi ⊆ fi(A) for all fi ∈ F. Given an injective IFS F and a mask M, 

consider the function T : A → A defined by 1( ) : ( )iT x f x−=  when x ∈ Mi . The itinerary 
τM(x) of a point x ∈ A is the string i0 i1 i2  ∈ Ω, where ik is the unique integer 1 ≤ ik ≤ N 
such that 

( ) .
k

k
iT x M∈  

Theorem 4: Let F be a contractive and injective IFS. 

1 if M is a mask, then τM is a shift invariant section of π 

2 if τ is a shift invariant section of π, then τ = τM for some mask M. 

Proof: To show that τM is a section, let x ∈ A. Then ( )|( )( ) lim ( ).
M kM k xx f Aτπ τ →∞=D  It 

follows immediately from the definition of τM that 
1( )| ( )|( ) ( )

M k k M kx i xx f M f A
+

∈ ⊆τ τ  for all 

k. Hence (π  τM)(x) = x. Concerning the shift invariance, it follows from the definition of 
T that the following diagram commutes. 

T

M M

S

A A
τ τ

→
↓ ↓

→Ω Ω
 (8) 

If ,
Mτ

σ ∈Ω  then there is an x ∈ A such that σ = τM(x) and, from the diagram, 
1( )( ) ( )( ) ( ( ))

MM M M nS x T x f x ττ τ τ −= = ∈D D Ω  for some n ∈ {1, 2, . . ., N}. 

Concerning the second statement, define a mask M = {Mi, 1 ≤ i ≤ N} as follows: 

 {  : ( )      for some }.iM x x i= = ∈τ σ σ Ω  

It is sufficient to show that Mi ⊆ fi(A), and that τM(x) = τ(x) for all x ∈ A. If x ∈ Mi, then 
τ(x) = iσ for some σ ∈ Ω and |( )( ) (lim ( )) ( ).

ki k ix x f f A f Aσπ τ →∞= = ∈D  

To show that τM(x) = τ(x), let τ(x) = j0 j1 j2  and τM(x) = k0 k1 k2 . That j0 = k0 
follows from the definitions. By induction, assume that ji = ki, for i = 0, 1, . . ., m − 1. 
Applying Lemma 3 for m times yields 

( ) ) ( )1 1 0

1 1 1
1 1

,( ) ( )
m

m
m j j jj x f f f xS −

− − −= = D"D DD ττ  

where the ji’s are determined by the recursive formula ( )1 1 0

1 1 1
1( ) | .

rj j j rf f f x j
−

− − − =D"D Dτ  

By the definition of the mask, 
1 1 0

1 1 1( ( )) .
m mj j k jf f f x Mτ
−

− − − ∈D"D D  But by the definition of 

the itinerary, the ki’s are determined by the recursive formula 

( )1 1 0

1 1 1( )
rr kk k k Mf f f xτ

−

− − − ∈D"D D  
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for r = 0, 1, 2, . . ., m. But, since ki = ji for i = 0, 1, . . ., m − 1, we have 

1 1 0

1 1 1( ( )) .
m mj j j kf f f x Mτ
−

− − − ∈D"D D  Therefore km = jm. 
 

To define fractal homeomorphism, consider two contractive IFSs F = (X, f1, f2, ..., fN) and 

G = (X, g1, g2, ..., gN) with the same number N of functions on a complete metric space X. 

Let AF and AG be the attractors and πF and πG the coding maps of F and G, respectively. A 
homeomorphism h : AF → AG is called a fractal homeomorphism if there exist shift 
invariant sections τF and τG such that the following diagram commutes: 

F Gh

F G

A A

τ τ

→

2 0
Ω

 (9) 

i.e., the homeomorphism h takes each point x ∈ AF with address σ = τF(x) to the point  
y ∈ AG with the same address σ = τG(y). Theorem 5 below states that the fractal 
homeomorphisms between attractors AF and AG are exactly mappings of the form  
πG  τF or πF  τG for some shift invariant sections τF, τG. 

Theorem 5: Let F and G be contractive IFSs. With notation as above: 

1 If h : AF → AG is a fractal homeomorphism with corresponding sections τF and τG, 
then .

F Gτ τ=Ω Ω  Moreover h = πG  τF and h–1 = πF  τG. 

2 If τF is a shift invariant section for F and h := πG  τF is a homeomorphism, then h is 
a fractal homeomorphism. 

Proof: Concerning statement 1, since h is a bijection, the commuting diagram 9 implies 
that the images of τF and τG are equal, i.e., .

F Gτ τ=Ω Ω  Now τF = τG  h from the diagram 

implies πG  τF = (πG  τG)  h = h. The formula involving h−1 is likewise proved. 
Concerning statement 2, the section τF is a bijection from AF onto .

Fτ
Ω  Since h is 

also a bijection, the equality h = πG  τF implies that | ,
FGπ Ω  the restriction of πG to ΩF, is 

a bijection onto AG. If τG is the inverse of | ,
FGπ Ω  then τF and τG satisfy the commuting 

diagram 9. That τF is shift invariant means that ,
G Fτ τ=Ω Ω  i.e., τG is shift invariant. 
 

5 Image from a fractal homeomorphism 

This section concerns images on the unit square 
. Define an image as a function  
c : 
 → C, where C denotes the colour palate, for example C = {0, 1, 2, . . ., 255}3. If h is 
any homeomorphism from 
 onto 
, define the transformed image h(c) : 
 → C by 

( ) :    .h c c h= D  
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We are interested in the case where h is a fractal homeomorphism. The remainder of this 
section concerns fractal homeomorphism based on bi-affine IFSs with four functions as 
described in Example 1. 

Consider Example 1 depicted in Figure 9. For the bi-affine IFS F = {
; f1, f2, f3, f4}, 
we will construct a section τF that is referred to in Barnsley (2009a) as the top section. 
Consider the mask MF = {M1, M2, M3, M4} defined recursively by 

1

1

( ) \ ( )
i

i i j
j

M f f
−

=

= ∪  

for i = 1, 2, 3, 4. Explicitly, M1 is the closed quadrilateral ATOQ, M2 is the open 
quadrilateral OQBR together with the segments (Q, B], [B, R], [R, O), M3 is the open 
quadrilateral ORCS together with the segments (R, C], [C, S], [S, O), and M4 is the open 
quadrilateral OSDT together with the segments (S, D], [D, T). The section τF 
corresponding to the mask MF is given by τ(x) = max π−1 (x), where the maximum is with 
respect to the lexicographic order on Ω. 

Now consider a second bi-affine IFS G = {
; g1, g2, g3, g4} of the same type with 
points O′, Q′, R′, S′, T′ replacing O, Q, R, S, T, and with mask MG defined exactly as it 
was for MF. The masks MF and MG induce shift invariant sections τF and τG, respectively, 
as verified by Theorem 4. Theorem 6 below states that πG  τF and πF ◦ τG are continuous 
and hence, by Theorem 5, fractal homeomorphisms. 

To prove Theorem 6, the following lemma will be used. The proof is routine and will 
be omitted. All partitions P will be of the unit square 
 into regions whose closures are 
topological polygons. The dual graph of such a partition is the graph ΓP whose points are 
the regions and where two vertices are joined if and only if the corresponding regions 
share a side. A partition P is nested in partition Q if each region in P is contained in 
some region of Q. Assume that partition P1 is nested in partition P2 and Q1 is nested in 
Q2, and that there are graph isomorphisms 

1 11 :    Φ Γ → ΓP Q  and 
2 22 :    .Φ Γ → ΓP Q  

Call Φ1 and Φ2 compatible if whenever P1 ∈ P1 and P2 ∈ P3 with P1 ⊆ P2 we have  
Φ1 (P1) ⊂ Φ2 (P2). The mesh |P| of a partition P is the maximum diameter of the regions. 
If limn→∞ |Pn| = 0, then, for any x ∈ 
, there is a unique nested sequence {Pn} of regions 

Pn ∈Pn such that .nn
x P

∈
=∩ N

 

Lemma 4: Let Pn and Qn, n = 0, 1, 2, . . ., be two nested sequences of partitions of the 
unit square 
 with limn→∞| Pn| = limn→∞| Qn| = 0. Assume that there are corresponding 
sequences of compatible graph isomorphisms :    .

nn nG GΦ →P Q  The map h : 
 → 
 

defined as follows is a homeomorphism. For nn
x P

∈
= ∈∩ N

 with Pn ∈ Pn, and define 

( ) ( ).n nn
h x P

∈
= Φ∩ N
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Figure 10 The dual graph of the partition 2
FP  (see online version for colours) 

 

Theorem 6: For the two bi-affine IFSs F = {
, f1, f2, f3, f4} and  

G = {
, g1, g2, g3, g4} defined above, the map h = πG  τF is a homeomorphism. 

Proof: For each n ≥ 0, let Ωn denote the set of strings of length n using symbols  
{1, 2, 3, 4}. For the IFS F, define a partition { : }= ∈n

F nPP σ σ Ω  of 
 recursively by 

taking 0
F F=P �P  and 

( ){ }1 : ,   1 4 .n
jF j nPP P f j+ = = ∈ ≤ ≤∩σ σ σ σ ΩP  

A straightforward induction shows that { }n
FM  is a nested sequence of partitions of 
. 

The dual graph n
FΓ  of n

FP  is the grid graph shown in Figure 10 for n = 2. This 
construction of a nested partition can be repeated for the IFS G. Since the obvious graph 

isomorphisms between n
FΓ  and n

GΓ  are compatible with the nested partitions, Lemma 4 
implies that h is a homeomorphism. 
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