THE ATTRACTOR OF AN ITERATED FUNCTION SYSTEM - RECENT RESULTS

Andrew Vince

CHAOS 2019
Iterated Function System

Iterated function system: \(\{X; f_1, f_2, \ldots, f_N\} \)

\[f : X \rightarrow X \quad \text{continuous for all} \quad f \in F \]

Hutchinson operator: \(F : \mathbb{H}(X) \rightarrow \mathbb{H}(X) \)

\[F(B) = \bigcup_{f \in F} f(B) \]

Attractor \(A \in \mathbb{H}(X) \)

- \(F(A) = A \)
- There is an open set \(U \) such that \(A \subset U \subset X \) and for any compact set \(B \subset U \):
 \[A = \lim_{k \to \infty} F^k(B). \]
\[F(A) = \bigcup_{f \in F} f(A) = A \]

\[\lim_{k \to \infty} F^k(B) = A \]
Topics

- When does an IFS have an attractor?
- Transition phenomena
- Fractal transformations
- IFS tilings
When does an IFS have an attractor?

Theorem (Hutchinson 1981)

If each function in an IFS is a contraction, then the IFS has a unique attractor. Moreover, the basin of attraction is \mathbb{X}.
When does an IFS have an attractor?

Theorem (Hutchinson 1981)

If each function in an IFS is a contraction, then the IFS has a unique attractor. Moreover, the basin of attraction is \mathbb{X}.

- What is the role of contractivity?
- Does a converse of Hutchinson’s Theorem hold?
affine IFS: \(\mathbb{R}^n \) \(f(x) = Lx + a \)

Möbius IFS: \(\hat{\mathbb{C}} \) \(f(z) = \frac{az + b}{cz + d} \)

projective IFS: \(\mathbb{P}^n := \mathbb{R}^{n+1} \setminus \{0\}/\sim \) \(f(x) = Lx \)

where \((x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n) \) for all nonzero \(\lambda \in \mathbb{R} \).
Attractor and repeller of a projective plane IFS:
Attractors of Möbius IFSs:
An IFS on a complete metric space \mathbb{X} is called **contractive** if there is a metric d on a nonempty open set $U \subseteq \mathbb{X}$ giving the same topology as the original metric on \mathbb{X} and such that each function in the IFS is a contraction on U with respect to d.
Theorem

1. An affine IFS has an attractor if and only if it is contractive on \mathbb{R}^n.

2. A Möbius IFS has an attractor $A \neq \mathbb{C}$ if and only if it is contractive on some nonempty open proper subset of $\hat{\mathbb{C}}$.

3. A projective IFS has an attractor avoiding a hyperplane if and only if it is contractive on the closure of some nonempty open set.
Minkowski metric (affine case)

If K is a convex body, then $C := K - K$ is a centrally symmetric convex body. Let

$$d(x, y) = \|x - y\|_C \quad \text{where} \quad \|x\|_C = \inf\{\lambda \geq 0 \mid x \in \lambda C\}$$
\[\|x\|_C = \inf\{\lambda \geq 0 \mid x \in \lambda C\} \]
\[\|x\|_C = \inf\{\lambda \geq 0 \mid x \in \lambda C\} \]
Hilbert metric (projective case)

For a convex body $K \subset \mathbb{P}^n$ let

$$d_K(x, y) := \log R(a, b, x, y) = \log \left(\frac{|ay| |bx|}{|ax| |by|} \right).$$
(Möbius case)

\[d_U(x, y) = \max_{z \notin U} \log \frac{|z - x|}{|z - y|} + \max_{z \notin U} \log \frac{|z - y|}{|z - x|} \]
Phase Transition

joint spectral radius

\[\sigma = i_1 i_2 \cdots i_k \quad \quad L_\sigma = L_{i_1} \circ L_{i_2} \circ \cdots \circ L_{i_k} \]

\[\rho_k = \sup_{\sigma} \rho(L_\sigma) \quad \quad \rho = \lim_{k \to \infty} (\rho_k)^{1/k} \]

Theorem A compact affine IFS \(F \) on \(\mathbb{R}^n \) has an attractor if and only if \(\rho(F) < 1 \). If \(\rho(F) > 1 \), then no nonempty bounded set \(A \) exists such that \(F(A) = A \).
Phase Transition

Linear Case:

If $\rho(F) < 1$, then the attractor is a single point; if $\rho(F) > 1$, then there is no attractor.

Theorem An irreducible linear IFS \mathcal{F} with $\rho(\mathcal{F}) = 1$ has a compact invariant set that is centrally symmetric and star-shaped.
Phase Transition

Andrew Vince

The Attractor of an Iterated Function System - Recent Results
Fractal Transformation

$[N] = \{1, 2, 3, \ldots, N\}$

code space $\mathbb{I} = \{\sigma = \sigma_1 \sigma_2 \sigma_3 \cdots : \sigma_n \in [N] \text{ for all } n\}$

The coding map $\pi : \mathbb{I} \rightarrow A$

$$\pi(\sigma) = \lim_{k \rightarrow \infty} f_{\sigma_1} \circ f_{\sigma_2} \circ \cdots \circ f_{\sigma_k}(B)$$
section:

\(\pi : \mathbb{I} \rightarrow A \)

\(\tau : A \rightarrow \mathbb{I} \)

\[\pi \circ \tau = \text{id} \]
section:

\[\pi : \mathbb{I} \to A \]
\[\tau : A \to \mathbb{I} \]

\[\pi \circ \tau = \text{id} \]

\[F = \{ f_1, f_2, \ldots, f_N \} \]
\[G = \{ g_1, g_2, \ldots, g_N \} \]

\[T_{FG} : A_F \to A_G \]
\[T_{FG} = \pi_G \circ \tau_F \]
Example
3-D Example
Hilbert Space Filling Curve

\[F = \left\{ \mathbb{R}; \quad f_i(x) = \frac{x + i - 1}{4}, \quad i = 1, 2, 3, 4 \right\} \]

\[G = \left\{ \mathbb{R}^2; \quad g_i, \quad i = 1, 2, 3, 4 \right\} \]

Andrew Vince

The Attractor of an Iterated Function System - Recent Results
Area Preserving Fractal Homeomorphism

The Attractor of an Iterated Function System - Recent Results
Global Area Preserving Fractal Homeomorphisms
Tilings from a Graph IFS

Archimedean tilings

4:4:4:4 p4m
4:8:8 p4m
3:3:3:4 cmm
3:3:3:4 p4g
3:3:3:3 p6m
3:6:36 p6m
3:12:12 p6m
6:6:6 p6m
3:4:6:4 p6m
4:6:12 p6m
3:3:3:6 p6m
• **non-periodic:** There is no translational symmetry.
- **non-periodic**: There is no translational symmetry.

- **repetitive**:

 For every finite patch P, there is $R > 0$ such that a copy of P appears in every disk of radius R.
• **non-periodic:** There is no translational symmetry.

• **repetitive:**

 For every finite patch P, there is $R > 0$ such that a copy of P appears in every disk of radius R.

• **self-similar:**

 There is a similarity transformation $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that, for every $t \in T$, the larger tile $\phi(t)$ is in turn tiled by tiles in T.
Penrose tiling
A **self-similar tiling** is a tiling of the plane with the properties:

1. finitely many tiles up to congruence
2. quasiperiodic
3. self-similar
A self-similar tiling is a tiling of the plane with the properties:

1. finitely many tiles up to congruence
2. quasiperiodic
3. self-similar
Graph Iterated Function System

A parameter is a reverse infinite path in the graph.
Graph Iterated Function System

A parameter is a reverse infinite path in the graph.

Theorem. For infinitely many parameters P, the tiling $T(P)$ is a self-similar tiling.
Andrew Vince
The Attractor of an Iterated Function System - Recent Results
Andrew Vince
The Attractor of an Iterated Function System - Recent Results