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ABSTRACT 

A generalization of the chromatic number of a graph is introduced such 
that the colors are integers modulo n, and the colors on adjacent vertices 
are required to be as far apart as possible. 

1. INTRODUCTION 

The chromatic number x(G) of a graph is the least number of colors required 
for a proper vertex coloring of G. A generalization x,(G), k = 1,2,  . . . of the 
chromatic number will be given such that the ordinary chromatic number x(G) 
is one of the x,(G). In an ordinary coloring, colors 1,2, . . . , k are assigned to 
the vertices so that the colors on adjacent vertices are at least 1 unit apart. In 
x , (G) ,  which is formally defined in Section 2, colors 1,2, . . . , k are assigned 
so that the colors on adjacent vertices are as far apart as possible. A new invari- 
ant x*(G) = infk,,x,(G) can then be thought of as the “best possible’’ coloring. 
Consider an n-cycle C, , for example. Whereas the chromatic number of an odd 
cyle is 3, intuitively it should be “almost 2.” In fact, X*(C~,,+~) = 2 + ( l / n ) .  
Variations on the chromatic number have previously been introduced [ 1-31, but 
this natural generalization seems not to have been investigated. 

Let G be a connected graph with n 2 2 vertices. It is not surprising that 
x*(G) = lim,..;X,(G) (Corollary 2), but in Section 2 it is shown that in com- 
puting x*, only the first n numbers x, ,  . . . ,xn need be considered: x*(G) = 
min,,,,,X,(G). Basic properties of x* are given in Section 3,  including its rela- 
tionship to the ordinary chromatic number and the clique number. It is shown 
that x*(G)  2 2 with equality if and only if G is bipartite. Furthermore, if q is 
any rational number greater than or equal to 2, then a graph G, is constructed 
for which x*(G,) = q.  

2. k-CHROMATIC NUMBERS 

Let zk denote the set of integers modulo k, and for any real number x ,  let IxIk 
denote the circular norm of x, i.e., the distance from x to the nearest multiplc of 
k. For example, 1215 = 2 = 13Is. Throughout this paper G will be a finite con- 
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nected graph with vertex set V. A &-coloring of G is a function c: V + Zk, 
where zk is the set of integers modulo k .  For a Zk-coloring c let 

2 2 .  
k 

2- 
k 

min (~(4 - c(u)lk tW1 $(c) = 
u adj u 

If the denominator is 0, then set $(c) = =. The denominator is the least dis- 
tance between adjacent vertices of G .  Hence +(c) is the number of colors used 
per unit color separation at adjacent vertices. Let ck = c,(G) denote the set of 
all Z,-colorings of G. Define the k-chromatic number &(G) as the least pos- 
sible $(c): 

2 2 .  
k 

2- 
k 

xk(G)  = min $(c) = 
CECl, max min Ic(u) - c(v)Ik Lk/2J 

cECk uadJv 

In an ordinary coloring, we ask that colors on adjacent vertices be distinct, i.e., 
one unit apart. In a Zk-coloring, we ask for more-that the colors on adjacent 
vertices be as far apart as possible. 

Example 1. Consider the 5-cycle. The first few k-chromatic numbers are 
x, = m, xz = =, x 3  = 3, x4 = 3,  x5 = 2;. It is shown below (Theorem 2) that 
the k-chromatic number is never less than 2;. The ordinary chromatic number 
is 3. 

Example 2. Consider the graph Go in Figure 1. The first few k-chromatic num- 
bers are x, = w, x2 = =, x 3  = =, x4 = 4, x5 = 5 ,  x6 = 6 ,  x7 = 3;. The val- 
ues of the 1-chromatic through 4-chromatic numbers in this example are made 
clear in Theorem 1. The “best” coloring in the list is the 2,-coloring, giving a 7- 
chromatic number of 3;. Theorem 2 again implies that this is actually the least 
k-chromatic number for any value of k. Notice that the value 34  is less than the 

1 

7 2 

FIGURE 1. x*(G,) = 3;. 
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ordinary chromatic number 4. A referee has pointed out that the 2,-coloring 
given in Figure 1 is unique up to automorphisms of the graph and addition of a 
constant to each vertex (modulo 7). 

The first result implies that the k-chromatic numbers generalize the ordinary 
chromatic number x in the sense that x is one of the x , .  

Theorem 1. If k = x ( G )  then x,(G) = x ( G ) .  If k < x ( G )  then x t ( G )  = 03. 

Proof. If x ( G )  = k there is an ordinary coloring c: V + 2, such that adja- 
cent vertices are different colors. Then minlc(u) - c(u)l,, 2 1. Therefore 
x t ( G )  5 k = x ( G ) .  To prove equality, assume the contrary: k/minlc(u) - 
c(u)l, = x,(G) < k for some Z,-coloring c. Then minlc(u) - c(u)l, 2 2 for all 
adjacent vertices u and u. Consider the Z,-,-coloring c’, where c’(u) = c(u) if 
c(u) # 0 and c’(u) = 1 if c(u) = 0. Then c’ is a proper k-1 coloring of G, con- 
tradicting x ( G )  = k.  

If k < x ( G ) ,  then for any coloring c: V +  Z, there are two vertices u and u 
such that c(u) = c(u). Hence minlc(u) - c(u)l,, = 0 and x, (G)  = =. I 

Theorem 2. For a graph G we have x, (G)  + 1 2 x t + , ( G ) .  

The next result is somewhat surprising. It states that, for a graph with n ver- 
tices, the least k-chromatic number occurs for k 5 n. The proof relies on real 
valued functions. 

Theorem 3. 
k, 5 n such that xto(G) f x k ( G )  for all k = 1 ,2 , .  . . . 

Let G be a graph with n vertices. There exists a natural number 

Proof. Let F denote the family of all functions on the vertex set of G that 
takes real values between 0 and 1. For f E F define M ( f )  = minUadJ,lf(u) - 
f(u)l, 5 i. Let X = l/sup,,,M(f). Then x, (G)  = k/max,,,, minuadJ,,lc(u) - 
c(v)lt = l/max,,,, minuadju(l/k) I c ( u )  - c(v)lk = l/max,,,, m i n u a d j u ~ ( c ( u ) /  

k )  - (c(u)/k)l, 2 X. The last equality results from scaling, i.e., ( I l k )  la(, = 
( a / k ) ,  for all a E 2,. It is now sufficient to show that X 2 x t ( G )  for some 
k 5 n. This is done in several steps. 

We first claim that there exists a function c$ E F such that X = l/M(c$), 
i.e., that the supremum of M is achieved. Since the values off are modulo 1, f 
can be regarded as an n-tuples of real numbers and M ( f ) :  S ’  X S ’  x x 
S’  + R as a function from the product of n copies of the 1-sphere to the reals. 
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This function, defined on a compact domain, is clearly continuous, and there- 
fore achieves a maximum. 

For a real functionf: V + R ,  let H ( f )  be a directed graph on the same vertex 
set as G and defined as follows: There is an arc ( u ,  u )  directed from u to v if 

(1) M(f) = If(4 - f (u) I ,  

and 

(2) There is an E > 0 such that M(h)  < M ( f )  for any function h such that 

The first condition says that the minimum is achieved between vertices u and 
u.  The second condition says that slightly increasing the value of f  at u de- 
creases M ( f ) .  

It is next shown that for any functionf there is a function g such that H ( g )  is 
a connected graph and M ( f )  = M ( g ) .  Proceed by induction. Assume that H is 
disconnected and H, is a connected component of H with vertex set V,. Then 
for any adjacent u E V, and u E V - V, it holds that If(u) -f(u)ll > M ( f ) .  
Uniformly decreasing all values of f ( x ) ,  x E V,, until the first occurrence of 
If(u) -f(u)l, = M ( f )  for some adjacent u E V ,  and u E V - V,, introduces 
an arc joining vertex u to u. This decreases the number of components of H .  In 
the remainder of the proof H will be assumed connected. 

The graph H(4) contains a directed cycle. By way of contradiction, as- 
sume H(4) contains no directed cycle. Then there exists a vertex uI with out- 
degree (uI) = 0. Removing vI and repeating this argument gives an ordering of 
the vertices (ul, . . . , u,) such that, for all i, outdegree (u i )  = 0 in the subgraph 
induced by vertices {u , ,  . . . , un} .  Define f: V + R by f(u,) = +(ui )  + ~ / i .  
Then If(u) -f(u)ll > I+(u) - 4(u)I ,  for vertices u and u adjacent in H ( 4 ) ,  
and for E > 0 sufficiently small, If(u) - f(u)ll > M ( 4 )  for nonadjacent pairs 
of vertices. Then for sufficiently small E > 0,  M ( f )  > M(+), contradicting the 
maximality of 4. 

h(x) = f ( x )  for all x = u andf(u) < h(u) < f(u) + E .  

Each arc (u ,  u )  in H(4) implies that 

Let u,  , . . . , uk0 be a directed cycle in H(4). We will show that X 2 xko.  Apply 
(1) consecutively to each arc of this cycle and sum to obtain that k , M ( 4 )  = d, 
where d is an integer. Let u, be some fixed vertex and assume, without loss of 
generality, that 4(uo) = 0. If 4(uo) # 0 then 4(uo) can be subtracted (modulo 1) 
from all values of 4. Let u,, u , ,  . . . , up be a path (not necessarily directed) from 
vertex u, to an arbitrary vertex u = u p .  Then for 0 5 i < p ,  + ( u , + ~ )  - +(u,)  = 
k M ( 4 )  or k ( M ( 4 )  - 1). Summing this formula successively for each vertex 
u,, u I ,  . . . , up- ,  along the path yields +(up) = aM(4) + b = (ad/k,) + b, 
where Q, b, and d are integers. In other words, Q(up) = f ( u p ) / k  (mod 1) for 
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3. STAR CHROMATIC NUMBER 

In light of Theorem 2, define the star chromatic number x*(G) as the least of 
the 2,-chromatic numbers. If G is a connected graph with n vertices, 

x*(G) = min x k ( G ) .  
I s k s n  

In a sense, x*(G) corresponds to the best possible coloring of G ,  which may be 
better than the coloring corresponding to the ordinary chromatic number. In 
fact, Theorem 3 shows more-that x* cannot even be improved if the color- 
ings are allowed to take on any real values (using the circular norm between col- 
ors). In Examples 1 and 2 of Section 2 ,  the star chromatic numbers are 2; and 
3f, respectively, whereas the ordinary chromatic numbers are 3 and 4. The next 
result states that the star chromatic number cannot be too far from the ordinary 
chromatic number. When the graph is understood, we abbreviate x = x ( G ) ,  
X k  = Xn(G), and X* = X*(G). 

Theorem 4. For all graphs x - 1 < x* I x .  

Proof. The second inequality follows from Theorem 1. If k = x ,  then 
x* 5 x k  = x .  For the first inequality assume, by way of contradiction, that 
k,/min Ic(u) - c(u)l,, = x* I x - 1 for some Z,,-coloring c. This implies 
that Ic(u) - c(u)lko 2 k , / (x  - 1 )  for all adjacent vertices u and u. Now define 
a related coloring c r  by c‘(u) = Ic(u)(x - l)/kol. We show that cr  is a proper 
x - 1 coloring of G ,  contradicting the fact that x ( G )  is the chromatic number 
of G .  Since 1 5 c(u) 5 k, then 1 I c’(u) I x - 1. Also, if u and u are adja- 
cent, then I c ’ ( u )  - c’(u)l  = Irc(u)(x - l ) / k o l  - r c ( u ) ( x  - l) /koll  > 
( (c(u) - c(u))(x - l)/k,l - 1 2 0. The first inequality follows from the fact 
that Ira1 - rbll > la - bl - 1 for all resl a and b. I 

Lemma 1. 
x*(G) x * W .  

If H is a subgraph of G then x , ( G )  2 x , ( H )  for all k ,  and 

Proof. This is immediate from the fact that any Z,-coloring c: V(G) Z, 
can be restricted to such a coloring on V(H).  I 

Theorem 5. 
x*(G) 2 2 with equality if and only if G is bipartite. 

Let G be a connected graph with at least two vertices. Then 

Proof. If follows directly from the definitions that x*(G) 2 2. If G is bi- 
partite then, by Theorem 4, x*(G) 5 x ( G )  = 2 .  Therefore x*(G) = 2 .  Con- 



556 JOURNAL OF GRAPH THEORY 

versely, if x*(G) = 2, then again by Theorem 4, 2 = x*(G)  > x ( G )  - 1 .  
Therefore x ( G )  < 3, which means that x ( G )  = 2. Hence G is bipartite. I 

Define a graph G , , , ,  2 5 2m < n, as follows: The vertex set is V = 
{1 ,2 , .  . . , n}. Vertex i is adjacent to vertex j if and only if li - j l ,  2 m .  Note 
that G I , ,  = K , ,  the complete graph, and G,,2,+l - C2,,,+], the odd cycle. 
Theorem 6 implies that the range of x* is the set of all rational numbers satisfy- 
ing the necessary condition x* 2 2 of Theorem 5.  The proof requires the fol- 
lowing lemma: Let X = { 1,2,  . . . , n} be a set of points uniformly distributed 
on a circle S'  of circumference n such that consecutive points are 1 unit apart. 
For a positive integer m < n/2, call a functionf: X + S '  m-expanding for 2, 
if l f( i)  - f(j)l, > m whenever ( i  - j l ,  2 m. (Note that If(i) - f(j)I, = m is 
not allowed here. ) 

- 

Lemma 2. 
not exist an m-expanding function for Z ,  . 

Let m and n be integers such that 1 5 m < n/2. Then there can- 

Proof. Let n = mq + r, 0 5 r < m ,  and m = rq' + s, 0 5 s < r. First 
consider the case r = 0. Assume, by way of contradiction, that an m- 
expanding function exists. Then all pairs of points among { m ,  2m, . . . ,9m} are 
at a distance greater than or equal to m. Hence all pairs of points among 
Cf(m) , f (2m) ,  . . . ,f(qm)} are at a distance greater than m .  But this is impossible. 

Now assume r > 0. We proceed by induction on m .  We just proved that the 
theorem is true if m is a divisor of n and, in particular, if m = 1 .  It will be 
shown that iff is m-expanding, then f is s-expanding. If s = 0, then this is an 
immediate contradiction. If s > 0, then 1 5 s < m and the lemma would fol- 
low by induction. A function f is called r-conrracring if If(i) - f(j)l, < r 
whenever li - j I n  5 r. It will be shown that iff is m-expanding then f is r-con- 
tracting, and iff is m-expanding and r-contracting, then f is s-expanding. Let i 
a n d j  be any pair of points in X with li - j l ,  5 r. Consider the set A = { i ,  i + 
m ,  . . . , i  + (q  - I)m} and let the closest points tof(i)  inf(A) (one on each 
side) be f(u) and f(u). Since all pairs of points in A are at a distance greater 
than or equal to m, and since f is m-expanding, I f ( i )  - f ( u ) l ,  > m and 
If(j) - f(u)l, > m .  Consider the set B = { j ,  i + m ,  . . . , i + (9 - l)m}, 
which is exactly the set A with the single point i replaced by j .  The same argu- 
ment as above shows that If(j) - f ( k ) l ,  > m for all k E B - { j } .  Points f(u) 
andf(u) divide S' into two arcs. We claim thatf(i) andf(j) lie on the same arc. 
If not, the pointsf(A) U Cf(j)} divide S' into q + 1 arcs, each of length greater 
than m. Thus n 2 (q + 1)m > qm + r = n, a contradiction. Without loss of 
generality it may now be assumed that f(u) < f ( i )  5 f(j) < f(u). The assump- 
tion that f is m-expanding implies that f (u)  - f ( i )  < 2m + r. Therefore 
f ( i )  - f(j) < 2m + r [ ( f ( i )  - f(u)) + (f(u) - f(j))] < 2m + r - m - rn = 
r. and f is r-contracting. 

To show that f is s-expanding, let i and j be any pair of points in X with 
i - j l n  2 s. If Ii - j l ,  2 m ,  then If(i) - f(j)l, > m > s, because f is m- 

expanding. So assume, without loss of generality, that s 5 i - j < m. Let u be 
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the point of X such that li - j l ,  + Ij - aI, = li - al, = m .  Consider the least 
integer a such that Q + ar < j I a + (a + 1)r. Since Ij - aI, 5 m - s = 
rq', note that a + 1 5 q'.  Because f is m-expanding, I f ( i )  - f(a)l, > m .  Be- 
cause f is r-contracting, lf(j) - f(a)l, < (a  + 1)r. Therefore \f(i) - f(j)\,, > 
m - (a  + 1)r = (q'r + s) - (a  + l ) r  = (q' - a - 1)r + s 2 s, so thatfis 
s-expanding. Since s < m ,  this contradicts the induction hypothesis and f is, 
therefore, not f-expanding. I 

Theorem 6 For 1 5 m < n / 2  we have x*(G,,,) = n / m .  

Proof. We must show that min,,,,, min, $(f) = min,,,,, x , ( G )  = 
x*(G)  = n / m .  For this it is sufficient to show that $0 = s/rnin,,,,,\f(i) - 
f(j)l, 2 n / m  for any 2,-coloring f of Gm,, .  This is equivalent to showing 
m 1 minlnf(i)/s - nf ( j ) / s  1,. Define g( i ) )  = nf(i)/s ,  and by way of contradic- 
tion, assume that ( g ( i )  - g( j ] l ,  > m for all adjacent pairs of vertices i and j .  
But i and j are adjacent in G,,,, if and only if li - j l  1 m .  The result now fol- 
lows from Lemma 2. I 

The following result is a direct consequence of Theorem 6 and the fact that 
K,, = GI,, ,  and Ch+, = G,,2n+l. 

Corollary 1. For the complete graphs and odd cycles 

(a) X * ( K )  = n 
(b) X*(ck+I) = 2 + (l /n>. 

A clique is a complete subgraph of G. The clique number w(G)  is the maxi- 
mum order of a clique in G. It is obvious that x ( G )  2 w ( G ) .  In the case x ( G )  = 
w(G),  the star chromatic and the ordinary chromatic numbers coincide. 

Theorem 7. If x ( G )  = w(G), then x*(G) = x ( G ) .  

Proof. Assume that x ( G )  = w ( G ) .  Use Theorems 4, Lemma 1, and 
Corollary 1, respectively: o(G) = x ( G )  2 x*(G)  2 x*(K& = w(G).  I 

Remark. The converse does not hold. There are graphs for which x* = x ,  
but x* # w .  One example is the Grotzsch graph, the smallest 4-chromatic 
graph with no triangles, and another is the 3-chromatic Petersen graph. In both 
cases the star chromatic number is obtained from the usual 4 and 3-colorings, 
respectively. 

Theorem 4 bounds the star chromatic number in terms of the ordinary chro- 
matic number. Theorem 8 gives bounds on the star chromatic number in terms 
of the 2,-chromatic numbers. 

Lemma 3. 
l / x j  + l / j .  

For any natural numbers j ,  k we have l / x j  - l / k  < l / x t  < 
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Proof. By definition 1 /xk  = ( l / k )  max, min / c (u )  - c(u)\ , .  Let c be a 
Z,-coloring that achieves the maximum. Define a Zj-coloring c’ by 
c ’ ( u )  = L c ( u ) j / k J .  It is  sufficient to prove that ( l / k ) l c (u )  - c(u) l ,  < 
(1/j) Ic‘(u) - c’(u)l, + l / j  for all adjacent vertices u and u. Now ( l /k )  Ic(u) - 

( 1 / j )  Ic’(u) - c’(u)I, + l/j. The first equality is just a change of scale. The sec- 
ond inequality follows from the following fact about ordinary absolute value: 
la - bl - ltuj - LbJl < 1 for all real u and b. The lower bound is obtained by 
reversing the role of j and k .  

c(v)lt = ( l / j )  Ic(u)j/k - c(v)j/klj  < ( l / J  Itc(~)j/kJ - Lc(v)j/kJIj + (l /A = 

I 

Theorem 8. For any natural number k we have 

Proof. The upper bound is obvious from the definition of x* .  The lower 
bound follows from Lemma 3. I 

* Corollary 2. limk+- xk = x . 

Proof. The limit of both the upper and lower bound on x* in Theorem 8 is 
lim,+= Xk. I 

4. OPEN QUESTIONS 

Sections 2 and 3 discuss only basic properties of the star chromatic number. 
Many problems remain open, for example: 

1 .  What determines whether x* = x? 
2. Besides the odd cycles, what are the planar graphs G with 2 < x*(G) < 3? 

By results of the previous section, it is necessary that G be 3-chromatic 
and contain no triangles. 

3. What are some infinite families of planar graphs with 3 < x* < 4? Do 
all edge critical 4-chromatic graphs fall into this category? 

4. The k-chromatic numbers have algebraic structure not possessed by the 
ordinary chromatic number, namely that of Z,. In general, can the star 
chromatic number be applied to problems concerning the ordinary chro- 
matic number? 
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