THE ATTRACTOR OF AN ITERATED FUNCTION SYSTEM - RECENT RESULTS

Andrew Vince

CHAOS 2019

ITERATED FUNCTION SYSTEM

Iterated function system: $\{X; f_1, f_2, \ldots, f_N\}$

 $f: \mathbb{X} \to \mathbb{X}$ continuous for all $f \in F$

Hutchinson operator: $F : \mathbb{H}(\mathbb{X}) \to \mathbb{H}(\mathbb{X})$

$$F(B) = \bigcup_{f \in F} f(B)$$

Attractor $A \in \mathbb{H}(\mathbb{X})$

- F(A) = A
- There is an open set U such that A ⊂ U ⊂ X and for any compact set B ⊂ U :

$$A=\lim_{k\to\infty}F^k(B).$$

$$F(A) = \bigcup_{f \in F} f(A) = A$$

$$\lim_{k\to\infty}F^k(B)=A$$

TOPICS

- When does an IFS have an attractor?
- Transition phenomena
- Fractal transformations
- IFS tilings

WHEN DOES AN IFS HAVE AN ATTRACTOR?

Theorem (Hutchinson 1981)

If each function in an IFS is a contraction, then the IFS has a unique attractor. Moreover, the basin of attraction is $\mathbb{X}.$

WHEN DOES AN IFS HAVE AN ATTRACTOR?

Theorem (Hutchinson 1981)

If each function in an IFS is a contraction, then the IFS has a unique attractor. Moreover, the basin of attraction is $\mathbb{X}.$

- What is the role of contractivity?
- Does a converse of Hutchinson's Theorem hold?

affine IFS: \mathbb{R}^n f(x) = Lx + aMöbius IFS: $\widehat{\mathbb{C}}$ $f(z) = \frac{az+b}{cz+d}$ projective IFS: $\mathbb{P}^n := \mathbb{R}^{n+1} \setminus \{0\} / \sim$ f(x) = Lx

where $(x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n)$ for all nonzero $\lambda \in \mathbb{R}$.

4 B K 4 B K B

Attractor and repeller of a projective plane IFS:

Attractors of Möbius IFSs:

-

An IFS on a complete metric space X is called contractive if there is a metric d on a nonempty open set $U \subseteq X$ giving the same topology as the original metric on X and such that each function in the IFS is a contraction on U with respect to d.

Theorem

- **1** An affine IFS has an attractor if and only if it is contractive on \mathbb{R}^n .
- **2** A Möbius IFS has an attractor $A \neq \mathbb{C}$ if and only if it is contractive on some nonempty open proper subset of $\widehat{\mathbb{C}}$.
- A projective IFS has an attractor avoiding a hyperplane if and only if it is contractive on the closure of some some nonempty open set.

Minkowski metric (affine case)

•

If K is a convex body, then C := K - K is a centrally symmetric convex body. Let

$$d(x, y) = \|x - y\|_{\mathcal{C}} \quad \text{where} \quad \|x\|_{\mathcal{C}} = \inf\{\lambda \ge 0 \, | \, x \in \lambda \mathcal{C}\}$$

 $\|x\|_{C} = \inf\{\lambda \ge 0 \,|\, x \in \lambda C\}$

 $\|x\|_{\mathcal{C}} = \inf\{\lambda \ge 0 \,|\, x \in \lambda \mathcal{C}\}$

Hilbert metric (projective case)

For a convex body $K \subset \mathbb{P}^n$ let

$$d_{\mathcal{K}}(x,y) := \log R(a,b,x,y) = \log \left(\frac{|ay| |bx|}{|ax| |by|} \right).$$

(Möbius case)

$$d_U(x,y) = \max_{z \notin U} \log \frac{|z-x|}{|z-y|} + \max_{z \notin U} \log \frac{|z-y|}{|z-x|}$$

э

PHASE TRANSITION

joint spectral radius

$$\sigma = i_1 i_2 \cdots i_k \qquad \qquad L_{\sigma} = L_{i_1} \circ L_{i_2} \circ \cdots \circ L_{i_k}$$

$$\rho_k = \sup_{\sigma} \rho(L_{\sigma}) \qquad \rho = \lim_{k \to \infty} (\rho_k)^{1/k}$$

Theorem A compact affine IFS \mathcal{F} on \mathbb{R}^n has an attractor if and only if $\rho(\mathcal{F}) < 1$. If $\rho(\mathcal{F}) > 1$, then no nonempty bounded set A exists such that F(A) = A.

Linear Case:

If $\rho(F) < 1$, then the attractor is a single point; if $\rho(F) > 1$, then there is no attractor.

Theorem An irreducible linear IFS \mathcal{F} with $\rho(\mathcal{F}) = 1$ has a compact invariant set that is centrally symmetric and star-shaped.

PHASE TRANSITION

FRACTAL TRANSFORMATION

$$[N] = \{1, 2, 3, \dots, N\}$$

code space
$$\mathbb{I} = \{\sigma = \sigma_1 \sigma_2 \sigma_3 \cdots : \sigma_n \in [N] \text{ for all } n\}$$

The coding map $\pi : \mathbb{I} \to A$

$$\pi(\sigma) = \lim_{k \to \infty} f_{\sigma_1} \circ f_{\sigma_2} \circ \cdots \circ f_{\sigma_k}(B)$$

section:

$$\pi:\mathbb{I}\to A$$
$$\tau:A\to\mathbb{I}$$

$$\pi \circ \tau = \mathsf{id}$$

ANDREW VINCE THE ATTRACTOR OF AN ITERATED FUNCTION SYSTEM - RECENT RESULTS

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

section:

$$\pi:\mathbb{I}\to A$$
$$\tau:A\to\mathbb{I}$$

$$\pi \circ \tau = \mathsf{id}$$

$$F = \{f_1, f_2, ..., f_N\} \qquad \qquad G = \{g_1, g_2, ..., g_N\}$$

$$T_{FG}: A_F \to A_G$$

 $T_{FG} = \pi_G \circ \tau_F$

・ロト・日本・日本・日本・日本・日本

Example

3-D Example

E > < E
</p>

Hilbert Space Filling Curve

$$F = \left\{ \mathbb{R}; f_i(x) = \frac{x+i-1}{4}, i = 1, 2, 3, 4 \right\}$$

$$G = \left\{ \mathbb{R}^2; g_i, i = 1, 2, 3, 4 \right\}$$

Area Preserving Fractal Homeomorphism

Global Area Preserving Fractal Homeomorphisms

TILINGS FROM A GRAPH IFS

Archimedean tilings

• non-periodic: There is no translational symmetry.

- non-periodic: There is no translational symmetry.
- repetitive:

For every finite patch P, there is R > 0 such that a copy of P appears in every disk of radius R.

- non-periodic: There is no translational symmetry.
- repetitive:

For every finite patch P, there is R > 0 such that a copy of P appears in every disk of radius R.

• self-similar:

There is a similarity transformation $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that, for for every $t \in T$, the larger tile $\phi(t)$ is in turn tiled by tiles in T.

Penrose tiling

60

3 × 4 3 ×

A self-similar tiling is a tiling of the plane with the properties:

- 1 finitely many tiles up to congruence
- Quasiperiodic
- 8 self-similar

A self-similar tiling is a tiling of the plane with the properties:

- 1 finitely many tiles up to congruence
- 2 quasiperiodic
- 8 self-similar

Graph Iterated Function System

A parameter is a reverse infinite path in the graph.

Graph Iterated Function System

A parameter is a reverse infinite path in the graph.

Theorem. For infinitely many parameters P, the tiling T(P) is a self-similar tiling.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

E

・ロト ・部ト ・ヨト ・ヨト

Э

ANDREW VINCE THE ATTRACTOR OF AN ITERATED FUNCTION SYSTEM - RECENT RESULTS

A ₽

(3)

э

э

・ロト ・部ト ・ヨト ・ヨト

Э

▲ロト ▲御 ▶ ▲ 注 ▶ ▲ 注 ▶

э