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Abstract Iterated function systems have been at the heart of fractal geometry almost
from its origins. The purpose of this expository article is to discuss new research
trends that are at the core of the theory of iterated function systems (IFSs). The focus
is on geometrically simple systems with finitely many maps, such as affine, projective
and Möbius IFSs. There is an emphasis on topological and dynamical systems aspects.
Particular topics include the role of contractive functions on the existence of an attractor
(of an IFS), chaos game orbits for approximating an attractor, a phase transition to an
attractor depending on the joint spectral radius, the classification of attractors according
to fibres and according to overlap, the kneading invariant of an attractor, the Mandelbrot
set of a family of IFSs, fractal transformations between pairs of attractors, tilings by
copies of an attractor, a generalization of analytic continuation to fractal functions,
and attractor–repeller pairs and the Conley “landscape picture” for an IFS.
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1 Introduction

Metric spaces such as Euclidean space, the sphere, and projective space possess rich
families of simple geometrical transformations f : X → X . Examples are affine
transformations of Euclidean space, Möbius and quadratic conformal mappings on
the sphere, and projective transformations on projective space. The space and the
mappings are simple to describe explicitly, and they are smooth.

In this review the basic object, denoted {X; f1, f2, . . . fN } and called an iterated
function system (IFS), is a complete metric space X together with a finite set of simple
transformations on X . Let H be the collection of nonempty compact subsets of X .
Define F : H → H by F(S) = ∪ fn(S) for all S ∈ H . Under fairly general conditions,
the map F has one or more attractors, an attractor being an attractive fixed-point of
F . Although X and the functions fn may be smooth, an attractor can be geometrically
complicated and rough; that is, it may have features which are non-differentiable, or
have a non-integer Hausdorff–Besicovitch dimension, or have a dense set of singu-
larities. Attractors and transformations between them comprise the principal objects
of study in deterministic fractal geometry. They can be arcs of graphs of wavelets,
Julia sets, Sierpinski triangles, or geometrical models for intricate biological struc-
tures such as leaf veins. Many textbooks use pictures of such objects to illustrate the
idea of a fractal; Fig. 1 illustrates a few familiar IFS fractals, and also some newer
fractal objects associated with simple geometrical IFSs.

Fig. 1 Fractal objects associated with IFSs on R
2. The first column illustrates some familiar attractors

of affine IFSs; the second column illustrates attractors of bi-affine IFSs; the top two members of the third
column are attractors of projective IFSs; the bottom right picture illustrates the result of applying a fractal
homeomorphism, constructed using two affine IFSs, to a regular tiling by equilateral triangles
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Following the publication in 1983 of Benoit Mandelbrot’s book The Fractal Geom-
etry of Nature [88], there has been a steadily increasing interest in the use of non-
differentiable structures to model diverse natural objects and processes. In [20] H.
Furstenberg observes that fractals have fundamentally changed the way that geome-
ters look at space. For some, there has been a shift in viewpoint, away from the
study of smooth structures such as differentiable manifolds to the study of rough
non-differentiable objects such as fractal attractors of smooth dynamical systems. The
rough objects are described in terms of the smooth systems that generate them. A
key example is an attractor described in terms of the IFS that generates it. Questions
regarding the topology (connectedness for example), geometry (Hausdorff dimen-
sion for example), invariant measures and other properties of the fractal objects are
investigated, to reveal their relationships to the smooth objects that generate them.

Using these relationships, fractal objects can be used to model or approximate rough
real-world data, from stock-market traces to turbulent wakes and cloud boundaries. In
physics, for example, fractal geometry has played a role in mapping the seabed and
in modelling the effect of the rough surfaces of small particles on heat absorption by
the atmosphere [42]. In engineering, fractal modelling has been successfully applied
to image compression [14]. In multimedia, fractal modelling can be used for real-time
image synthesis [97]. There are many more such examples, see [20].

Some fractal objects are self-referential. A self-referential object A is a set or mea-
sure that can be defined in terms of a finite collection of geometrical transformations
applied to A. For example, an attractor A of F : H → H is self-referential since
A = ∪ fn(A). According to a definition by Mandelbrot [87, p. 15], a fractal is a set for
which the Hausdorff–Besicovitch dimension strictly exceeds the topological dimen-
sion. Note, however, that the attractor of an IFS may not have this property and may,
in fact, be a classical geometric object such as a line segment or polygon.

Although fractals receive considerable current attention, they are a newcomer to the
history of geometry and to the task of describing physical objects. Fractal geometry is
an area of mathematics that is under construction. In his much cited 1981 paper [65],
John Hutchinson formulated the concept of a contractive iterated function system,
although not with that name, to unify and make rigorous, using geometric measure
theory, some of the key ideas in Mandelbrot’s book [87]. Related precursors to the
concept of an attractor of a contractive system can be found, for example, in the work
of Nadler [94] and Williams [125], and ideas concerning associated invariant measures
can be found in [52,99].

This paper is a survey of some recent trends in the subject of iterated function
systems. The focus is two-fold. First, to emphasize new structural properties of affine,
projective, analytic, and even more general non-conformal IFSs, adding to older pub-
lications concentrating on similitude and conformal IFSs. Second, to concentrate on
the core of the subject—the role of contractivity on the existence of an attractor,
addressing the points of an attractor, transformations between attractors, dynamical
properties of an IFS, and tilings by copies of an attractor. Although these notions are
at the historical foundation of the subject, new and exciting concepts, such as phase
transition and fractal continuation, have recently come to light.

Section 2 provides definitions and notation associated with an IFS and its attractors.
Examples of similitude, affine, projective and Möbius IFSs are given. Some concepts,
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such as an attractor–repeller pair, are introduced informally in this section, but are
defined formally in later sections. The definition of an attractor of an IFS that is used
in this review is in keeping with recent work in the area, and is a generalization of the
concept for contractive systems.

In Sect. 3 the notion of a contractive IFS F = {X; f1, f2, , fN } is defined, followed
by Hutchinson’s theorem stating that a contractive IFS has a unique attractor. This
theorem can be viewed as a generalization of Banach’s contraction mapping theorem,
generalizing from the existence of an attractive fixed point of a single function to the
existence of an attractor of a finite set of functions. It is known, under quite general
conditions, that if a transformation on a metrizable space possesses a unique fixed point,
then there exists a metric with respect to which the transformation is contractive. When
does an analogous situation hold for an IFS with a unique attractor? Recent work has
shown that contractivity is a necessary condition for the existence of an attractor for
some basic types of IFSs, such as affine, projective and Möbius IFSs.

Section 4 contains recent advances concerning the applicability of the chaos game,
one of two main algorithms for drawing an accurate approximation to an attractor of
an IFS. The two approaches are the deterministic algorithm (illustrated in Fig. 2) and
the more efficient chaos game algorithm [19]. It has recently been proved that the
chaos game algorithm converges to the attractor under general conditions.

The joint spectral radius ρ(F) of the linear parts of an affine IFS F plays a crucial
role in determining whether or not F possesses an attractor. This role is explained in
Sect. 5. Considering ρ(F) as a parameter, for linear IFSs there is a dramatic phase
transition at the precise value of ρ(F) at which the IFS changes from not having
an attractor to having a trivial attractor. The fractal figure that emerges at this phase
transition is the main subject of Sect. 5.

For an IFS consisting of N functions, strings in the alphabet {1, 2, . . . , N } can be
associated with points in an attractor of the IFS. This leads to the topic of addresses and
coordinate and coding maps, which are the subject of Sect. 6. Mentioned in Sect. 6.1
is Kieninger’s classification of attractors according to their fibres and Kameyama’s
fundamental question: When does the existence of a coding map ensure the existence
of a contractive metric? In Sect. 6.2 we define the recently introduced notion of a section
of a coordinate map, whereby each point on an attractor is assigned a unique address.
Sections of coordinate maps play a key role in the construction of transformations
between attractors, which is the subject of Sect. 9.

In Sect. 7, attractors of IFSs are classified according to how the images of the
attractor, under the functions of the IFS, overlap. This leads to the notion of the
kneading invariant and what it implies regarding the topology of an attractor.

The subject of Sect. 8 is the Mandelbrot set of a certain affine family Fλ of IFSs,
an analog to the classical Mandelbrot set for z �→ z2 + λ. The Mandelbrot set is the
set of those λ ∈ C for which Fλ possesses a connected attractor.

While properties of classical geometrical transformations (for example affine, con-
formal, projective) are well known, much less is known about their rough counterparts
(for example affine, conformal, and projective fractal transformations). Transforma-
tion between fractals is discussed in Sect. 9.

Tilings of the plane, and more generally Euclidean space, have been constructed
from attractors of an IFS since the 1980s. Section 10 provides a new and unified
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Fig. 2 This figure illustrates iterates of a Hutchinson operator, in two cases. In the first case the IFS
comprises two similitudes, as in Eq. (2.1); the first three columns show successive iterates, applied to the
rectangular set at top left, converging towards a discretized version of the twindragon fractal, at the bottom
of the third column. In the second case the IFS comprises two affine maps that are not similitudes. Iterates
of the associated Hutchinson operator, applied to a leaf-like set, are illustrated in the fourth, fifth and sixth
columns

approach to such tiling—generating both the classical self-similar IFS tilings and new
tilings.

Fractal functions, introduced in the form considered here in 1986, have applications
ranging from image compression to modeling brain waves. Fractal continuation of such
functions, an analog to classical analytic continuation, is the subject of Sect. 11.

Based on the work of Conley on the dynamics of a single function and on the work
of McGehee and Wiandt on iterated closed relations, a generalization of the notion
of an attractor of an IFS is given in Sect. 12. This leads to the existence of attractor–
repeller pairs, a characterization of the set of chain recurrent points of an IFS in terms
of such pairs, and a “landscape picture” for an IFS.

This paper is not intended to be exhaustive. Many fascinating topics are omitted,
and there is likely a bias towards the interests of the authors. In particular, “random
fractals”, “statistically self-similar measures”, and related probabilistic entities are
not discussed; our interest is in deterministic fractal geometry, where the information
needed to describe the fractal object is low, and the geometrical complexity may appear
to be high. Another topic not discussed is V -variable fractals and superfractals [16,26–
28]. These entities serve several purposes; they provide a bridge between deterministic
fractal geometry and random fractal geometry, and they enable the construction of rich
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simple geometrical families of fractal objects. Fractal dimensions are only touched on
in this survey because there is already an ample literature of the subject.

2 IFSs and their attractors, basins, and dual repellers

In this section we define and provide examples of some fundamental notions. In so
doing we introduce the concept of an attractor–repeller pair that is explained in more
detail in Sect. 12, which deals with Conley’s “landscape picture” for an IFS.

Definition 2.1 An iterated function system (IFS) is a topological space X together
with a finite set of continuous functions fn : X → X, n = 1, 2, . . . , N .

We use the notation

F = {X; f1, f2, , fN }

to denote an IFS. Other more general definitions of an IFS are used in the literature;
for example, the collection of functions in the IFS may be infinite, see for example
[71], or the functions may themselves be set-valued [76,79]. However, throughout
this review, except where otherwise stated, N is a finite positive integer and X is a
complete metric space. This fits with our philosophy that the system is geometrically
simple. By slight abuse of terminology, we use the same symbol F for the IFS and for
the set of functions in the IFS.

Let H = H(X) denote the collection of nonempty compact subsets of X and define
the Hutchinson operator F : H → H by

F(S) =
⋃

f ∈F
f (S)

for all S ∈ H . By further slight abuse of notation we also treat F as a map F : 2X →
2X , where 2X denotes the collection of all subsets of X . For S ⊂ X , define F0(S) = S
and let Fk(S) denote the k-fold composition of F applied to S, namely, the union of
fi1 ◦ fi2 ◦ · · · ◦ fik (S) over all finite words i1i2 · · · ik of length k.

Let d := dX be the metric on X , and let dH := dH(X) be the corresponding
Hausdorff metric. The Hausdorff metric is defined on the space H(X) by

dH (S, T ) = min{δ ≥ 0 : S ⊂ B(T, δ), T ⊂ B(S, δ)}

for all S, T ∈ H , where

B(S, δ) = {x ∈ X : dX (x, s) ≤ δ for some s ∈ S}.

Throughout we assume that the topology on H is the one induced by dH . Key facts,
discussed in [63], are that (H, dH ) is a complete metric space because (X, d) is
complete, and that if (X, d) is compact then (H, dH ) is compact.
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Definition 2.2 An attractor of the IFS F is a set A ∈ H(X) such that

(1) F(A) = A and
(2) there is an open set U ⊂ X such that A ⊂ U and limk→∞ Fk(S) = A, for all

S ∈ H with S ⊂ U , where the limit is with respect to the Hausdorff metric on H .

We remark that, since X is a complete metric space, we have F : H(A)→ H(A) is
continuous (w.r.t. the Hausdorff metric) see [30]. So (1) in Definition 2.2 is superfluous.
But we include (1) because it is key in more general settings, such as the one considered
in Sect. 12.

Definition 2.3 The basin B of an attractor A of the IFS F is the largest open set U
such that (2) in Definition 2.2 is true.

Definition 2.4 The dual repeller of an attractor A of the IFS F is the set A∗ := X\B
where B is the basin of A.

Examples of attractors and their dual repellers appear below. The notion of a dual
repeller arises as follows.

Definition 2.5 The IFS F = {X; f1, f2, . . . , fN } is said to be invertible when fn :
X→X is a homeomorphism for all n. If F is invertible, then the IFS

F−1 : = {X; f −1
1 , f −1

2 , . . . , f −1
N }

is called the inverse IFS of F .

Under reasonable conditions described in Sect. 12, an attractor of F−1 is a dual
repeller of an attractor of F .

If X = R
M and the functions in F are affine functions of the form f (x) = Lx +a,

where L is an M × M matrix and a ∈ R
M , then F is called an affine IFS. If the

functions of F are similitudes (i.e. affine with L = s Q where Q is orthogonal and
s ∈ (0, 1),) then F is called a similitude IFS.

An example of a similitude IFS is

F =
{

R
2; f1(x, y) =

(
x − y

2
,

x + y

2

)
, f2(x, y) =

(
x − y

2
+ 1,

x + y

2

)}
.

(2.1)

The IFS (2.1) has a unique attractor because it is contractive; see Theorem 3.2. This
attractor A, approximated by the bottom picture of the third column of Fig. 2, is called
the twindragon. The basin of A is B = R

2, and the dual repeller is the empty set,
A∗ = ∅. The first three columns of Fig. 2 also demonstrates condition (2) in Definition
2.2 because they show the successive iterates Fk(S) for k = 1, 2, . . . , 12, where S
is the rectangle at the upper left. If, in this example, we change the space X to be
R

2 ∪ {∞}, the one point compactification of R
2, where∞ is “the point at infinity”,

and we define fn(∞) = ∞, then the basin is no longer the whole space and the dual
repeller is A∗ = {∞}. Remarks analogous to those mentioned in this paragraph hold,
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in fact, for all similitude IFSs. Note that S := R
2 ∪ {∞} can be represented as a

sphere (with infinity at say the north pole) and R
2 is embedded in S by stereographic

projection. Then R
2 and S are both metric spaces, R

2 with the Euclidean metric and S
with the spherical metric, and the two metrics give the same topology when restricted
to R

2. Both the R
2 case and R

2 ∪ {∞} case, of the IFS (2.1), are invertible. In the R
2

case the affine IFS F−1 does not possess an attractor. In the R
2 ∪ {∞} case the IFS

F−1 has a unique attractor A∗ = {∞}, the dual repeller of the attractor A of F .
If X = RP

n , real n-dimensional projective space, and the functions in the IFS are
projective functions of the form f (x) = Lx , where L is an (n + 1)× (n + 1) matrix
and x is given by homogeneous coordinates, then F is called a projective IFS. An
example of a projective IFS is

F =
⎧
⎨

⎩RP
2; f1(x)=

⎛

⎝
41 −19 19
−19 41 19

19 19 41

⎞

⎠ x, f2(x)=
⎛

⎝
−10 −1 19
−10 21 1

10 10 10

⎞

⎠ x

⎫
⎬

⎭ . (2.2)

This IFS (2.2) possesses a unique attractor A, illustrated in Fig. 3. This attractor, which
is the union of a non-denumerable set of lines, is illustrated using a disk, with antipodal
points identified, to represent RP

2. This image was computed using the chaos game
algorithm, discussed in Sect. 4. The corresponding dual repeller A∗ is also shown: it
is a spiral Cantor set in green, disjoint from the attractor. The basin of A is RP

2\A∗.
The IFS (2.2) is invertible and its inverse F−1 possesses a unique attractor, equal to
the dual repeller of F , the spiral Cantor set to which we have just referred. The dual
repeller of F−1 is the attractor A of F ; and the basin of the attractor A∗ of F−1 is
RP

2\A.

Fig. 3 The image on the left illustrates the attractor, in red, orange and yellow, and the dual repeller, in
green, of the projective IFS (2.2), using a disk, with antipodal points identified, to represent the projective
plane (black). The image on the right illustrates a zoom on the attractor. The colours help to distinguish
lines in the attractor (color figure online)
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Fig. 4 The unique attractor
(red) and dual repeller (black) of
a certain Möbius IFS consisting
of two transformations acting on
the Riemann sphere (color figure
online)

If X = Ĉ = C ∪ {∞}, the extended complex plane, and the functions are Möbius
functions of the form f (z) = az+b

cd+d , where ad − bc = 0 and a, b, c, d are complex
numbers, then F is called a Möbius IFS. Möbius functions may equivalently be
considered to act on the Riemann sphere or the complex projective line. The unique
attractor A (red) and the dual repeller A∗ (black) for a certain Möbius IFS (N = 2) on
the Riemann sphere are illustrated in Fig. 4. The basin of the attractor is the complement
of the dual repeller. In this case the dual repeller is the attractor of the inverse IFS, and
the attractor is the dual repeller of the inverse IFS. For further details on such Möbius
examples see [124].

3 Contractive IFSs

When does an IFS {X; f1, f2, . . . , fN } possess an attractor? We begin with the obser-
vation that if an IFS is contractive (defined below), then it possesses a unique attractor
A, with the basin B = X , and dual repeller A∗ = ∅. Then we make the following
points:

(1) Contractivity is not integral to the existence of an attractor.
(2) Contractivity is integral to the existence of an attractor for affine, Möbius, and

many projective IFSs.

Definition 3.1 A function f : {X} → {X} is a contraction with respect to a metric
d if there exists λ ∈ [0, 1) such that

d( f (x), f (y)) ≤ λ d(x, y)

for all x, y ∈ X . An IFS F on a metric space (X, d) is contractive if there is a metric d̂,
inducing the same topology on X as the metric d, with respect to which the functions
in F are contractions.
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The following theorem is a generalization of the Banach contraction mapping the-
orem, from one function to finitely many functions.

Theorem 3.2 (Hutchinson) If F is a contractive IFS on a nonempty complete metric
space (X, d), then F has a unique attractor A and the basin of A is X.

Remark 1 There are various versions of a converse to Banach’s fixed point theorem
in the literature, for example [44,55,67,80]. However, the converse to Hutchinson’s
theorem is false. There exist non-contractive IFSs that have a unique attractor; for
example, the IFS F in (2.2) has a unique attractor A, but there is no metric on any
complete neighborhood Y of A, generating the same topology as that of RP

2 restricted
to Y , such that F restricted to Y is contractive.

Theorem 3.4 below addresses the role of contractivity, not only in the affine case,
but also in the projective and Möbius cases. For a proof of the theorem, see [4] for the
affine case, [34] for the projective case, and [124] for the Möbius case. The proof of the
uniqueness result, Theorem 3.3, can also be found there. In the projective case, recall
that a hyperplane in n-dimensional real projective space is an (n − 1)-dimensional
subspace. A set S ⊂ RP

n is said to avoid a hyperplane H if S ∩ H = ∅. In the
Möbius case, recall that the extended complex plane Ĉ is essentially equivalent to the
Riemann sphere via stereographic projection. For the Möbius case, the metric is the
round metric on the sphere. Throughout, if S ⊂ X then S and S◦ denote, respectively,
the closure and the interior of S.

Theorem 3.3 An affine, Möbius, or projective IFS can have at most one attractor.

Theorem 3.4 (1) An affine IFS F = {Rn; f1, f2, . . . , fN } has an attractor if and
only F is contractive.

(2) A Möbius IFS F = { Ĉ; f1, f2, . . . , fN } has an attractor A = Ĉ if and only there
is a nonempty open set U such that U = Ĉ and F restricted to U is contractive.

(3) A projective IFS F = {RP
n; f1, f2, . . . , fN } has an attractor that avoids some

hyperplane if and only if there is a nonempty open set U such that F is contractive
on U.

The attractor of the IFS (2.2) is a union of hyperplanes (lines). Since the intersection
of two lines in the projective plane is nonempty, the attractor avoids no hyperplane,
and, by Remark 1, this shows that the condition in part (3) of Theorem 3.4 cannot be
removed.

An interesting aspect of Theorem 3.4, that also makes it somewhat difficult to
prove, is that, in general, the IFS is not necessarily contractive with respect to the
standard metric, even locally. In the affine case on R

n , an IFS with an attractor is
always contractive with respect to a Minkowski metric, i.e. a metric of the form

dC (x, y) = ‖x − y‖C
where

‖x‖C = inf {λ ≥ 0 : x ∈ λ C}
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and where C is a centrally symmetric convex body. In the projective case, an IFS with
an attractor is always contractive with respect to a (modified) Hilbert metric. For a
convex body C ⊂ RP

n , the Hilbert metric dC on the interior Co is defined in terms
of the cross ratio as

dC (x, y) := log R(a, b, x, y) = log

( |ay| |bx |
|ax | |by|

)
,

where a and b are the points where the line joining x and y intersects the boundary of
C . In the Möbius case, an IFS with an attractor is always contractive on some open
set U with respect to the newly discovered metric on Ĉ:

dU (x, y) = max
z /∈U

log
|z − x |
|z − y| +max

z /∈U
log
|z − y|
|z − x | .

In each case, affine, projective, and Möbius, an IFS with an attractor is also con-
tractive in a topological sense. This give rise to Theorem 3.6 below, a companion to
Theorem 3.4. The proof appears in the same references cited for Theorem 3.4.

Definition 3.5 An IFS F is said to be topologically contractive on a compact set
K ⊂ X if F(K ) ⊂ K ◦.

Theorem 3.6 (1) An affine IFS F has a attractor if and only F is topologically
contractive on some convex body.

(2) A Möbius IFS F on Ĉ has an attractor A = Ĉ if and only if F is topologically
contractive on some nonempty proper compact subset of Ĉ.

(3) A projective IFS F has an attractor that avoids some hyperplane if and only if F
is topologically contractive on the union of a nonempty finite set of disjoint convex
bodies.

4 Chaos game

Although condition (2) in Definition 2.2 can be used as the basis of an algorithm to
draw arbitrarily accurate approximations to an attractor of an IFS, such a method is
inefficient because the number of computations grows exponentially with k. Also, it
is necessary to have, a priori, an initial set S that lies in the basin of the attractor,
to initiate the iterative construction. More efficient is the chaos game algorithm, in
which the attractor is approximated by a chaos game orbit. This has the benefits of low
memory usage and more freedom in the choice of an initial set of the form S = {x0}.

Throughout this paper, the following notation is used. Let [N ] := {1, 2, . . . , N },
and let � := [N ]∞ denote the set of infinite strings on the alphabet [N ].
Definition 4.1 Given an IFS F = {X; f1, f2, . . . , fN } and an ω ∈ �, the chaos
game orbit of a point x0 ∈X with respect to ω is the sequence (xn)∞n=0, where

xn := fωn (xn−1),
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for n = 1, 2, . . . The chaos game orbit (xn)∞n=0 is called a random orbit of x0 if
there is p ∈ (0, 1/N ] such that, for each k ∈ {1, 2, . . .}, ωk is selected randomly
from {1, 2, . . . , N } with the probability that ωk = n being greater than or equal
to p, regardless of the preceding outcomes, for all n ∈ {1, 2, . . . , N }. (In terms of
conditional probability, P(ωk = n | x0, ω1, ω2, . . . ωk−1) > p.) We say that a chaos
game orbit (xn)∞n=0 yields A if

A = lim
K→∞{xn : n ≥ K } =

⋂

K≥1

{xn : n ≥ K },

where the limit is with respect to the Hausdorff metric.

An instructive example is provided by the IFS F = {S1; f1, f2} where S1 is a
circle, f1 is an irrational rotation and f2 is the identity. This IFS has unique attractor
A = S1 with basin S1. Let x0 ∈ S1, and compute a chaos game orbit by tossing a coin
at each step. As n gets large the orbit approaches S1 with probability one.

Theorems 4.2 and 4.3 below tell us how chaos game orbits reveal attractors under
very general conditions. It is at first sight surprising that it was successfully used, for
example, to calculate images of attractors of non-contractive IFSs such as the one in
Fig. 7. Indeed, there is no contractivity assumption in either Theorem 4.2 or 4.3. The
proof of Theorem 4.2 appears in [33]. A metric space is proper if every closed ball
is compact. Note that neither Definition 4.1 nor the following theorems say anything
about convergence rates.

Theorem 4.2 Let X be a proper complete metric space and F = {X; f1, f2, . . . , fN }
an IFS with attractor A and basin B. If (xn)∞n=0 is a random orbit of x0 ∈ B under F ,
then with probability one this random orbit yields A.

A deterministic version of Theorem 4.2 appears in [29,31] and is stated as Theorem
4.3. A string σ ∈ � is disjunctive if every finite string is a substring of σ . By a substring
of σ we mean a string of the form σlσl+1 · · · σk for integers 1 ≤ l ≤ k. In fact, if σ is
disjunctive, then every finite string appears as a substring of σ infinitely many times.
For example, the binary Champernowne sequence 0 1 00 01 10 11 000 001 · · · , formed
by concatenating all finite binary strings in lexicographic order, is disjunctive. There
are infinitely many disjunctive sequences if N ≥ 2. Moreover, the set of disjunctive
sequences is large in the sense that its complement in the natural metric space (�, d�)

defined on � is a meager set and even a σ -porous set. The metric space (�, d�)

is defined formally at the beginning of Section 6. A meager set is a set of the first
Baire category; the definition of σ -porous can be found in [93,127] and results using
porosity in fractal geometry in [46,83]. The definition of a strongly-fibred attractor is
given in Sect. 6, following Theorem 6.2.

Theorem 4.3 Let X be a complete metric space and F = {X; f1, f2, . . . , fN } an IFS
with strongly-fibred attractor A and basin B. If x0 ∈ B and (xn)∞n=0 is a chaos game
orbit of x0 with respect to a disjunctive sequence, then this chaos game orbit yields A.

Under certain additional conditions (see [29]), the initial point x0 of the chaos game
orbit is not restricted to lie in the basin of A. There is a set D whose complement is
σ -porous and if x0 ∈ D, then the conclusion of Theorem 4.3 remains true.
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5 Phase transition

Affine IFSs are basic to deterministic fractal geometry, perhaps because the first
approximation to a non-linear map is affine, and because affine transformations, after
similitudes, form a relatively simple group. Here we consider a family of affine IFSs
depending on a parameter. The existence or non-existence of an attractor depends
on the value of the parameter. As pointed out in Sect. 3, affine IFSs behave nicely
in some ways; in particular, an affine IFS F has a unique attractor if and only if F
is contractive. But there is an equivalent necessary and sufficient condition for F to
possess an attractor, a condition involving the positive real parameter ρ(F) called
the joint spectral radius of F . A dramatic geometric transition occurs at the pre-
cise value of ρ(F) where the IFS changes from having an attractor to not having an
attractor.

5.1 Joint spectral radius

The joint spectral radius of a set L = {Li , i ∈ I } of linear maps on R
n was introduced

by Rota and Strang [107], and the generalized spectral radius was introduced by
Daubechies and Lagarias [49]. Berger and Wang [41] proved that the two concepts
coincide for bounded sets of linear maps. A set of linear maps is bounded if there is an
upper bound on their norms. (Note that all norms are equivalent, in the sense that there
are positive constants a,b such that a‖x‖1 ≤ ‖x‖2 ≤ b‖x‖1 for all x ∈ R

n .) The index
set I may be infinite, but it is assumed throughout this section that L is compact (as
a subset of R

n×n). In particular, L compact implies that L is bounded. What follows
is the definition of the joint spectral radius and the generalized spectral radius of L.
Let �k be the set of all words σ1 σ2 · · · σk , of length k, where σi ∈ I, 1 ≤ i ≤ k. For
σ = σ1 σ2 · · · σk ∈ �k , define

Lσ := Lσ1 ◦ Lσ2 ◦ · · · ◦ Lσk .

The generalized spectral radius is a generalization of the spectral radius ρ(L) of a
single linear map L , i.e. the maximum of the moduli of the eigenvalues of L .

Definition 5.1 For any set L of linear maps and any norm, the joint spectral radius
of L is

ρ̂ = ρ̂(L) := lim sup
k→∞

ρ̂
1/k
k where ρ̂k := sup

σ∈�k

‖Lσ‖.

The generalized spectral radius of L is

ρ = ρ(L) := lim sup
k→∞

ρ
1/k
k where ρk := sup

σ∈�k

ρ(Lσ ).

The following are well known properties of the joint and generalized spectral radii.
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(1) The joint spectral radius is independent of the particular norm.
(2) For an IFS consisting of a single linear map L , the generalized spectral radius is

the ordinary spectral radius of L , the maximum of the moduli of the eigenvalues
of L .

(3) For any real α > 0 we have ρ(α L) = α ρ(L) and ρ̂ (α L) = α ρ̂(L).
(4) If L is bounded, then the joint spectral radius equals the generalized spectral

radius.

If F is an affine IFS, infinite or not, the joint spectral radius is defined as the joint
spectral radius of the set of linear parts of the functions in F .

Definition 5.2 A set {Li , i ∈ I } of linear maps is called reducible if these linear
maps have a common nontrivial invariant subspace. The set is irreducible if it is not
reducible. An affine IFS is reducible (irreducible) if the set of linear parts is reducible
(irreducible).

In terms of matrices, a set of linear maps is reducible if and only if there exists
an invertible matrix T such that all Li can be simultaneously put in a block upper-
triangular form:

T−1Li T =
(

Ai ∗
0 Bi

)
,

for all i , with Ai and Bi square, and ∗ is any matrix with suitable dimensions. The
joint spectral radius ρ(F) is equal to max (ρ({Ai }), ρ({Bi })).
Definition 5.3 An IFS, consisting of finitely or infinitely many affine functions, is
compact if the set of (n + 1)× n matrices that represent the functions is compact as
a subset R

(n+1)×n .

The following theorem is proved in [32].

Theorem 5.4 A compact affine IFS F on R
n has an attractor if and only if ρ(F) < 1.

Moreover, if ρ(F) < 1, then the attractor is unique and the basin is R
n; if ρ(F) > 1

and F is irreducible, then there does not exist a nonempty bounded set A such that
F(A) = A.

5.2 Transition

Theorem 5.4 states that ρ(F) = 1 is the transition value between F having and not
having an attractor. This transition is especially dramatic in the case of a linear IFS.
Let F = {Rn ; Li , i ∈ I } be a linear IFS, an IFS all of whose functions are linear.
In this case, if ρ(F) < 1, then F has a unique attractor A = {0}, the origin. We
say, in this case, that the attractor is trivial. If, on the other hand, ρ(F) > 1, then by
Theorem 5.4, the IFS F has no attractor, in fact no invariant set, i.e., no set A such that
F(A) = A. What is surprising is that, at the transition value ρ(F) = 1 between the
trivial invariant set and no invariant set, there is a geometric “blowup”, a non-trivial
invariant set. This is the content of the following theorem [32].
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Fig. 5 An eigenset of Example
5.8 (color figure online)

Fig. 6 An eigenset of Example
5.9 (color figure online)

Theorem 5.5 A compact, irreducible, linear IFS F with ρ(F) = 1 has a compact
invariant set that is centrally symmetric, star-shaped, and full dimensional.

A set S is centrally symmetric if−x ∈ S whenever x ∈ S. A set S is star-shaped if
λ x ∈ S for all x ∈ S and all 0 ≤ λ ≤ 1. And a set S is full-dimensional if the affine
hull of S is R

n . Figures 5 and 6 show two examples of the transition phenomenon at
ρ(F) = 1, transitioning between trivial invariant set and no invariant set. These two
examples are further detailed below.

The theory outlined above can be reformulated as an analog to the eigenvalue
problem in linear algebra.

Definition 5.6 Let F be an IFS and consider the eigen-equation

F(Y ) = λ Y, (5.1)
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where F is the usual Hutchinson operator of F , λ ∈ R, λ > 0, and Y = {0} is
a compact set in Euclidean space. The value λ in Eq. 5.1 above will be called an
eigenvalue of F , and Y a corresponding eigenset.

When F consists of a single linear function L , an eigenvalue-eigenvector pair (λ, x)

of L satisfies the eigen-equation. Even for a single linear function, however, there are
more interesting eigenvalue-eigenset pairs. For example, let L : R2 → R

2 be a linear
map with no nontrivial invariant subspace, equivalently no real eigenvalue. Although
L has no real eigenvalue, L does have an eigen-ellipse, an ellipse E , centered at the
origin, such that L(E) = λ E , for some real λ > 0. Although easy to prove, the
existence of an eigen-ellipse is not universally known.

If Eq. 5.1 is rewritten as

(
1

λ
F

)
Y = Y,

then an eigenset for F is an invariant set of 1
λ

F , and Theorem 5.5 can be formulated
as follows.

Theorem 5.7 A compact, irreducible, linear IFS F has exactly one eigenvalue which
is equal to the joint spectral radius ρ(F) of F . There is a corresponding eigenset that
is centrally symmetric, star-shaped, and full dimensional.

Example 5.8 Fig. 5 shows an eigenset for the IFS F = {R2; L1, L2}, where

L1 =
(

10 10
8 0

)
, L2 =

(
8 0
10 10

)
.

The eigenvalue appears to be 5+√105, the value of the largest eigenvalue of L1. The
part of the set shown in red is, to viewing accuracy, the image of the whole set under
L1. The part of the set shown in blue is, similarly, the image of the whole set under
L2. The coordinate axes are indicated in black.

Example 5.9 Figure 6 shows an eigenset for the IFS F = {R2; L1, L2}, where

L1 =
(

0.02 0
0 1

)
, L2

(
0.0594 −1.98
0.495 0.01547

)
.

The eigenvalue is 1. The coordinate axes are indicated in red.

Theorem 5.7 cannot be extended to affine IFSs. It is true that, for a compact,
irreducible, affine IFS, a real number λ > 0 is an eigenvalue if λ > ρ(F) and is not an
eigenvalue if λ < ρ(F). However, if F is not linear, there are examples where ρ(F)

is an eigenvalue and examples where it is not.
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6 Fibres and addresses

6.1 Coordinate maps and coding maps

This section concerns the assignment of addresses to the points in an attractor of an IFS
F . In the notation of Sect. 4, the set � is called the code space for an IFS F consisting
of N functions. For a string ω ∈ �, denote the nth element in the string by ωn , and
denote by ω|n the string consisting of the first n symbols in ω, i.e., ω|n = ω1ω2, · · ·ωn .
The code space � is a compact metric space with distance function d� defined by

d�(ω, σ ) =
{

0 if ω = σ,

2−k where k is the least positive integer such that ωk = σk .

The space (�, d�) is homeomorphic to the classical Cantor set treated as a subset of
the unit interval with the usual topology.

Let A be an attractor of F on a complete metric space X . To each ω ∈ � we
associate a fibre Aω ⊂ A according to

Aω :=
⋂

k∈N
fω|k(A) ∈ H(A),

where

fω|k := fω1 ◦ fω2 ◦ · · · ◦ fωk .

We have [71, Proposition 4.3.2]

A =
⋃

ω∈�
Aω.

Following Kieninger [71, p.89, Definition 4.2.7], define the coordinate map πF :
�→ H(A) for A (w.r.t. the IFS F) by

πF (ω) = Aω

for all ω ∈ �. The set of addresses of a point x ∈ A is defined to be

π−1
F ({x}) := {ω ∈ � : x ∈ πF (ω)} .

A point x may have many addresses and many points may have the same address.
To describe addresses, we use the notation σ1σ2 · · · σm to mean the periodic point
σ1σ2 · · · σm σ1 · · · σm σ1 · · · . For example, 12 = 12121 . . . . We also use the notation,
when θ ∈ [N ]k and ρ ∈ �,

θρ = θ1θ2 · · · θkρ1ρ2ρ3 · · · = θ1θ2 · · · θkρ = θρ1ρ2ρ3 · · ·
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Fig. 7 Fibres of an attractor of a strongly fibered IFS consisting of two affine maps acting on a triangular
subset of R

2 (color figure online)

The notions of fibres and addresses are illustrated in Fig. 7, using the IFS

F = {�; f1(x, y) = (x + y/2, y/2), f2(x, y) = (y/2,−x − y/2+ 1)} (6.1)

where � ⊂ R
2 is the filled triangle with vertices (0, 0), (1, 0), (0, 1). The IFS (6.1)

possesses a unique attractor A = �, but there is no metric on � generating the standard
topology and such that the IFS (6.1) is contractive. Some of the fibres are line segments
and others are points. For example, A1 = {(x, 0) ∈ R

2 : 0 ≤ x ≤ 1} and A2 is the
point with coordinates (0.25, 0.5). In order to illustrate some of the fibres of A (w.r.t.
F) we have rendered A in two different ways in Fig. 7; the image on the left uses bright
colours to emphasize fibres which are points while the image on the right emphasizes
fibres which are line segments. In the figure, an address of a fibre that is point (on the
left) and an address of a fibre that is a line segment (on the right) are given.

Definition 6.1 If πF (ω) is a singleton for all ω ∈ �, then A is said to be point-fibred
(w.r.t. F).

When A is point-fibred, by slight abuse of notation, we treat the coordinate map
πF as a mapping

πF : �→ A.

In this case

πF (σ ) = lim
k→∞ fσ |k(x0) (6.2)

for x0 ∈ B, where B is the basin of A. The following statement is an immediate
consequence of [65, Section 3.1] and the definition of point-fibred.
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Theorem 6.2 If F is contractive, then its attractor is point-fibred.

A point belonging to the attractor of a point-fibred IFS may have one or many
addresses, but there is only one point with any given address. If, for every open set
V ⊂ X such that V ∩ A = ∅ there is a fibre Aω ⊂ V , then A is said to be strongly-
fibred. Figure 7 illustrates a strongly-fibred attractor that is not point-fibred. We have

point-fibred �⇒ strongly-fibred.

An example of an IFS with a unique attractor that is not strongly-fibred is

{X; f1(θ) = θ, f2(θ) = θ + α}

where X is a circle, θ ∈ X is the point with angular coordinate θ , and 2π/α is irrational:
the attractor is A = X and Aω = A for all ω ∈ �.

The coordinate map interacts with the shift map on code space. The shift map
S : � → � is defined by S(ω1ω2ω3 · · · ) = ω2ω3 · · · , and the inverse shift map
Sn : �→ � is defined by Sn(ω) = nω for n ∈ [N ]. Both S and Sn are continuous.
A subset W ⊂ � is called shift invariant if S(W ) ⊆ W .

The following theorem is a simplified version of some results of Kieninger
[71, Lemma 4.6.6 and Propositions 4.2.10 and 4.3.22].

Theorem 6.3 Let A be an attractor of an IFS F on a complete metric space X. The
coordinate map πF : � → H(A) ⊂ H(X) is upper semicontinuous as a mapping
from the metric space (�, d�) to the metric space (H(X), dH(X)). The following
diagram commutes for all n ∈ [N ].

�
Sn→ �

πF ↓ ↓ πF
H(A) →

fn
H(A)

If F is point-fibred, then πF : �→ A is continuous.

This leads to the following definition.

Definition 6.4 Given an IFS F on a complete metric space X , a coding map for F is
a continuous surjection ϕ : �→K ⊂ X such that the following diagram commutes
for each n ∈ [N ].

�
Sn→ �

ϕ ↓ ↓ ϕ

K →
fn

K
(6.3)

In this case K is called a topological self-similar set.
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If A is a point-fibred attractor for F then ϕ = πF is a coding map for F with
K = A. A point-fibred attractor is a topological self-similar set. In Definition 6.4 the
nomenclature “topologically self-similar set” comes from the work of Kigami [73] and
Kameyama [69], mainly in the context of analysis on fractals; it refers to the readily
proved fact that K is invariant for F , i.e. K = ∪ fn(K ) = F(K ).

Definition 6.4 leads to Kameyama’s Fundamental Question [69]: Can a topological
self-similar set be associated with a contractive IFS? This question can be reformulated:
if ϕ : �→ K ⊂X is a coding map for an IFS F on a complete metric space X , then
is F , restricted to K , contractive?

To prove that the answer to his question is “no”, Kameyama constructs an IFS F
where N = 2 and the metric space X is defined abstractly in terms of the code space
�. Kameyama’s IFS is non-geometrical, and his question remains open when X and
the transformations are geometrically simple, as described in the introduction. But for
affine IFSs the answer is “yes”. Indeed, it is quite surprising that for an affine IFS,
contractivity is assured solely by the existence of a coding map [4].

Theorem 6.5 If F = {Rn; f1, f2, . . . fN } is an affine IFS with a coding map ϕ :
� → K ⊂ R

n, then F is contractive when restricted to the affine hull of ϕ(�). In
particular, if ϕ(�) contains a non-empty open subset of R

n, then F is contractive on
R

n.

The affine hull of a subset S of R
n is the smallest affine subspace containing S.

6.2 Sections of coordinate maps

If F is point-fibred, then the coordinate map πF : � → A assigns a point in the
attractor A of F to each infinite string. It would be convenient if, for an IFS F with
point fibred attractor A, we had a map in the direction opposite to that of the coordinate
map, assigning to each point A a string in �. Since the coordinate map πF : �→ A
need not be injective, the following definition is useful, for example in the construction
of fractal transformations, discussed in Sect. 9.

Definition 6.6 A section of a coordinate map πF : � → A is a map τ : A → �

such that πF ◦ τ is the identity. For x ∈ A, the string τ(x) is referred to as the address
of x with respect to the section τ . The set �τ := τ(A) is called the address space of
the section τ . The section τ is called shift invariant when �τ is shift invariant.

Properties of sections of coordinate maps are discussed in [21, Section 3].

Example 6.7 Let F = {R; f0, f1} where f0(x) = 1
2 x and f1(x) = 1

2 x + 1
2 . In this

case the IFS possesses a unique attractor, the real interval [0, 1]. For ω = ω1ω2 · · · ,
the “binary decimal expansion map” π(ω) := ∑∞

k=1 ωk 2−k is a coding map. Note
that π(1000 · · · ) = 1

2 = π(0111 · · · ). There are two shift invariant section maps. One
is the map that sends each point of [0, 1] to its binary decimal expansion that contains
no infinite string of consecutive zeros. The other is the map that sends each point of
[0, 1] to its binary expansion that contains no infinite string of consecutive ones.

123



Fractal geometry 319

7 Classification of attractors

7.1 Set of overlap

In this section the attractor A of an IFSF = {X; f1, f2, . . . , fN } is classified according
to how the sets fn(A), n = 1, 2, . . . , N , intersect. Throughout we assume that the
functions fn are pairwise distinct when restricted to an attractor under discussion.

Definition 7.1 Let A be an attractor of an IFS F . The set of overlap of A (w.r.t. F) is

O = O(A) := {
x ∈ A : fi (A) ∩ f j (A) = ∅, some i = j, i, j ∈ [N ]} .

(a) A is non-overlapping or disjoint(w.r.t. F) if O(A) = ∅;
(b) A is overlapping (w.r.t. F) if O(A) = ∅;
(c) A is slightly overlapping or just-touching (w.r.t. F) if it is not disjoint and the

interior of O (w.r.t. the subspace topology on A) is empty;
(d) A is strongly overlapping (w.r.t. F) if it is overlapping but not slightly overlap-

ping, i.e. if the interior of O (w.r.t the subspace topology on A) is nonempty;
(e) A obeys the open set condition (w.r.t. F) if there is a nonempty open set U in

the basin of A such that F(U ) ⊂ U and fi (U ) ∩ f j (U ) = ∅ whenever i = j ,
i, j ∈ [N ];

(f) A is post-critically finite (w.r.t. F) if it is connected, F is a contractive similitude
IFS, and ∪n≥1Sn(π−1

F (O(A)) is a finite set;
(g) A is finitely ramified if O(A) comprises finitely many distinct points.

When the meaning is clear from the context we omit the caveat “w.r.t. F”. The
terminology in Definition 7.1 mainly follows Kieninger [71] and Kigami [72,73].
Note that Strichartz [117] uses a less general definition of post-critically finite.

Next, some properties of attractors with each of the properties in Definition 7.1,
and some relationships between these properties, are briefly outlined. For ease of
exposition, it is assumed that F is contractive.

If A is disjoint, then it is totally disconnected. If A is a disjoint attractor of an
injective IFS with N ≥ 2, then it is perfect and it is homeomorphic to the classical
Cantor set (where the relative topologies are understood). In this case the coordinate
map πF : �→ A is a homeomorphism. The green spiral Cantor set in Fig. 3 illustrates
a totally disconnected attractor (of an inverse IFS).

If A obeys the open set condition, then it is just-touching. The converse, however, is
not true [71, Remark 5.3.2]. The open set condition, together with invariant measures
associated with the IFS, are used in the analysis of the Hausdorff–Besicovitch dimen-
sion D(A) of an attractor A ⊂ R

M . Assume that A is an attractor that obeys the open
set condition w.r.t. a similitude IFS F on R

M , with ‖ fn(x1)− fn(x2)‖ = sn ‖x1 − x2‖
for all x1, x2 ∈ R

M , where sn > 0 for all n ∈ [N ]. Then (see for example [56, Theorem
9.3])

N∑

n=1

sD(A)
n = 1.
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Bandt and Rao [11] have recently discussed the relationship between the open set
condition and the size of the set of overlap. They provide an example of a similitude
IFS in R

2 whose attractor A is a Cantor set for which D(A) is arbitrarily small, but such
that A does not obey the open set condition. Various refinements and modifications of
the open set condition are used to yield additional information about dimensions of
attractors; see for example [102] and the references therein.

The topic of post-critically finite (p.c.f.) attractors is specialized, but central to
analysis on fractals. Analysis on fractals involves the construction of Laplacians [73],
harmonic analysis, Brownian motion [12], heat kernels [77] (see the review in [74]),
and differential equations on fractals [117]. See also Hambly [61] and Teplyaev [118].
The attractor of the standard Sierpinski IFS

{R2; (x/2, y/2), (x/2+ 1/4, y/2+√3/4), (x/2+ 1/2, y/2)}

is an example of a p.c.f. fractal. We note that the structures related to analysis on
fractals, such as random walks, invariant measures, Dirichlet kernels, and so on, can
be described in terms of analysis on equivalence classes on the underlying code space,
or in terms of analysis on limit sets of sequences of combinatorial graphs.

Recently, the relationship between the open set condition, the property of being
p.c.f., the property of being finitely ramified, and other separation conditions, have
been explored in the general setting of graph-directed IFSs [83]; see [51,96].

Strongly overlapping point-fibred systems are related to β -transformations [100],
Bernoulli convolutions, and coding theory, areas which attract current attention; see
for example [7,64]. They are also related to fractal transformations as discussed in
Sect. 9.

7.2 Kneading invariant

The topology of a point-fibred attractor is determined by the address structure of its
critical set, a set related to the set of overlap. The definition of the critical set and
the related address structure, called the kneading invariant, are defined below. The
theory of kneading invariants developed from the study of the orbit of the critical
point under an iterated unimodal map, by Collet and Eckman [47], in connection with
dynamical systems and chaotic dynamics, and later substantially extended by Milnor
and Thurston [86].

Bandt and Keller [9] initiated a systematic study of the topology of contractive IFS
attractors based on the code space structure of the set of overlap. Here we adapt the
more recent development by Kameyama [69] . If S is a set with finitely many distinct
elements then #S is the number of distinct elements in S; if S has infinitely many
distinct elements then #S = ∞.

Definition 7.2 Let A be a point-fibred attractor of an IFS F . We say that

C = O(A) ∪
⎛

⎝
⋃

n∈[N ]
{x : #{y ∈ A : fn(y) = x} ≥ 2}}

⎞

⎠
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is the critical set of A (w.r.t. F), and

A = {π−1
F (c) : c ∈ C} ⊂ 2�

is the kneading invariant of A (w.r.t. F).

From the continuity of the coordinate map πF : �→ A in the point-fibred case,
it follows that a point-fibred attractor A is homeomorphic to the quotient space �/ ∼
where σ ∼ θ if πF (σ ) = πF (θ). Conversely, the equivalence relation derived from
a set A ⊂� determines an “IFS” F = {X; f1, f2, . . . , fN }, but the space X may not
be a Hausdorff space and hence not metrizable. (If it is Hausdorff then it is metrizable
with a metric constructed using the coding map.) Theorem 7.3 below tells us how
the structure of �/ ∼ is determined by the structure of the kneading invariant A. It
does so by characterizing the addresses of a point x such that #π−1

F (x) ≥ 2. We use
the following notation: if θ ∈ [N ]k for some k ∈ {1, 2, . . .} and  ⊂ [N ]∞, then
θ := {ω ∈ [N ]∞ : ω|k = θ and Skω ∈ }, and ∅ := .

Theorem 7.3 Let A be a point-fibred attractor of an IFS F , and let A be the kneading
invariant of A w.r.t. F .

(i) If x ∈ A and #π−1
F (x) ≥ 2, then there uniquely exists  ∈ A and θ ∈ [N ]k ∪ ∅

for some k ∈ {1, 2, ..} such that πF (θ) = {x}.
(ii) If ,� ∈ A, θ ∈ [N ]k ∪∅ for some k ∈ {1, 2, ..}, and θ∩� = ∅, then θ⊂�.

Moreover if θ=�, then =� and θ = ∅.

Theorem 7.4, a simplified version of a theorem of Kameyama [69], provides suffi-
cient conditions under which the kneading invariant determines a canonical quotient
space which is homeomorphic to the given attractor.

Theorem 7.4 Conversely to Theorem 7.3, suppose that A ⊂ 2� has the property (ii)
in Theorem 7.3 and # ≥ 2 for each  ∈ A. Define an equivalence relation ∼ on
� by σ ∼ ρ if either σ = ρ or σ, ρ ∈ θ for some  ∈ A, for some θ ∈ [N ]k ∪ ∅
for some k ∈ {1, 2, . . .}. Let A be the quotient space �/ ∼ and let π : � → A be
the projection. Then there exist continuous maps fn : A → A for n = 1, 2, . . . , N ,

such that the diagram (6.3), with ϕ := π , commutes. If the critical set C is finite
and π−1

F (x) is compact for each x ∈ A, then {A; f1, f2, . . . , fN } is an IFS with
point-fibred attractor A and kneading invariant A.

Theorem 7.4 can be used to construct homeomorphisms between suitable pairs
of point-fibred attractors whose kneading invariants are the same. For example, let
attractors A1 and A2 of injective IFSs F1 and F2 obey the conditions of Theorems 7.3
and 7.4, i.e., assume that the attractors are point-fibred, that the critical sets are finite,
and that (πFi )

−1(x) is compact for every x ∈ Ai , i = 1, 2, where πF1 and πF2 are
their respective coordinate maps. Let τF1 be a section of A1 (w.r.t. F1) and let τF2 be
a section for A2 (w.r.t. F2), and assume that the critical sets are both finite, and that
the kneading invariants are the same, say A1 = A2. Then, similarly to [17, Theorem
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1], it follows from Theorem 7.4 that a homeomorphism T : A1 → A2 is defined by

T = πF2 ◦ τF1 ,

T−1 = πF1 ◦ τF2 .

Transformations between attractors, including some of this kind, are discussed in
Sect. 9.

An example of a homeomorphic pair of tree-like IFS attractors is illustrated in
Fig. 8. The tree-like set in black in the top image represents the Julia set Jλ for the
complex quadratic map z �→ z2+λ where λ = −0.228157+ i(1.115143). This Julia
set is the attractor of the IFS

Jλ= {Q ⊂ C : f1(z) =
√

z − λ, f2(z) = −
√

z − λ}

where Q is any compact set such that fi (Q) ⊂ Q for i = 1, 2, and the two branches
±√z − λ of the inverse of z �→ z2+λ are continuous on Q. For an explanation of how
such a Julia set can be viewed as the attractor of a suitable IFS, see [19]. The bottom
image in Fig. 8 is the attractor of the similitude IFS {C : f1(z) = s exp(iθ)z, f2(z) =

Fig. 8 Two tree-like sets, one a Julia set and the other the attractor of a similitude IFS, are homeomorphic
because they have the same kneading invariant, discussed in Sect. 7.2. These two sets correspond to boundary
points of associated Mandelbrot sets; see Sect. 8. Julia sets for a wide range of values of λ can be calculated
on the fly using inexpensive computer applications, for example [66] (color figure online)
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s exp(iθ)z + 1} where θ = 108π/180 and s =
(√

5− 1
)

/2. The kneading invariant

for each attractor (w.r.t. its IFS) is
{
1112, 2112

}
; see [10].

8 Mandelbrot set for pairs of linear maps

Given a family Fλ of contractive IFSs, each consisting of a pair of similitudes that
depend on a single parameter λ, the set of points M in parameter space such that
the attractor of Fλ is connected has emerged over the last twenty years as an area of
interest. The set M, called a Mandelbrot set, is the topic of this section.

If F is a contractive IFS with attractor A, then A is connected if and only if, for
any r0 ≤ rm ≤ N , there exists a sequence {r1, r2, . . . , rm−1} ⊂ {1, 2, . . . , N } such
that fri (A) ∩ fri+1(A) = ∅ for any 0 ≤ i ≤ m − 1. Also, if A is connected, then it is
locally connected; see for example [73, Proposition 1.6.4].

For the case N = 2, there is a fundamental dichotomy for attractors: the attractor
is connected if and only if

f1(A) ∩ f2(A) = ∅, (8.1)

and is otherwise totally disconnected. This leads to the notion of Mandelbrot sets for
parameterized families of pairs of transformations. Let Aλ denote the attractor of the
contractive IFS

Fλ={C : f1(z) = λ z, f2(z) = λ z + 1}

for λ ∈ D := {z ∈ C : |z| < 1}. The set

M := {λ ∈ D : Aλ is connected},

was introduced in [24] as an analog to the classical Mandelbrot set M1. Indeed, it is
shown in [10] that attractors Aλ of Fλ corresponding to some values of λ that lie in
the boundary of M are homeomorphic to Julia sets J

λ̃
for z �→ z2 + λ̃, where the

corresponding values of λ̃ belong to the boundary of M1. Such a pair of conjugate
attractors is illustrated in Fig. 8. The set M has connections to Bernoulli convolutions,
Dirichlet forms on fractals, and zeros of polynomials with integer coefficients. See for
example [6,9,39,45,110–112,114].

To see the relationship between zeros of polynomials with integer coefficients and
M, note that finite compositions fσ |k(z) of the maps in Fλ give rise to polynomials of
the form fσ |k(z) = (λ z)k +∑k−1

l=0 (σl+1− 1)λ
l , where each coefficient (σl+1 − 1) is

0 or 1. It follows that πFλ
(σ ) =∑∞

l=0(σl+1 − 1)λ
l for all λ ∈ D. It, in turn, follows

from the remark containing equation (8.1), that the attractor Aλ of Fλ is connected,
for given λ ∈ D, if and only if there exists σ, τ ∈ [2]∞ with σ = τ, such that

∞∑

l=0

(σl+1 − 1)λ
l =

∞∑

l=0

(τl+1 − 1)λ
l . (8.2)
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Fig. 9 Left density of zeros, in the complex plane, for all polynomials of degree 28 with each coefficient
equal to +1 or−1. The origin of coordinates is at the center of the image. The point with coordinate (1, 0)

lies in the center of the small black disk to the right of the center. Right a rough plot of the Mandelbrot set
(in white) with Re λ > 0 and Im λ > 0, for the IFS (8). Both images relate to the Mandelbrot set M for a
similitude IFS, see text (color figure online)

Since all such sequences of zeros and ones are permissible, the attractor is connected
if and only if λ is a solution of equation (8.2) for some distinct pair of such sequences.
The above implies

Aλ is connected ⇐⇒
∞∑

l=0

γl+1 λ
l = 0 with γl ∈ {0,±1} and not all γl = 0.

(8.3)

On the left in Fig. 9 we illustrate the density of zeros in shades of gray, where black
means no zeros/pixel, in the complex plane, for all polynomials of degree 28, with
each coefficient equal to +1 or −1. Since we do not include coefficients (other than
the leading one) equal to 0, the points which are not black, which lie inside the circle
|λ| = 1, lie in M. (The centers of the black disks lie on the circle |λ| = 1). On the
right in Fig. 9 we show a rough plot of M ∩ {λ ∈ D : Re λ > 0, Im λ > 0} in white.
This was computed by “brute force” – compute a digital approximation to A and then
see whether or not (digitized f1(A))∩(digitized f2(A)) = ∅. The common features,
and the differences, of the two images, the one on the right and the one on the left, are
striking.

The observation (8.3) was made by Bousch [45], who used it to show that M is both
connected and locally connected. (Douady and Hubbard [54] proved the connectivity
of the classical Mandelbrot set M1. Their conjecture, made in 1982, that M1 is
locally connected, remains open.) The equivalence (8.3) was also used by Bandt [6]
as the basis of a fast algorithm for the computation of high resolution pictures of
M. This revealed surprising features and led to interesting questions and conjectures
concerning the geometry and topology of M. For example, Bandt noted that the
complement of M splits into many components and that M is not the closure of its
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interior; and he conjectured that M\R is the closure of its interior. Bandt also noted a
relationship between M and Bernoulli convolutions, reviewed in [103]. Bandt’s ideas
were further developed by Solomyak and Xu [114], who made progress on Bandt’s
conjecture and studied properties of complex analogues of Bernoulli convolutions.
Loci of connectedness of attractors of IFSs continues to be an active area of research;
see for example [82].

9 Fractal transformations

While properties of classical geometrical transformations (e.g. affine, conformal, pro-
jective) are well known, much less is known about their rough counterparts, fractal
transformations. Fractal transformations were introduced in 2005 [15,16], and they
have applications to image synthesis [97], photography [57], and digital imaging [21].
A fractal transformation takes the attractor of one IFS to the attractor of another IFS.
Figures 10 and 11, explained in more detail later in this section, provide visualizations
of fractal transformations.

A fractal transformation is defined in terms of a coordinate map, discussed in
Sect. 6.1, and a section of a coordinate map, discussed in Sect. 6.2. Here it is assumed
that all IFSs are point-fibred so that each possesses a coordinate map, as given by

Fig. 10 Fractal homeomorphism: attractor on the left, attractor fractally transformed on the right

Fig. 11 Two fractal homeomorphisms applied to the original picture (color figure online)
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Eq. 6.2. Given two point-fibred IFSs F and G with respective attractors AF and AG , a
fractal transformation is basically a function h : AF → AG that sends a point in AF
to the point in AG with the same address. More precisely, assume that F and G have
the same number of functions, and let πF and πG be the respective coordinate maps.

Definition 9.1 A transformation h : AF → AG is called a fractal transformation
if

h = πG ◦ τF

for some shift invariant section τF of F . If h is a homeomorphism, then h is called a
fractal homeomorphism.

Proposition 9.2 If a fractal transformation h = πG ◦ τF : AF → AG is a homeo-
morphism, then there exists a shift invariant section τG of πG such that the following
diagram commutes:

AF →
h

AG
τF ↘ ↙ τG

�

Conversely, if there exists sections τF and τG and a homeomorphism h such that the
above diagram commutes, then h = πG ◦ τF and h−1 = πF ◦ τG .

The commuting diagram means that the homeomorphism h takes each point x ∈ AF
with address ω := τF (x) to the point y ∈ AG with the same address ω = τG(y). Two
basic questions are (1) given an IFS, how to construct a shift invariant section, and (2)
when is a fractal transformation a homeomorphism.

Definition 9.3 An IFS F = {X; f1, f2, . . . , fN } is said to be injective if the map
fi : X→X is injective, for i = 1, 2, . . . , N .

We consider the first question in the case that F is an injective IFS.

Definition 9.4 For an IFS F with attractor A, a mask is a partition M = {Mi , 1 ≤
i ≤ N } of A such that Mi ⊆ fi (A) for all fi ∈ F . Given an injective IFS F and a
mask M , consider the function T : A→ A defined by

T (x) := f −1
i (x)

when x ∈ Mi . The itinerary τM (x) of a point x ∈ A is the string ω0 ω1 ω2 · · · ∈ �,
where ωk is the unique integer 1 ≤ ik ≤ N such that

T k(x) ∈ Mωk .
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Example 9.5 A particular mask for an IFS with N functions and attractor A is defined
by M1 = f1(A) and

Mk = fk(A) \
k−1⋃

i=1

fi (A),

for k = 2, 3, . . . , N . This is called the tops mask. There is a tops mask for every
permutation of the functions, i.e., every permutation of [N ].

The following theorem provides an answer to the first question posed above; it
states that any shift invariant section is constructed from a mask.

Theorem 9.6 Let F be a contractive and injective IFS.

(1) If M is a mask, then τM is a shift invariant section of π .
(2) If τ is a shift invariant section of π , then τ = τM for some mask M.

The section from a tops mask is given by

τ(x) = max π−1(x),

where the maximum is with respect to the lexicographic order on �.
Question (2) involves establishing conditions under which F and G have related

kneading invariants; see the discussion following Theorem 7.4. In the following sub-
section we consider two geometrically simple types of IFS, for which interesting
families of fractal transformations can be established.

9.1 Bi-affine IFSs on R
2

A bi-affine function from R
2 to R

2 is more general than an affine function but less
general than a quadratic function.

Definition 9.7 A function f : R
2 → R

2 is called bi-affine if it has the form

f (x, y) = a + bx + cy + dxy,

where bold face letters represent vectors in R
2. Call a bi-affine function non-

degenerate if d = 0 and neither b nor c is a scalar multiple of d. In particular,
neither b nor c is the zero vector. A description of the geometric degeneracies that
occur in these situations is described in [35]. An IFS F is called bi-affine if each
function in F is a non-degenerate bi-affine function.

It is easy to verify that a function is bi-affine if and only if, for a fixed x or a fixed
y, it is affine in the other variable:

f ((1− α)x1 + αx2, y) = (1− α) f (x1, y)+ α f (x2, y) and

f (x, (1− α)y1 + αy2) = (1− α) f (x, y1)+ α f (x, y2)
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for all x1, x2, y1, y2, α ∈ R. Interpreted geometrically, these equations mean that

(1) horizontal and vertical lines are taken to lines, and
(2) proportions along horizontal and vertical lines are preserved.

This elementary class of functions, with connections to classic geometric results
of Brianchon and Lambert dating back to the 18th century, proves extremely versatile
for applications involving fractal transformations. A photography application [57], for
example, is based on it. See also [18].

Note that the unique bi-affine function taking (0, 0), (1, 0), (1, 1), (0, 1) to the
points p0, p1, p2, p3, respectively, is

f (x, y) = p0 + (p1 − p0)x + (p3 − p0)y + (p2 + p0 − p1 − p3)xy.

Let �� denote the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1). The following
Theorem provides sufficient conditions for a bi-affine function to be a contraction.

Theorem 9.8 Let f (x, y) = p0+ (p1−p0)x + (p3−p0)y+ (p2+p0−p1−p3)xy
be a non-degenerate bi-affine function such that p0 p1 p2 p3 is a convex quadrilateral
P. If there is an s, 0 ≤ s < 1, such that (1) each side of P has length less than or
equal to s, (2) each diagonal has length less than or equal to

√
2s, and (3) the vector

sum of any two incident sides has length less or equal to
√

2s, then f is a contraction
on ��.

Attention is now restricted to the case of a non-degenerate bi-affine function taking
�� into itself. For such a bi-affine function, the conditions in Theorem 9.8 are not too
restrictive. The intention is to form an IFS consisting of such functions, which must,
according to Theorem 3.4, have a unique attractor. Given two such bi-affine IFSs with
the same number of functions, fractal transformations, such as those illustrated in
Fig. 11, can be produced as described below.

Consider a bi-affine IFS F = {��; f1, f2, f3, f4}, where the four functions are
determined by the images of the four vertices of �� as shown in Fig. 12. Each of the
four images fi (��), i = 1, 2, 3, 4, of the square contains exactly one vertex of ��. The
attractor of F is �� itself. For “most” choices of the center and side points, F satisfies
the conditions of Theorem 9.8 and hence F is a contractive IFS.

Next let MF = {M1, M2, M3, M4} be the tops mask for F . Explicitly, M1 is the
closed quadrilateral AT O Q, M2 is the open quadrilateral O Q B R together with the
segments (Q, B], [B, R], [R, O), M3 is the open quadrilateral O RC S together with
the segments (R, C], [C, S], [S, O), and M4 is the open quadrilateral O SDT together
with the segments (S, D], [D, T ).

Now consider a second bi-affine IFS G = {��; g1, g2, g3, g4} of the same type with
points O ′, Q′, R′, S′, T ′ replacing O, Q, R, S, T , and with mask MG defined exactly
as it was for MF . The masks MF and MG induce shift invariant sections τF and τG ,
respectively, as guaranteed by Theorem 9.6.

Theorem 9.9 For the pair of IFS described above, the maps πG ◦ τF and its inverse
πF ◦ τG are homeomorphisms.
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Fig. 12 An IFS consists of four
bi-affine functions. Points
labeled with lower case letters
are the images of points labeled
with upper case letters. The
attractor is the unit square (color
figure online)

In this case the attractors of both IFSs are identical, the square. The fractal home-
omorphism can be visualized as follows. Define an image as a function c : �� → C,
where C denotes the color palette, for example C = {0, 1, 2, . . . , 255}3. If h is any
homeomorphism from �� onto ��, define the transformed image h(c) : �� → C by

h(c) := c ◦ h.

When h is a fractal homeomorphism as constructed via Theorem 9.9, we get a visu-
alization of the fractal homeomorphism by looking at how an image is transformed.
This is done, for example, in Fig. 11.

9.2 Three dimensional tri-affine fractal homeomorphisms

The preceding discussion generalizes to higher dimensions; see for example [23].
Diverse (multi-affine) fractal transformations can be constructed. Figures 13 and 14
illustrate an example.

9.3 Special overlapping IFSs

The bi-affine and tri-affine IFSs described above are non-overlapping, in the sense that
if A is the attractor of the IFS F , then ( f (A)∩g(A))o = ∅ for all distinct f, g ∈ F . To
determine whether a strongly overlapping IFS (in the sense of Definition 7.1d) fractal
transformation is a homeomorphism is, in general, difficult. In this section a criterion
is provided for a simple family of overlapping IFSs.
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Fig. 13 Two labellings of points in the unit cube, used to define two tri-affine IFSs. The smaller cubes on
the left represent a three-dimensional “tiling” of the cube by copies of itself. The corresponding objects on
the right have ruled surfaces but fit together perfectly (color figure online)

Fig. 14 This illustrates the action of a tri-affine fractal homeomorphism on a three-dimensional picture that
resembles a gob-stopper, one of those candies that have multiple different colored layers that are revealed
by sucking on the candy. The before and after images have been cut in half to reveal the effects of the
transformation on the internal structure of the spherical picture. Digital technology used in connection with
tomography can be used to explore such three dimensional pictures (color figure online)

A special overlapping IFS is an IFS

F = {[0, 1]; f0(x), f1(x)},

on the unit interval, where the functions are continuous, increasing, contractions that
satisfy

f0(0) = 0, f1(1) = 1, 0 < f1(0) < f0(1) < 1,
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the last condition guaranteeing that F is strongly overlapping.
To construct a fractal transformation h : [0, 1] → [0, 1] from the attractor of

one special overlapping IFS to the attractor of another, a section of the coordinate
map must be constructed, which in turn requires designating a mask. A single point
q ∈ [0, 1] determines a pair of related masks. The partitions are of the form

M+q = { [0, q), [q, 1] } or M−q = { [0, q], (q, 1] },

where f1(0) < q < f0(1). The point q will be called the mask point. For a masked
special overlapping IFS, the two sections τ+q and τ−q , one corresponding to M+q and the
other corresponding to M−q , are as follows: τ+q = ω0ω1ω2 · · · and τ−q = σ0σ1σ2 · · · ,
where

ωn =
{

0 if (T+q )n(x) < q
1 if (T+q )n(x) ≥ q

and σn =
{

0 if (T−q )n(x) ≤ q
1 if (T−q )n(x) > q.

and where

T+q (x) =
{

f −1x
0 if x < q

f −1x
1 if x ≥ q

and T−q (x) =
{

f −1x
0 if x ≤ q

f −1x
1 if x > q.

For a special overlapping masked IFS F , the itineraries

αq := τ−q (q) and βq := τ+q (q)

of the mask point q will be called the critical itineraries.
The following theorem [22] states that, for two special overlapping IFSs, whether

or not a fractal transformation is a homeomorphism depends only on these two critical
itineraries.

Theorem 9.10 Given two special overlapping masked IFSs F and G with respective
mask points q and p, coordinate maps πF and πG , sections τ±F and τ±G , and critical

itineraries αq , βq and αp, βp, the fractal transformations πG ◦ τ±F and πF ◦ τ±G are

homeomorphisms if and only if τ+F (q) = τ+G (p) and τ−F (q) = τ−G (p).

10 IFS tiling

Computer generated drawings of tilings of the plane by self-similar figures appear in
papers beginning in the 1980s and 1990s, for example the lattice tiling of the plane
by copies of the twindragon. Tilings constructed from an IFS often possess global
symmetry and self-replicating properties. Research on such tilings include the work
of Bandt, Gelbrich, Gröchenig, Hass, Kenyon, Lagarias, Madych, Radin, Solomyak,
Strichartz, Thurston, Vince, and Wang and the more recent work of Akiyama and Lau;
see for example [3,5,58–60,70,75,78,104,113,116,119,122] and the list of references
in [123]. Even aperiodic tilings can be put into the IFS context; see for example the
fractal version of the Penrose tilings [8].
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The use of the inverses of the IFS functions in the study of tilings is well-established,
in particular in many of the references cited above. However, in this section we intro-
duce a simple and yet unifying technique for constructing both the classical and new
IFS tilings. Theorems 10.4 and 10.5 show that the resulting tiling very often covers
the entire basin of the attractor. In the case of tilings of Euclidean space, the basin is
the entire Euclidean space.

Throughout this section, F is a contractive IFS. By tile we simply mean a compact
set. If A is the attractor of an IFS F , it is sometimes possible to tile the basin of
A with non-overlapping copies of A or perhaps with non-overlapping tiles of several
shapes related to A. The attractor A of any IFS in this section will be just-touching and
such that the interior Ao is nonempty. Let F = {{X}; f1, f2, . . . , fN } be an invertible
IFS with just-touching attractor A. For any string θ ∈ �, a tiling Tθ = TF ,θ will be
constructed as follows. Extending the notation fθ |k = fθ1 ◦ fθ2 ◦ · · · ◦ fθk used in
Section 6, let

( f −1)θ |k = f −1
θ1
◦ f −1

θ2
◦ · · · ◦ f −1

θk
.

Note that, in general, ( f −1)θ |k =
(

fθ |k
)−1. Given a positive integer k and any ω ∈

[N ]k , let

tθ,ω = (( f −1)θ |k ◦ fω)(A),

Tθ,k = {tθ,ω : ω ∈ [N ]k}.

Since, for any ω ∈ [N ]k , we have

( f −1)θ |k ◦ fω = ( f −1)θ |k ◦ ( fθk+1)
−1 ◦ fθk+1 ◦ fω = ( f −1)θ |k+1 ◦ fθk+1ω,

the inclusion

Tθ ⊂ Tθ,k+1

holds for all k. Therefore

Tθ = TF ,θ :=
∞⋃

k=1

Tθ,k

is a tiling of

B(θ) :=
∞⋃

k=1

( f −1)θ |k(A) ⊆ X,

where the union is a nested union.
Under certain, not too restrictive conditions on θ , conditions given in Theorem 10.4,

Tθ tiles the entire basin of the attractor A.
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Example 10.1 The IFS F = {R; f0, f1} where f1(x) = x/2 and f2(x) = x/2+ 1/2
has attractor [0, 1]. The tiling TF ,1 is the tiling of [0,∞) by unit intervals. The tiling

TF ,2 is the tiling of (−∞, 1] by unit intervals. If θ = 1, 2, then TF ,θ tiles R by unit
intervals.

Definition 10.2 For an invertible IFS F with attractor A, call θ ∈ � full if there exists
a compact set A′ ⊂ Ao such that, for any positive integer M , there exist n > m ≥ M
such that

fθn ◦ fθn−1 ◦ · · · ◦ fθm+1(A) ⊂ A′.

Call θ ∈ � reversible for IFS F if, for every positive integer M , there exists an
m ≥ M such that

θ1θ2 · · · θm−1θm = ωmωm−1 · · ·ω2ω1. (10.1)

where ω = ω1ω2 · · · ∈ � is the address of some point in Ao. The following notation
will be used:

←−−
ω|m := ωmωm−1 · · ·ω2ω1, so condition (10.1) can be expressed as

θ |m =←−−ω|m.
A string σ ∈ � is periodic of period p if σk+p = σk for all k = 1, 2, . . .. Recall

from Sect. 4 that a string σ ∈ � is disjunctive if every finite word is a substring of σ .
The set of disjunctive sequences is a large subset of � in a topological, in a measure
theoretic, and in an information theoretic sense [115].

Proposition 10.3 Let F be an invertible IFS with attractor A with non-empty interior.

(1) There are infinitely many disjunctive strings in � if N ≥ 2.
(2) Every disjunctive string is reversible.
(3) Every reversible string is full.

Theorem 10.4 Let F be a non-overlapping invertible IFS with attractor A with non-
empty interior and with basin B. If θ is full, then TF ,θ covers B.

By the above proposition and theorem (which are proved in [38]), full strings are
plentiful. In fact, according to the next result, also proved in [38], any string θ is full
with probability 1. Define a string θ ∈ � to be a random string if it is chosen as
follows: there is a p ∈ (0, 1/N ) such that, for each k ∈ {1, 2, . . .}, θk is selected
randomly from {1, 2, . . . , N }, where the probability that σk = n is greater than or
equal to p, independently of θ1, θ2, . . . θk−1, for all n ∈ [N ]. (See also Definition 4.1.)

Theorem 10.5 Let F = {X; f1, f2, . . . , fN }, where X is compact, be an invertible
IFS with just-touching attractor A with non-empty interior and with basin B. If θ ∈ �

is a random string, then, with probability 1, the tiling TF ,θ covers B.

Example 10.6 (Digit tiling of R
n) The terminology “digit tiling”comes from the data

used to construct the tiling, which is analogous to the usual base and digits used to
represent the integers. An expanding matrix, i.e., linear function on R

n , is an n × n
matrix such that the modulus of each eigenvalue is greater than 1. Let L be an expanding
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n×n integer matrix. A set D = {d1, d2, . . . , dN }of coset representatives of the quotient
Z

n/L(Zn) is called a digit set. It is assumed that 0 ∈ D. By standard algebra results,
for D to be a digit set it is necessary that

|D| = | det L |.

Consider an affine IFS F := F(L , D) = {Rn ; f1, f2, . . . , fN }, where

fi (x) = L−1(x − di ).

Since L is expanding, it is known that, with respect to a metric equivalent to the
Euclidean metric, L−1 is a contraction. Since F is contractive, there is a unique
attractor A called a digit tile. The basin of A is all of R

n . Note that a digit tile is
completely determined by the pair (L , D) and will be denoted T (L , D). It is known
[123] that a digit tile T is the closure of its interior and its boundary has Lebesque
measure 0. The iterated function system F(L , D) is non-overlapping. If θ ∈ � is full,
then TF ,θ is a tiling of R

n called a digit tiling. It is straightforward to show that, up to a
rigid motion of R

n , a digit tiling does not depend on θ as long as it is full. Under fairly
mild assumptions [123, Theorem 4.3], a digit tiling is a tiling by translation by the
integer lattice Z

n with the following self-replicating property: for any tile t ∈ TL ,D ,
it’s image L(t) is the union of tiles in TL ,D . For this reason, such a tiling is often
referred to as a reptiling of R

n .

Example 10.7 (Crystallographic tilings of R
n) Gelbrich [58] generalized digit tiling

from the lattice group Z
n to any crystallographic group �. Let L : R

n → R
n be an

expanding linear map such that L�L−1 ⊂ �. If D = {d1, . . . , dN } is a set of right
coset representatives of �/L�L−1, then

F = {Rn; L−1d1, . . . , L−1dN }

is a contractive IFS with attractor T (�, L , D) with non-empty interior, called a crys-
tallographic tile. The Levy curve is an example of such a crystallographic tile (for the
2-dimensional crystallographic group p4). A tiling TF ,θ of R

n is called a crystallo-
graphic reptiling.

Example 10.8 (Chair tilings of R
2) The IFS F = {R2; f1, f2, f3, f4} where

f1(x, y) = (x/2, y/2), f3(x, y) = (−x/2+ 1, y/2),

f2(x, y) = (x/2+ 1/4, y/2+ 1/4), f4(x, y) = (x/2,−y/2+ 1),

is an IFS whose attractor is a filled square with a missing quadrant, i.e., a chair shaped
polygon. There are numerous other such polygonal tiles that are the attractors of
just touching IFSs. For the chair tile, there are uncountably many tilings TF ,θ , i.e.
uncountably many full strings θ .

Example 10.9 (Triangular affine tilings of R
2) Although we do not do so here, the

significance of this tiling is that it can be used to extend a fractal homeomorphism
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Fig. 15 (i) The points used to define the affine transformations of the IFS F = {R2; f1, f2, f3, f4}; (ii)
images of the triangle ABC ; (iii) the attractor of the IFS {R2; f1, f2, f3, f4} (color figure online)

between two triangular attractors, to a fractal homeomorphism of the Euclidean plane.
Consider the IFS F = {R2; f1, f2, f3, f4} where each fn is an affine transformation
defined as follows. Let A, B, and C denote three noncollinear points in R

2. Let c
denote a point on the line segment AB, a a point on the line segment BC , and b a
point on the line segment C A, such that {a, b, c} ∩ {A, B, C} = ∅; see panel (i) of
Fig. 15. Let f1 : R2 → R

2 denote the unique affine transformation such that

f1(ABC) = Abc,

by which we mean that f1 maps A to A, B to b, and C to c. Using the same notation,
let affine transformations f2, f3, and f4 be the ones uniquely defined by

f2(ABC) = aBc,

f3(ABC) = abC,

f4(ABC) = abc.

Panel (ii) of Fig. 15 shows the images of the points A, B, C under the four functions
of the IFS, illustrating the special way that the four functions fit together. The attractor
of F is the filled triangle with vertices at A, B, and C , illustrated in (iii) in Fig. 15.

If θ = θ1θ2θ3 · · · ∈ {1, 2, 3, 4}∞ is full, then according to Theorem 10.4, TF ,θ is
a tiling of R

2 by triangles. One such affine tiling is illustrated in Fig. 16. A related
projective tiling is also shown in that figure. Note that, if e is a common edge of two
triangles �1,�2 in TF ,θ , then e is the image of the same edge of the original triangle
ABC from �1 and �2, and if v is a common vertex in TF ,θ of two triangles �2,�2
in TF ,θ , then v is the image of the same vertex of the original triangle ABC from �1
and �2.

10.1 Tilings from a graph IFS

The construction of tilings from an IFS can be generalized to the construction of tilings
from a graph IFS. There is considerable current interest in graph IFS and tilings corre-
sponding to Rauzy fractals [68,105,106]. Hausdorff dimension of attractors associated
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Fig. 16 The image on the right illustrates part of an affine tiling of the plane. All the tiles are triangular. The
dark rectangles are unions of tiles of the same colour. The image on the left illustrates a related projective
tiling, represented using the disk model for RP2 (color figure online)

with graph IFSs has been considered in [83]. Graph IFSs arise in connection with sub-
stitution tilings and number theory; see for example [2,43].

Let H M denote the N -fold Cartesian product of M copies of H(X). A graph IFS
is a directed graph G, possibly with loops and multiple edges, in which the vertices of
G are labeled by {1, 2, . . . , M} and each directed edge e is labeled with a contraction
fe : X → X . It is also assumed that G is strongly connected, i.e., that there is a
directed path from any vertex to any other. Let Ei j denote the set of edges from vertex
i to vertex j . Define the function

F : H M → H M

as follows. If Y = (Y1, Y2, . . . , YM ) ∈ H M , then

F(Y) = (F1(Y), F2(Y), . . . , FM (Y)),

where

Fi (Y) =
M⋃

j=1

⋃

e∈Ei j

fe(Y j )

for i = 1, 2, . . . M . It can be shown that F is a contraction on H M , and consequently
has a unique fixed point or attractor A = (A1, A2, . . . , AM ). An ordinary IFS is the
special case of a graph IFS where G has exactly one vertex and all edges are loops.

Let G
′ denote the graph obtained from G by reversing the directions on all of the

edges. Assume that the graph IFS is non-overlapping. The concept of overlapping is
defined exactly as for an IFS. For any directed (infinite) path θ = e1e2 · · · in G

′, a
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Fig. 17 Graph IFS for the Penrose tiles (color figure online)

tiling is constructed as follows. First extend previous notation so that θk = ek, θ |k =
e1e2 · · · ek and fθ |k = fe1 ◦ fe2 ◦ · · · ◦ fek , ( fθ |k)−1 := f −1

e1
◦ f −1

e2
◦ · · · ◦ f −1

ek
. Given

any directed path ω of length k in G that starts at the vertex at which θ |k terminates,
let

tθ,ω = (( f −1)θ |k ◦ fω)(A j ),

Tθ,k = {tθ,ω : ω ∈ Wk},

where j is the terminal vertex of the path ω, and Wk is the set of directed paths of
length k in G that start at the vertex at which θ |k terminates. Since, for any ω ∈ Pk ,
we have

( f −1)θ |k ◦ fω = ( f −1)θ |k ◦ ( fθk+1)
−1 ◦ fθk+1 ◦ fω = ( f −1)θ |k+1 ◦ fθk+1ω,

the inclusion

Tθ,k ⊂ Tθ,k+1

holds for all k. Therefore

Tθ = TG,θ :=
∞⋃

k=1

Tθ,k

is a tiling.

Example 10.10 (Penrose tilings of R
2) In this example the graph G is given in Fig. 17

where, using the complex representation of R
2, the functions are

f1(z) =
( z

τ
+ 1

)
ω1, f2(z) = −z

τ
+ τ 2, f3(z) = z

τ
ω3 + τ 2,
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where τ = (1+√5)/2 is the golden ratio and ωk = cos(kπ/5) + i sin(kπ/5), 0 ≤
k ≤ 9, are the tenth roots of unity. The acute isosceles triangle A and obtuse isosceles
triangle B in the figure have long and short sides in the ratio τ : 1, and the angles are
π/5, 2π/5, 2π/5 and π/5, π/5, 3π/5, respectively. The attractor of the graph IFS is
the pair (A, B):

A = f1(B) ∪ f2(A) ∪ f3(A),

B = f1(B) ∪ f2(A).

Clearly, there are periodic tilings of the plane using copies of these tiles. However, if θ

is a directed path in G and TG,θ tiles R
2, then this is a non-periodic tiling. Although a

Penrose tiling is usually given in terms of kites and darts or thin and fat rhombs, these
are equivalent to tiling by the acute and obtuse triangles described in this example.

11 Fractal continuation

Fractal functions have a long history; see [121] and [90, Chapter 5]. They were intro-
duced, in the form considered here, in [13]. In this section we discuss functions
f : [0, 1] → R whose graph G( f ) is the attractor of an interpolation IFS, defined
below. This includes well-known types of non-differentiable functions, including Tak-
agi curves, Kiesswetter curves, Koch curves, and the Weierstrass nowhere differen-
tiable function f : [0, 1] → R, defined for |ξ | < 1 by

f (x) =
∞∑

k=0

ξ k sin 2k+1πx .

Fractal functions are the basis of a constructive approximation theory for non-
differentiable functions. They have been developed both in theory and applications
by many authors; see for example [25,40,89,90,95,101,108,109,120]. They provide
an alternative view on wavelets, [40,53]. In [62] Hardin writes: “...compactly sup-
ported refinable functions (and thus compactly supported wavelets) are piecewise
fractal interpolation functions. This perspective, although not expressed in this lan-
guage, underlies much of the research on determining properties (such as regularity,
approximation order, and linear independence) of a refinable function from its mask
(cf. [50,84]).”

In this section we précis a natural generalization of analytic continuation. Gener-
alizing [13,19,25], we first define (analytic) fractal function. The following theorem
is an amalgam of some results proved in [37].

Theorem 11.1 Let 0 = x0 < x1 < · · · < xN = 1 be real numbers with N > 1, and
let {yn}Nn=0 ⊂ R so that D := {(xn, yn)}Nn=0 is a set of data points. Let X ⊂ R

2 be a
pathwise connected neighbourhood of D and W be an injective IFS of the form

W = {X; wn(x, y) = ((xn − xn−1)x + xn−1, Fn(x, y)), n ∈ [N ]},
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where

(i) F0(x0, y0) = y0, Fn+1(x0, y0) = Fn(xN , yN ) = yn for n = 1, 2, . . . , N −1, and
FN (xN , yN ) = yN , and

(ii) there is an s ∈ [0, 1) and an M ∈ [0,∞) such that

|Fn(x, y)− Fn(x ′, y′)| ≤M|x − x ′| + s|y − y′|

for all (x, y) , (x ′, y′) ∈ X, n ∈ [N ].
Then the IFS W is contractive with (unique) attractor A = G( f ), the graph of a
function f : [0, 1] → R such that f (xn) = yn for all n ∈ [N ].
Definition 11.2 We call an IFS W of the form in Theorem 11.1 an interpolation IFS,
and we call the function f : [0, 1] → R whose graph is the attractor of W a fractal
function. If also Fn(x, y) is real analytic for (x, y) ∈ D, for n = 1, 2, . . . , N , then
we call W an analytic interpolation IFS, and we call f an analytic fractal function.

Our nomenclature is reasonable because of the following theorem, which is proved
in [37].

Theorem 11.3 If f : [0, 1] → R is analytic, then the graph G( f ) of f is the attractor
of an analytic interpolation IFS W = {X;w1(x, y), w2(x, y)}, where X is a neigh-
bourhood of G( f ).

The main new idea is to use a fractal blow-up technique to “continue” f . This tech-
nique, when applied to a real analytic function f , results in the analytic continuation
of f in the usual sense. Let θ ∈ � and G = G( f ). Define

Gθ |k := {(x, y) ∈ X : wθk ◦ wθk−1 ◦ ◦wθ1(x, y) ∈ G}.

Theorem 11.4 With notation as above,

G ⊂ Gθ |1 ⊂ Gθ |2 ⊂ · · · .

Moreover, Gθ |k is the graph of a continuous function fθ |k whose domain is

Iθ |k := (L−1)θ |k([0, 1]) = L−1
θ1
◦ L−1

θ2
◦ · · · ◦ L−1

θk
([0, 1]) ∩ P(X),

where Ln(x) = (xn − xn−1)x + xn−1 for all n ∈ [N ], and P(X) is the projection of
X on the x-axis.

Definition 11.5 Referring to Theorem 11.4, for θ ∈ � let Iθ = ∪k Iθ |k and fθ : Iθ →
R be defined by fθ |Iθ |k = fθ |k . Then fθ : Iθ → R is called the fractal continuation
of f with respect to θ (and W), and { fθ : θ ∈ I∞} is the set of fractal continuations
(w.r.t. W) of the fractal function f . If the interpolation IFS W is analytic, then the
phrase analytic fractal continuation replaces the phrase “fractal continuation” in the
previous sentence.
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Theorem 11.6 below states some facts about fractal continuations. According to
statement (2), analytic fractal continuation of an analytic function is unique, not
depending on the string θ ∈ �, and is the standard analytic continuation. State-
ment (3) is of practical value, as it implies that stable methods, such as the chaos
game algorithm, for computing numerical approximations to attractors, may be used
to compute fractal continuations. A fractal function may possess uncountably many
distinct continuations.

Theorem 11.6 With the notation as above, for all θ ∈ � the following statements
hold:

(1) fθ (x) = f (x) for all x ∈ [0, 1].
(2) If both W and f are analytic on [0, 1], then fθ (x) = f̃ (x) for all x ∈ Iθ , where

f̃ is the (unique) real analytic continuation of f .
(3) If X = R

2 and W is invertible, then for all k ∈ N the IFS

Wθ |k := {R2;w−1
θ |k ◦ wn ◦ ((w−1)θ |k)−1} = {R2;w−1

θ |k ◦ wn ◦ w←−
θ |k}

has attractor Gθ |k = G( fθ |k).

In [37] we conjecture that the set of continuations of an analytic fractal function is
independent of the analytic interpolation IFS. This conjecture requires more precision
than we give here; roughly, it states that if two analytic interpolation IFSs W and W̃ ,
both with the same space X , have the same attractor G( f ), and if fθ is a continuation
of f w.r.t. W , then there is a continuation f̃θ̃ of f w.r.t. W̃ , such that f̃θ̃ = fθ . In
[37] this conjecture is proved for some cases where it is further assumed that G( f ) is
rectifiable.

Example 11.7 Let G(p) be the attractor of the affine IFS

Wp={R2, w1(x, y) = (0.5x, 0.5x + py), w2(x, y)=(0.5x + 1,−0.5x + py + 1)},

where p ∈ (−1, 0) ∪ (0, 1) is a parameter.
The attractor G(p=0.25) is the graph of the analytic function f : [0, 2] → R, where

f (x) = x(2− x)

and, according to statement (2) of Theorem 11.6 the unique continuation is fθ (x) =
x(2 − x) with domain [0,∞) if θ = 1, domain (−∞, 2] if θ = 2, and domain
(−∞,∞) otherwise.

When p = 0.3 the attractor is the graph of a non-differentiable function, and there
are non-denumerably many distinct continuations fθ : (−∞,∞) → R. Figure 18
shows some of these continuations, restricted to the domain [−20, 20]. More precisely,
Fig. 18 shows the graphs of fθ |4(x) for all θ ∈ [2]∞. The continuation f1(x), on the
right in black, coincides exactly, for x ∈ [2, 4], with all continuations of the form
f1ρ(x) with ρ ∈ [2]∞. To the right of center: the blue curve is G2111, the green curve
is G2211, and the red curve is G2221. On the left: the lowest curve (part red, part blue)
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Fig. 18 See Example 11.7 (color figure online)

Fig. 19 Added detail for part of
Fig. 18 showing additional
continuations near the ends of
the original function (color
figure online)

Fig. 20 See Example 11.7. The colors help to distinguish the different continuations of the fractal function
whose graph is illustrated in black near the center of the image (color figure online)

is G2222, the green curve is G1222, the blue curve is G1122, and the black curve is
G1112. Also see Fig. 19.

The attractor G(p=0.8) is the graph of a fractal function f (p=0.8) whose graph has
Minkowski dimension (2 − ln(5/4)/ ln 2). This graph G(p=0.8) is illustrated in the
middle of Fig. 20. The window for Fig. 20 is [−10, 10] × [−10, 10] ⊂ R

2, and
f (p=0.8) is the (unique) black object whose domain is [0, 2]. Figure 20 shows all
continuations f (p=0.8)

θ |4 (x) for θ ∈ [2]∞.

12 Conley attractors

An IFS F = {X; f1} defines a discrete dynamical system f1 : X → X . There are
various definitions of an attractor of a dynamical system. Some definitions use measure
theory to describe the probable asymptotic behaviour of orbits, see [85], while others
are purely topological. Among the latter is the Conley attractor, which is interesting
because of its generality, the “landscape picture” [48] for both discrete and continuous
flows, and its role in the fundamental theorem of dynamical systems [98]. In this
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section we define the Conley attractor of an IFS, discuss the existence of attractor–
repeller pairs (Theorem 12.5) and their relation to the dynamics of the IFS (Theorem
12.7), and explain Conley’s “landscape picture” as it applies to an IFS (Theorem 12.9).
Our presentation is a simplified version of the elegant work of McGehee and Wiandt
[92,126] about iterated closed relations on compact Hausdorff spaces.

The notion of a Conley attractor generalizes Definition 2.2, which is much used in
the fractal geometry literature because it derives from the situation for a contractive
IFS. The following three definitions look almost identical to Definitions 2.2, 2.3, and
2.4, the crucial differences being that a Conley attractor A may be empty and orbits
of sets under F : 2X → 2X are “absorbed” by A rather than converging, in a cascade,
to A.

Definition 12.1 A Conley attractor of the IFS F is a compact set A ⊂ X such that

(1) F(A) = A and
(2) there is an open set U ⊂ X such that A ⊂ U and limk→∞ Fk(U ) = A where the

limit is with respect to the Hausdorff metric on H .

In the terminology of [71, Definition 4.4.1], an attractor of an IFS F is a nonempty
asymptotically stable Conley attractor of F .

Definition 12.2 The basin B of a Conley attractor A of the IFS F is the largest open
set U such that (2) in Definition 12.1 is true.

Definition 12.3 The dual repeller of a Conley attractor A of the IFS F is the set
A∗ := X\B where B is the basin of A.

Theorem 12.4 gives equivalent characterizations of a Conley attractor.

Theorem 12.4 For an IFS F on a compact metric space X, a compact set A is a
Conley attractor of F if and only if either of the following two equivalent conditions
hold:

1. there is an open set U ⊂ X, with A ⊂ U, such that A =⋂
K≥1

⋃
k≥K Fk(U );

2. there is an open set U ⊂ X, with A ⊂ U, such that F(U ) ⊂ U o and A =⋂∞
k=0 Fk(U ).

A simple proof of Theorem 12.4 can be found in [36], but greater generality and
other characterizations of Conley attractors and related entities appear in [81,91,92].

The empty set is always a Conley attractor of an IFS, and X is an attractor if F
contains at least one surjective function. There exist IFSs, even consisting of a single
function on the circle, that have infinitely many Conley attractors [36]. An attractor
in the sense of Definition 2.2 is a Conley attractor, but a nonempty Conley attractor is
not necessarily an attractor in the sense of Definition 2.2, even for the case of an IFS
consisting of a single function on the circle.

The following theorem expresses a symmetrical relationship between Conley attrac-
tors and dual repellers.

Theorem 12.5 Let F be an invertible IFS on a compact metric space X. If A is a
Conley attractor of F with basin B, then A∗ := X\B is a Conley attractor of F−1

with basin X\A.
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If F is contractive with attractor A, then F possesses a unique dual repeller A∗ = ∅.
Recall that some examples of attractor–repeller pairs are exhibited in Sect. 2. A pro-
jective IFS that possesses an attractor that avoids a hyperplane always has a nonempty
dual repeller.

The notion of a chain for an IFS is based on the notion of a chain for a single
function [48].

Definition 12.6 Let ε > 0 and let F be an IFS on X. An ε-chain for F is a sequence
of points {xi }ni=0 , n > 0, in X such that for each i ∈ {0, 1, 2, . . . , n − 1} there is an
f ∈ F such that d(xi+1, f (xi )) < ε. A point x ∈ X is chain-recurrent for the IFS
F if, for every ε > 0, there is an ε-chain {xi }ni=0 for F such that x0 = xn = x . The
set of all chain recurrent points for F is denoted by R := RF .

We refer to the following as the Conley-McGehee-Wiandt (CMW) theorem due to
their analogs of Theorem 12.7 in the context of dynamical systems and iterated closed
relations. The present version could also be deduced from the work of Akin [1]; a
direct proof is given in [36].

Theorem 12.7 [CMW] Let F be an invertible IFS on a compact metric space X. If
U denotes the set of Conley attractors of F and RF denotes the set of chain recurrent
points of F , then

RF =
⋂

A∈U
(A ∪ A∗).

Finally Conley’s “landscape picture” is described, as it applies to an invertible IFS
F on a compact metric space. Suppose that A is an attractor of F .

Definition 12.8 A continuous function L : X → [0, 1] is a Liapunov function for
F if L( f (x)) ≤ L(x) for all f ∈ F , for all x ∈ X . It is called a strict Liapunov
function for F if it is a Liapunov function for F and L( f (x)) < L(x) whenever
x /∈ RF .

A chain component of an invertible IFS F is an equivalence class of the following
equivalence relation on RF . Points x and y are equivalent if and only if, for each
ε > 0, there is an ε-chain for F and an ε-chain for F−1, each of which contains both
x and y. See [92, Definition 9.26] for the definition of chain component when F is
not invertible.

Theorem 12.9 If F is an IFS on a compact metric space X, then there exists a strict
Liapunov function L for F . Moreover L(RF ) is a nowhere dense subset of [0, 1], and
L is constant on the chain components.

We have simplified the original statement of Theorem 12.9 in [126, Theorem 6.19]
by noting that a compact metric space is second countable.

Here is the “landscape picture” that we obtain. Given an IFS F with an attractor
A, there is a “landscape” or surface or real valued height function over X with all
the points of A lying at “sea level” at height 0. All other points are higher. If one
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follows any chaos game orbit, starting anywhere on X , one will either travel “downhill”
or stay at the same height. If one stays at the same positive height above sea-level
from one step to the next, then one is dancing around on a chain component that
is not the original attractor. If one follows an orbit that starts on the complement
of the chain recurrent set, then one will travel downhill until one reaches a chain
component.

By way of an example, consider the Julia set Jλ for the quadratic map z �−→ z2−λ
on the Riemann sphere Ĉ = R

2∪{∞}. For λ ∈ (−0.25, 0.75), it is well-known that Jλ

is a Jordan curve that divides Ĉ into two compact components, C0 := the component
of Ĉ\Jλ that contains the origin, and C∞ := the component of Ĉ\Jλ that contains
∞. Moreover, Jλ is an attractor of the IFS Fλ = { Ĉ; f1(z) = √z + λ, f2(z) =
−√z + λ}, where an appropriate definition of a branch cut needs to be made, see [19].
This IFS possesses the following Conley attractors

(i) A1 = Ĉ; (ii) A2 = C0; (iii) A3 = C∞; (iv) A3 = Jλ.

The corresponding dual repellers are

(i) A∗1 = ∅; (ii) A∗2 = {∞}; (iii) A∗3 = {Z0} ; (iv) A∗3 = {Z0} ∪ {∞},

where Z0 = 0.5+√1+ 4 λ/2. The chain recurrent set is RFλ
= {Z0} ∪ Jλ ∪∞. In

this example, a Liapunov function L : Ĉ→ [0, 1], as guaranteed by Theorem 12.9, is
continuous and such that L(Jλ) = 0, L(Z0) = L(∞) =1. What is the behaviour of
any chaos game orbit {zn}∞n=0? For z0 /∈ {Z0,∞} ∪ Jλ, the set of values {L(xn)}∞n=0
is strictly decreasing, and converges to 0 as n→∞.

13 Concluding remarks

This survey is focused on an investigation of the structure of IFSs, in the case where
the functions are non-conformal, as well as the more familiar conformal case. The
concepts in Sections 3 through 6 and Section 8 are basic to IFS theory—the role of
contractivity on the existence of an attractor, the representation and emergence of
the attractor, the addressing of points of the attractor, and the connectedness of the
attractor. Although the concepts are foundational, the results in those sections are
very recent and, in some cases, unexpected. The notion of the kneading invariant of
an IFS attractor, introduced in Section 7, is important because it links IFS theory
to dynamical systems. The ideas in Sections 9 through 12—fractal transformations,
tilings, continuation of fractal functions, and properties of attractor–repeller pairs of
a general IFSs—are perhaps the most promising for future research, both for theory
and for applications.
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