Star Chromatic Number

Abstract

A generalization of the chromatic number of a graph is introduced such that the colors are integers modulo n, and the colors on adjacent vertices are required to be as far apart as possible.

1. INTRODUCTION

The chromatic number $\chi(G)$ of a graph is the least number of colors required for a proper vertex coloring of G. A generalization $\chi_{k}(G), k=1,2, \ldots$ of the chromatic number will be given such that the ordinary chromatic number $\chi(G)$ is one of the $\chi_{k}(G)$. In an ordinary coloring, colors $1,2, \ldots, k$ are assigned to the vertices so that the colors on adjacent vertices are at least 1 unit apart. In $\chi_{k}(G)$, which is formally defined in Section 2, colors $1,2, \ldots, k$ are assigned so that the colors on adjacent vertices are as far apart as possible. A new invariant $\chi^{\star}(G)=\inf _{k \geq 1} \chi_{k}(G)$ can then be thought of as the "best possible" coloring. Consider an n-cycle C_{n}, for example. Whereas the chromatic number of an odd cyle is 3 , intuitively it should be "almost 2 ." In fact, $\chi^{\star}\left(C_{2 n+1}\right)=2+(1 / n)$. Variations on the chromatic number have previously been introduced [1-3], but this natural generalization seems not to have been investigated.

Let G be a connected graph with $n \geq 2$ vertices. It is not surprising that $\chi^{\star}(G)=\lim _{k \rightarrow \infty} \chi_{k}(G)$ (Corollary 2), but in Section 2 it is shown that in computing χ^{\star}, only the first n numbers $\chi_{1}, \ldots, \chi_{n}$ need be considered: $\chi^{\star}(G)=$ $\min _{1 \leq k \leq n} \chi_{k}(G)$. Basic properties of χ^{\star} are given in Section 3, including its relationship to the ordinary chromatic number and the clique number. It is shown that $\chi^{\star}(G) \geq 2$ with equality if and only if G is bipartite. Furthermore, if q is any rational number greater than or equal to 2 , then a graph G_{q} is constructed for which $\chi^{\star}\left(G_{q}\right)=q$.

2. k-CHROMATIC NUMBERS

Let Z_{k} denote the set of integers modulo k, and for any real number x, let $|x|_{k}$ denote the circular norm of x, i.e., the distance from x to the nearest multiple of k. For example, $|2|_{s}=2=|3|_{s}$. Throughout this paper G will be a finite con-
nected graph with vertex set V. A Z_{k}-coloring of G is a function $c: V \rightarrow Z_{k}$, where Z_{k} is the set of integers modulo k. For a Z_{k}-coloring c let

$$
\psi(c)=\frac{k}{\min _{u \operatorname{adj} v}|c(u)-c(v)|_{k}} \geq \frac{k}{\lfloor k / 2\rfloor} \geq 2
$$

If the denominator is 0 , then set $\psi(c)=\infty$. The denominator is the least distance between adjacent vertices of G. Hence $\psi(c)$ is the number of colors used per unit color separation at adjacent vertices. Let $C_{k}=C_{k}(G)$ denote the set of all Z_{k}-colorings of G. Define the k-chromatic number $\chi_{k}(G)$ as the least possible $\psi(c)$:

$$
\chi_{k}(G)=\min _{c \in C_{k}} \psi(c)=\frac{k}{\max _{c \in C_{k}} \min _{u \operatorname{adj} v}|c(u)-c(v)|_{k}} \geq \frac{k}{\lfloor k / 2\rfloor} \geq 2 .
$$

In an ordinary coloring, we ask that colors on adjacent vertices be distinct, i.e., one unit apart. In a Z_{k}-coloring, we ask for more - that the colors on adjacent vertices be as far apart as possible.

Example 1. Consider the 5 -cycle. The first few k-chromatic numbers are $\chi_{1}=\infty, \chi_{2}=\infty, \chi_{3}=3, \chi_{4}=3, \chi_{5}=2 \frac{1}{2}$. It is shown below (Theorem 2) that the k-chromatic number is never less than $2 \frac{1}{2}$. The ordinary chromatic number is 3 .

Example 2. Consider the graph G_{0} in Figure 1. The first few k-chromatic numbers are $\chi_{1}=\infty, \chi_{2}=\infty, \chi_{3}=\infty, \chi_{4}=4, \chi_{5}=5, \chi_{6}=6, \chi_{7}=3 \frac{1}{2}$. The values of the 1 -chromatic through 4 -chromatic numbers in this example are made clear in Theorem 1. The "best" coloring in the list is the Z_{7}-coloring, giving a 7 chromatic number of $3 \frac{1}{2}$. Theorem 2 again implies that this is actually the least k-chromatic number for any value of k. Notice that the value $3 \frac{1}{2}$ is less than the

FIGURE 1. $\quad \chi^{\star}\left(G_{0}\right)=3 \frac{1}{2}$.
ordinary chromatic number 4. A referee has pointed out that the Z_{7}-coloring given in Figure 1 is unique up to automorphisms of the graph and addition of a constant to each vertex (modulo 7).

The first result implies that the k-chromatic numbers generalize the ordinary chromatic number χ in the sense that χ is one of the χ_{k}.

Theorem 1. If $k=\chi(G)$ then $\chi_{k}(G)=\chi(G)$. If $k<\chi(G)$ then $\chi_{k}(G)=\infty$.

Proof. If $\chi(G)=k$ there is an ordinary coloring $c: V \rightarrow Z_{k}$ such that adjacent vertices are different colors. Then $\min |c(u)-c(v)|_{k} \geq 1$. Therefore $\chi_{k}(G) \leq k=\chi(G)$. To prove equality, assume the contrary: $k / \min \mid c(u)-$ $\left.c(v)\right|_{k}=\chi_{k}(G)<k$ for some Z_{k}-coloring c. Then $\min |c(u)-c(v)|_{k} \geq 2$ for all adjacent vertices u and v. Consider the Z_{k-1}-coloring c^{\prime}, where $c^{\prime}(u)=c(u)$ if $c(u) \neq 0$ and $c^{\prime}(u)=1$ if $c(u)=0$. Then c^{\prime} is a proper $k-1$ coloring of G, contradicting $\chi(G)=k$.

If $k<\chi(G)$, then for any coloring $c: V \rightarrow Z_{k}$ there are two vertices u and v such that $c(u)=c(v)$. Hence $\min |c(u)-c(v)|_{k}=0$ and $\chi_{k}(G)=\infty$.

Theorem 2. For a graph G we have $\chi_{k}(G)+1 \geq \chi_{k+1}(G)$.
Proof. Let $c \in C_{k}$ be such that $\psi(c)=\chi_{k}(G) \neq \infty$. Define $c^{\prime}: V \rightarrow Z_{k+1}$ by $c^{\prime}(u)=c(u)$ for all $u \in V$. Then $\min _{u \text { adj } v}\left|c^{\prime}(u)-c^{\prime}(v)\right|_{k+1} \geq \min _{u \text { adju }} \mid c(u)-$ $\left.c(v)\right|_{k} \geq 1$. Therefore $\chi_{k}(G)=\psi(c)=k / \min _{u \text { adj } v}|c(u)-c(v)|_{k} \geq k /$ $\min _{u \text { adj }}\left|c^{\prime}(u)-c^{\prime}(v)\right|_{k+1}$; and $\chi_{k}(G)+1 \geq\left(k+\min _{u \text { adj }}\left|c^{\prime}(u)-c^{\prime}(v)\right|_{k+1}\right) /$ $\min _{u \text { adj } v}\left|c^{\prime}(u)-c^{\prime}(v)\right|_{k+1} \geq(k+1) / \min _{u \text { adj } v}\left|c^{\prime}(u)-c^{\prime}(v)\right|_{k+1}=\psi\left(c^{\prime}\right) \geq \chi_{k+1}(G)$.

The next result is somewhat surprising. It states that, for a graph with n vertices, the least k-chromatic number occurs for $k \leq n$. The proof relies on real valued functions.

Theorem 3. Let G be a graph with n vertices. There exists a natural number $k_{0} \leq n$ such that $\chi_{k_{0}}(G) \leq \chi_{k}(G)$ for all $k=1,2, \ldots$

Proof. Let F denote the family of all functions on the vertex set of G that takes real values between 0 and 1 . For $f \in F$ define $M(f)=\min _{u \text { adj }} \mid f(u)-$ $\left.f(v)\right|_{1} \leq \frac{1}{2}$. Let $X=1 / \sup _{f \in F} M(f)$. Then $\chi_{k}(G)=k / \max _{c \in c_{k}} \min _{u \text { adj } v} c(u)-$ $\left.c(v)\right|_{k}=1 / \max _{c \in c_{k}} \min _{u \text { adj }}(1 / k)|c(u)-c(v)|_{k}=1 / \max _{c \in c_{k}} \min _{u \text { adj } v} \mid(c(u) /$ $k)-\left.(c(v) / k)\right|_{1} \geq X$. The last equality results from scaling, i.e., $(1 / k)|a|_{k}=$ $|a / k|_{1}$ for all $a \in Z_{k}$. It is now sufficient to show that $X \geq \chi_{k}(G)$ for some $k \leq n$. This is done in several steps.

We first claim that there exists a function $\phi \in F$ such that $X=1 / M(\phi)$, i.e., that the supremum of M is achieved. Since the values of f are modulo $1, f$ can be regarded as an n-tuples of real numbers and $M(f): S^{1} \times S^{1} \times \cdots \times$ $S^{1} \rightarrow R$ as a function from the product of n copies of the 1 -sphere to the reals.

This function, defined on a compact domain, is clearly continuous, and therefore achieves a maximum.

For a real function $f: V \rightarrow R$, let $H(f)$ be a directed graph on the same vertex set as G and defined as follows: There is an $\operatorname{arc}(u, v)$ directed from u to v if
(1) $M(f)=|f(u)-f(v)|_{1}$
and
(2) There is an $\varepsilon>0$ such that $M(h)<M(f)$ for any function h such that $h(x)=f(x)$ for all $x=u$ and $f(u)<h(u)<f(u)+\varepsilon$.

The first condition says that the minimum is achieved between vertices u and v. The second condition says that slightly increasing the value of f at u decreases $M(f)$.

It is next shown that for any function f there is a function g such that $H(g)$ is a connected graph and $M(f)=M(g)$. Proceed by induction. Assume that H is disconnected and H_{0} is a connected component of H with vertex set V_{0}. Then for any adjacent $u \in V_{0}$ and $v \in V-V_{0}$ it holds that $|f(u)-f(v)|_{1}>M(f)$. Uniformly decreasing all values of $f(x), x \in V_{0}$, until the first occurrence of $|f(u)-f(v)|_{1}=M(f)$ for some adjacent $u \in V_{0}$ and $v \in V-V_{0}$, introduces an arc joining vertex u to v. This decreases the number of components of H. In the remainder of the proof H will be assumed connected.

The graph $H(\phi)$ contains a directed cycle. By way of contradiction, assume $H(\phi)$ contains no directed cycle. Then there exists a vertex v_{1} with outdegree $\left(v_{1}\right)=0$. Removing v_{1} and repeating this argument gives an ordering of the vertices $\left(v_{1}, \ldots, v_{n}\right)$ such that, for all i, outdegree $\left(v_{i}\right)=0$ in the subgraph induced by vertices $\left\{v_{i}, \ldots, v_{n}\right\}$. Define $f: V \rightarrow R$ by $f\left(v_{i}\right)=\phi\left(v_{i}\right)+\varepsilon / i$. Then $|f(u)-f(v)|_{1}>|\phi(u)-\phi(v)|_{1}$ for vertices u and v adjacent in $H(\phi)$, and for $\varepsilon>0$ sufficiently small, $|f(u)-f(v)|_{1}>M(\phi)$ for nonadjacent pairs of vertices. Then for sufficiently small $\varepsilon>0, M(f)>M(\phi)$, contradicting the maximality of ϕ.

Each arc (u, v) in $H(\phi)$ implies that

$$
\phi(v)-\phi(u)=\left\{\begin{array}{l}
M(\phi) \quad \text { or } \tag{1}\\
M(\phi)-1
\end{array}\right.
$$

Let $v_{1}, \ldots, v_{k_{0}}$ be a directed cycle in $H(\phi)$. We will show that $X \geq \chi_{k_{0}}$. Apply (1) consecutively to each arc of this cycle and sum to obtain that $k_{0} M(\phi)=d$, where d is an integer. Let u_{0} be some fixed vertex and assume, without loss of generality, that $\phi\left(u_{0}\right)=0$. If $\phi\left(u_{0}\right) \neq 0$ then $\phi\left(u_{0}\right)$ can be subtracted (modulo 1) from all values of ϕ. Let $u_{0}, u_{1}, \ldots, u_{p}$ be a path (not necessarily directed) from vertex u_{0} to an arbitrary vertex $u=u_{p}$. Then for $0 \leq i<p, \phi\left(u_{i+1}\right)-\phi\left(u_{i}\right)=$ $\pm M(\phi)$ or $\pm(M(\phi)-1)$. Summing this formula successively for each vertex $u_{0}, u_{1}, \ldots, u_{p-1}$ along the path yields $\phi\left(u_{p}\right)=a M(\phi)+b=\left(a d / k_{0}\right)+b$, where a, b, and d are integers. In other words, $\phi\left(u_{p}\right) \equiv f\left(u_{p}\right) / k(\bmod 1)$ for
some integer $f\left(u_{p}\right)$ depending on u_{p}. Finally, $X=1 / \min \left|\phi\left(u_{p}\right)-\phi(v)\right|_{1}=$ $1 / \min \left|\left(f\left(u_{p}\right) / k_{0}\right)-\left(f(v) / k_{0}\right)\right|_{1}=k / \min \left|f\left(u_{p}\right)-f(v)\right|_{k_{0}} \geq \chi_{k_{0}}(G)$.

3. STAR CHROMATIC NUMBER

In light of Theorem 2, define the star chromatic number $\chi^{\star}(G)$ as the least of the Z_{k}-chromatic numbers. If G is a connected graph with n vertices,

$$
\chi^{\star}(G)=\min _{1 \leq k \leq n} \chi_{k}(G) .
$$

In a sense, $\chi^{\star}(G)$ corresponds to the best possible coloring of G, which may be better than the coloring corresponding to the ordinary chromatic number. In fact, Theorem 3 shows more - that χ^{\star} cannot even be improved if the colorings are allowed to take on any real values (using the circular norm between colors). In Examples 1 and 2 of Section 2, the star chromatic numbers are $2 \frac{1}{2}$ and $3 \frac{1}{2}$, respectively, whereas the ordinary chromatic numbers are 3 and 4 . The next result states that the star chromatic number cannot be too far from the ordinary chromatic number. When the graph is understood, we abbreviate $\chi=\chi(G)$, $\chi_{k}=\chi_{k}(G)$, and $\chi^{\star}=\chi^{\star}(G)$.

Theorem 4. For all graphs $\chi-1<\chi^{\star} \leq \chi$.
Proof. The second inequality follows from Theorem 1. If $k=\chi$, then $\chi^{\star} \leq \chi_{k}=\chi$. For the first inequality assume, by way of contradiction, that $k_{0} / \min |c(u)-c(v)|_{k_{0}}=\chi^{\star} \leq \chi-1$ for some $Z_{k_{0}}$-coloring c. This implies that $|c(u)-c(v)|_{k_{0}} \geq k_{0} /(\chi-1)$ for all adjacent vertices u and v. Now define a related coloring c^{\prime} by $c^{\prime}(u)=\left|c(u)(\chi-1) / k_{0}\right|$. We show that c^{\prime} is a proper $\chi-1$ coloring of G, contradicting the fact that $\chi(G)$ is the chromatic number of G. Since $1 \leq c(u) \leq k_{0}$ then $1 \leq c^{\prime}(u) \leq \chi-1$. Also, if u and v are adjacent, then $\left|c^{\prime}(u)-c^{\prime}(v)\right|=\left|\left\lceil c(u)(\chi-1) / k_{0}\right\rceil-\left\lceil c(v)(\chi-1) / k_{0}\right\rceil\right|>$ $\left|(c(u)-c(v))(\chi-1) / k_{0}\right|-1 \geq 0$. The first inequality follows from the fact that $|\lceil a\rceil-\lceil b\rceil|>|a-b|-1$ for all real a and b.

Lemma 1. If H is a subgraph of G then $\chi_{k}(G) \geq \chi_{k}(H)$ for all k, and $\chi^{\star}(G) \geq \chi^{\star}(H)$.

Proof. This is immediate from the fact that any Z_{k}-coloring $c: V(G) \rightarrow Z_{k}$ can be restricted to such a coloring on $V(H)$.

Theorem 5. Let G be a connected graph with at least two vertices. Then $\chi^{\star}(G) \geq 2$ with equality if and only if G is bipartite.

Proof. If follows directly from the definitions that $\chi^{\star}(G) \geq 2$. If G is bipartite then, by Theorem $4, \chi^{\star}(G) \leq \chi(G)=2$. Therefore $\chi^{\star}(G)=2$. Con-
versely, if $\chi^{\star}(G)=2$, then again by Theorem $4,2=\chi^{\star}(G)>\chi(G)-1$. Therefore $\chi(G)<3$, which means that $\chi(G)=2$. Hence G is bipartite.

Define a graph $G_{m, n}, 2 \leq 2 m<n$, as follows: The vertex set is $V=$ $\{1,2, \ldots, n\}$. Vertex i is adjacent to vertex j if and only if $|i-j|_{n} \geq m$. Note that $G_{1, n}=K_{n}$, the complete graph, and $G_{m, 2 m+1}=C_{2 m+1}$, the odd cycle. Theorem 6 implies that the range of χ^{\star} is the set of all rational numbers satisfying the necessary condition $\chi^{\star} \geq 2$ of Theorem 5 . The proof requires the following lemma: Let $X=\{1,2, \ldots, n\}$ be a set of points uniformly distributed on a circle S^{1} of circumference n such that consecutive points are 1 unit apart. For a positive integer $m<n / 2$, call a function $f: X \rightarrow S^{1}$ m-expanding for Z_{n} if $|f(i)-f(j)|_{n}>m$ whenever $|i-j|_{n} \geq m$. (Note that $|f(i)-f(j)|_{n}=m$ is not allowed here.)

Lemma 2. Let m and n be integers such that $1 \leq m<n / 2$. Then there cannot exist an m-expanding function for Z_{n}.

Proof. Let $n=m q+r, 0 \leq r<m$, and $m=r q^{\prime}+s, 0 \leq s<r$. First consider the case $r=0$. Assume, by way of contradiction, that an m expanding function exists. Then all pairs of points among $\{m, 2 m, \ldots, q m\}$ are at a distance greater than or equal to m. Hence all pairs of points among $\{f(m), f(2 m), \ldots, f(q m)\}$ are at a distance greater than m. But this is impossible.

Now assume $r>0$. We proceed by induction on m. We just proved that the theorem is true if m is a divisor of n and, in particular, if $m=1$. It will be shown that if f is m-expanding, then f is s-expanding. If $s=0$, then this is an immediate contradiction. If $s>0$, then $1 \leq s<m$ and the lemma would follow by induction. A function f is called r -contracting if $|f(i)-f(j)|_{n}<r$ whenever $|i-j|_{n} \leq r$. It will be shown that if f is m-expanding then f is r-contracting, and if f is m-expanding and r-contracting, then f is s-expanding. Let i and j be any pair of points in X with $|i-j|_{n} \leq r$. Consider the set $A=\{i, i+$ $m, \ldots, i+(q-1) m\}$ and let the closest points to $f(i)$ in $f(A)$ (one on each side) be $f(u)$ and $f(v)$. Since all pairs of points in A are at a distance greater than or equal to m, and since f is m-expanding, $|f(i)-f(u)|_{n}>m$ and $|f(j)-f(v)|_{n}>m$. Consider the set $B=\{j, i+m, \ldots, i+(q-1) m\}$, which is exactly the set A with the single point i replaced by j. The same argument as above shows that $|f(j)-f(k)|_{n}>m$ for all $k \in B-\{j\}$. Points $f(u)$ and $f(v)$ divide S^{1} into two arcs. We claim that $f(i)$ and $f(j)$ lie on the same arc. If not, the points $f(A) \cup\{f(j)\}$ divide S^{1} into $q+1$ arcs, each of length greater than m. Thus $n \geq(q+1) m>q m+r=n$, a contradiction. Without loss of generality it may now be assumed that $f(u)<f(i) \leq f(j)<f(v)$. The assumption that f is m-expanding implies that $f(v)-f(i)<2 m+r$. Therefore $f(i)-f(j)<2 m+r[(f(i)-f(u))+(f(v)-f(j))]<2 m+r-m-m=$ r. and f is r-contracting.

To show that f is s-expanding, let i and j be any pair of points in X with $i-\left.j\right|_{n} \geq s$. If $|i-j|_{n} \geq m$, then $|f(i)-f(j)|_{n}>m>s$, because f is m expanding. So assume, without loss of generality, that $s \leq i-j<m$. Let a be
the point of X such that $|i-j|_{n}+|j-a|_{n}=|i-a|_{n}=m$. Consider the least integer α such that $a+\alpha r<j \leq a+(\alpha+1) r$. Since $|j-a|_{n} \leq m-s=$ $r q^{\prime}$, note that $\alpha+1 \leq q^{\prime}$. Because f is m-expanding, $|f(i)-f(a)|_{n}>m$. Because f is r-contracting, $|f(j)-f(a)|_{n}<(\alpha+1) r$. Therefore $|f(i)-f(j)|_{n}>$ $m-(\alpha+1) r=\left(q^{\prime} r+s\right)-(\alpha+1) r=\left(q^{\prime}-\alpha-1\right) r+s \geq s$, so that f is s-expanding. Since $s<m$, this contradicts the induction hypothesis and f is, therefore, not f-expanding.

Theorem 6 For $1 \leq m<n / 2$ we have $\chi^{\star}\left(G_{m, n}\right)=n / m$.
Proof. We must show that $\min _{1 \leq k \leq n} \min _{f} \psi(f)=\min _{1 \leq k \leq n} \chi_{k}(G)=$ $\chi^{\star}(G)=n / m$. For this it is sufficient to show that $\psi(f)=s / \min _{\text {iadj } j} \mid f(i)-$ $\left.f(j)\right|_{s} \geq n / m$ for any Z_{s}-coloring f of $G_{m, n}$. This is equivalent to showing $m \geq \min |n f(i) / s-n f(j) / s|_{n}$. Define $\left.g(i)\right)=n f(i) / s$, and by way of contradiction, assume that $|g(i)-g(j)|_{n}>m$ for all adjacent pairs of vertices i and j. But i and j are adjacent in $G_{m . n}$ if and only if $|i-j| \geq m$. The result now follows from Lemma 2.

The following result is a direct consequence of Theorem 6 and the fact that $K_{n}=G_{1, n}$ and $C_{2 n+1}=G_{n, 2 n+1}$.

Corollary 1. For the complete graphs and odd cycles
(a) $\chi^{\star}\left(K_{n}\right)=n$
(b) $\chi^{\star}\left(C_{2 n+1}\right)=2+(1 / n)$.

A clique is a complete subgraph of G. The clique number $\omega(G)$ is the maximum order of a clique in G. It is obvious that $\chi(G) \geq \omega(G)$. In the case $\chi(G)=$ $\omega(G)$, the star chromatic and the ordinary chromatic numbers coincide.

Theorem 7. If $\chi(G)=\omega(G)$, then $\chi^{\star}(G)=\chi(G)$.
Proof. Assume that $\chi(G)=\omega(G)$. Use Theorems 4, Lemma 1, and Corollary 1, respectively: $\omega(G)=\chi(G) \geq \chi^{\star}(G) \geq \chi^{\star}\left(K_{\omega(G)}\right)=\omega(G)$.

Remark. The converse does not hold. There are graphs for which $\chi^{\star}=\chi$, but $\chi^{\star} \neq \omega$. One example is the Grötzsch graph, the smallest 4 -chromatic graph with no triangles, and another is the 3-chromatic Petersen graph. In both cases the star chromatic number is obtained from the usual 4 and 3-colorings, respectively.

Theorem 4 bounds the star chromatic number in terms of the ordinary chromatic number. Theorem 8 gives bounds on the star chromatic number in terms of the Z_{k}-chromatic numbers.

Lemma 3. For any natural numbers j, k we have $1 / \chi_{j}-1 / k<1 / \chi_{k}<$ $1 / \chi_{j}+1 / j$.

Proof. By definition $1 / \chi_{k}=(1 / k) \max _{c} \min |c(u)-c(v)|_{k}$. Let c be a Z_{k}-coloring that achieves the maximum. Define a Z_{j}-coloring c^{\prime} by $c^{\prime}(u)=\lfloor c(u) j / k\rfloor$. It is sufficient to prove that $(1 / k)|c(u)-c(v)|_{k}<$ $(1 / j)\left|c^{\prime}(u)-c^{\prime}(v)\right| j+1 / j$ for all adjacent vertices u and v. Now $(1 / k) \mid c(u)-$ $\left.\left.c(v)\right|_{k}=(1 / j)|c(u) j / k-c(v) j / k|_{j}<(1 / j) \mid L c(u) j / k\right\rfloor-\left\lfloor c(v) j /\left.k\right|_{j}+(1 / j)=\right.$ $(1 / j)\left|c^{\prime}(u)-c^{\prime}(v)\right|_{j}+1 / j$. The first equality is just a change of scale. The second inequality follows from the following fact about ordinary absolute value: $|a-b|-|\lfloor a\rfloor-\lfloor b\rfloor|<1$ for all real a and b. The lower bound is obtained by reversing the role of j and k.

Theorem 8. For any natural number k we have

$$
\chi_{k} \geq \chi^{\star}>1 /\left(\frac{1}{\chi_{k}}+\frac{1}{k}\right) .
$$

Proof. The upper bound is obvious from the definition of χ^{\star}. The lower bound follows from Lemma 3.

Corollary 2. $\lim _{k \rightarrow \infty} \chi_{k}=\chi^{\star}$.
Proof. The limit of both the upper and lower bound on χ^{\star} in Theorem 8 is $\lim _{k \rightarrow \infty} \chi_{k}$.

4. OPEN QUESTIONS

Sections 2 and 3 discuss only basic properties of the star chromatic number. Many problems remain open, for example:

1. What determines whether $\chi^{\star}=\chi$?
2. Besides the odd cycles, what are the planar graphs G with $2<\chi^{\star}(G)<3$? By results of the previous section, it is necessary that G be 3 -chromatic and contain no triangles.
3. What are some infinite families of planar graphs with $3<\chi^{\star}<4$? Do all edge critical 4 -chromatic graphs fall into this category?
4. The k-chromatic numbers have algebraic structure not possessed by the ordinary chromatic number, namely that of Z_{k}. In general, can the star chromatic number be applied to problems concerning the ordinary chromatic number?

ACKNOWLEDGMENT

The author would like to thank the referees for their helpful comments.

References

[1] D. P. Geller, r-tuple colorings of uniquely colorable graphs. Discrete Math. 16 (1976) 9-12.
[2] A. J. W. Hilton, R. Rado, and S. H. Scott, A (<5)-color theorem for planar graphs. Bull. London Math. Soc. 5 (1973) 302-306.
[3] S. Stahl, n-tuple colorings and associated graphs. J. Combinato. Theory Ser. B 20 (1976) 185-203.

