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Abstract. A short graph theoretic proof of the classification of closed surfaces is given. The new 
proof has the feature that the symmetric canonical graphs for the surfaces do not correspond to 
the canonical polygons in the usual proof of the classification. 

1. Introduction 

Surface, in this article, will always mean a compact, connected 2-manifold without 
boundary. Surfaces are classified according to orientation, i.e., whether or not there 
is a coherent clockwise or counterclockwise orientation on the surface. For  example, 
the sphere S and the torus T are orientable. The projective plane P, which is defined 
as a disk with antipodal boundary points identified, is nonorientable. All other 
surfaces can be defined from S, T and P using only the connected sum operation. 
The connected sum F~ # Fz is defined by removing a disk from each of the surfaces 
/71 and F2 and identifying the two circles that are the boundaries of those disks. For  
example T 2 = T # T is the genus-two torus and K = P # P is the Klein bottle. Let 
mF denote the connected sum of m copies of the surface F. Then the list of orientable 
surfaces is: S and gT, g = 1, 2 . . . .  , and the list of nonorientable surfaces is: gP, g = 1, 
2 . . . .  That  these lists are complete was originally proved by Dehn and Heegaard 
(1907), and a classic exposition of the proof, followed in several newer texts, is due 
to Seifert and Threlfall [3]. Notice that T # P is not on this list. That is because 
T # P ~ 3P, a fact that is not completely obvious and will be mentioned again in 
Sect. 3. Throughout  ~ will denote homeomorphism of surfaces. 

The purpose of this article is to give a simple, graph theoretic proof of the 
classification of surfaces. In addition to giving a short proof, the method yields new 
canonical forms for surfaces. Surfaces will be encoded as graphs (Sect. 2) and all 
manipulation of the surface will be done in terms of just one basic graph operation 
- fusion (Sect. 3). Propositions 1-4 in Sects. 2 and 3 provide the link between results 
about graphs and results about surfaces. Given this translation, the short graph 
theoretic Sects. 4 and 5 contain the core results about invariants, canonical forms 
and the classification of surfaces. The graph theoretic approach to manifolds has 
developed over the past several years and references I-2] and 1-4] provide surveys 
and extended lists of references. 
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2. Surface and 3-Graphs 

The main objects of investigation in this paper are 3-graphs. A 3-graph is a graph, 
regular of degree 3, with a proper edge coloring in 3 colors. A 3-graph need not be 
connected and may have multiple edges. To every 3-graph G is associated a surface 
ZIG obtained by attaching a 2-cell to each 2-colored cycle of G. For the first graph 
G in Fig. 1 the surface ziG is the sphere. A little mental pasting will suffice to 
convince one that the surfaces encoded by the other 3-graphs in Fig. 1 are t~le 
projective plane and torus, respectively. The graphs in Fig. 1 will be denoted S, P 
and T to conform to the notation for the corresponding surfaces. If a color is 
understood, then often the label in the figure will be omitted. The first proposition 
states that every surface can be encoded by a 3-graph. In this paper it is assumed 
that a surface can be triangulated, a fact that itself is not trivial. 
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S P T 

Fig. 1. Encodings of the sphere, projective plane and torus 

Proposition 1. For every surface F there is a 3-graph G such that F ~ ZIG. 

Proof. Let LI be a triangulation of F. Consider the barycentric subdivision A' of this 
triangulation, where each vertex in A' is labeled 0, 1 or 2 according to the dimension 
of the simplex in ZI that v represents. Then each triangle in A' gets all three labels 
0, l, 2. The dual graph of d '  with the edges appropriately labeled in {0, l, 2} is the 
desired 3-graph G. [] 

Our perspective now is that a 3-colored graph "is" a surface. A graph is called 
bipartite if the vertex set can be partitioned into two parts A and B such that all 
edges join vertices of A to vertices of B. For a 3-graph G let O(G) take values in the 
set {bipartite, non-biparte}. 

Proposition 2. O(G) = bipartite if and only if ziG is an orientable surface. 

Proof. The dual graph of G on the surface yields a triangulation of ziG. Each edge 
in this triangulation can be colored 0, I or 2 corresponding to the edge in G that it 
crosses. Each triangle in the triangulation then has sides colored 0, 1 and 2. Now 
the triangles corresponding to the vertices in the first part A are oriented (0, l, 2) 
while those in the second part B are oriented (0, 2, 1). [] 
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3. Fusion 

The basic operation on 3-graphs is fusion. A 3-graph G' is obtained from G by fusion 
on vertices u and v if 
(a) Vertices u and v (and all edges joining them) are removed from G 
(b) The "free" ends of edges of the same color are then identified to form G' 
Fusion, introduced by Ferri and Gagliardi [1], may occur in various ways. Two 
cases are considered below. If J is a subset of colors, let Gj denote the subgraph of 
G induced by edges with colors in J, and Gj the complementary subgraph induced 
by edges with colors not in J. For example iflJI = 1, then Gj is a 1-factor of G and 
G1 is the disjoint union of 2-colored cycles, each called a bigon. 

Case I. Vertices u and v are adjacent, joined by (one or more) edges with color set, 
say J. Furthermore u and v lie in distinct components of the complementary 
subgraph Gj. If G' is obtained from G by fusion on u and v then G and G' are called 
elementary equivalent. The vertices u and v together with the edges joining them is 
called a dipole, and we say that G' is obtained from G by removing a dipole or that 
G is obtained from G' by adding a dipole. Furthermore, graphs G and G' are called 
equivalent if there is a sequence G = G 0, GI . . . . .  G, = G' such that Gi_tand Gi are 
elementary equivalent for i = 1, 2 . . . . .  n. Equivalence of 3-graphs will be denoted 
G ~ G'. An example of equivalent 3-graphs is shown in Fig. 2 where dipole {i,j} is 
added and then dipole {a,e} is removed. Removing a (single edge) dipole in G 
corresponds in AG to merging two distinct faces through an edge joining them, and 
adding a dipole corresponds to identifying an interior part of two edges of different 
colors on the boundary of the same face. This makes the following proposition clear 
in one direction, and explains the coincidence of the notation for equivalence of 
3-graphs and homeomorphism of surfaces. The proof in the other direction, which 
is not needed in our proof of the classification, appears in [1]. 
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Fig. 2. Equivalent 3-graphs 

Proposition 3. AG ~ ziG' if and only if G ~ G'. [] 

Case 2. The graph G is disconnected with components G1 and G 2, and u and v are 
in different components. If G' is obtained from G by fusion on vertices u and v then 

uu 

G' is denoted G I #  G 2 and is called the connected sum of G 1 and G 2. Examples are 
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shown in Fig. 3. Connected sum has the following meaning with respect to the 
associated surfaces. Remove small 2-simplices centered at u and v in AG 1 and AG2, 
respectively; then indentify the boundary triangles of these two 2-simplicies so that 
like colored free edges of G are associated. Therefore we have 

Proposition 4. A(G1 # G2) ~ AG1 # AGz. [] 

# 0 

T P T#P 

0 

u # v u ~ # v = 
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P P P 3 P 

Fig. 3. Connected sum of 3-graphs 

It has tacitly been assumed in Proposition 4 that the connected sum of 3-graphs 
does not depend on the vertices u and v. This is true, but not obvious. Even for 
surfaces there are different ways to attach the boundary circles of disks, and it is 
not at all obvious that the two resulting connected sums are homeomorphic.  For 
this paper it is sufficient to prove the independence of the choice of u and v for the 
special cases in Lemma la. However the general case follows from Corollary 2 at 
the end of this paper. In analogy to surfaces, the notation mG, will denote the 
connected sum of m copies of the 3-graph G. Recall that S, P and T are the graphs 
in Fig. 1. By convention let 0T = S. 

Lemma 1. 
(a) For any 3-graph G the connected sums G # P and G # T are independent of  the 

vertices of  fusion. 
(b) I f  G ,~ G' then G # P ,,~ G' # P and G # T ~ G' # 71. 
(c) T # P ~ 3 P .  

Proof. Part (a) will be proved for G # P only, because the proof  for G # T is 
analogous. Because of the symmetry of P, it is sufficient to show that if v and v' are 

UL,' 

two adjacent vertices of G and u is any vertex of P, then G ~ P ~ G # P. This 
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equivalence is shown in Fig. 4, where the two elementary equivalences are, by first 
adding dipole {a, b} and then removing dipole {c, d}. It is sufficient to prove part (b) 
in the case that G and G' are elementary equivalent. Since the fusion vertices can 
be shown arbitrarily by part (a), they can be chosen to avoid the dipole that is added 
or removed. Concerning part (c) Fig. 2 and 3 together constitute a proof that 
T # P ~ 3 P .  [] 

Propositions 1-4 provide links between the topology of surfaces and the com- 
binatorics of 3-graphs. For  example part (c) of Lemma 1 translates precisely to the 
result mentioned in the introduction. Subsequent results and proofs will be com- 
pletely graph theoretic and will not rely on these propositions. 

4. lnvariants and Canonical Forms 

The two important invariants of 3-graphs are O and ~. The number of vertices in a 
3-graph is even, so let n = n(G) denote half the number of vertices in G. Let r = r(G) 

be the total number of bigons in G, that is, the number of 2-colored cycles with 
colors 01, 02 or 12. Now define z(G) = r - n. The notation Z is to suggest that this 
invariant is an analogue of the Euler characteristic of a surface. It is straightforward 
to check that indeed both O and ;t are invariants by showing that each is preserved 
under elementary equivalence. 

Lemma 2. I f  G 1 ~ G 2 then O(GI )  = O(G2) and z(G1) = z(G2). [] 

If no dipoles can be removed from a 3-graph G, then G is said to be reduced. 

Every 3-graph is equivalent to a reduced 3-graph by merely removing dipoles until 
no longer possible. Note that in a reduced 3-graph r(G) = 3 and therefore x(G) = 
3 - n. Two special families of reduced graphs, T,, n > 1, n odd, and U,, n > 2, are 
referred to as canonical  3-graphs. Both are formed from a single bigon with 2n 
vertices. In T,, chords of the third color join each vertex to the diametrically opposite 
vertex. In U, there is one diagonal chord with the remaining chords perpendicular 
to it. Graphs Ts and U5 are shown in Fig. 5. Note that O(T~) --- bipartite and 
O(U,)  = non-bipartite. Also ;t(T~) = z (U . )  = 3 - n. Note also that T 1 = S; U 2 = P; 
and T 3 = T. 
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Fig. 5. Canomcal 3-graphs 
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/n-l\ 
Lemma 3. T . ~ - ) T f o r n =  1,3 . . . . .  and U . . ~ ( n - 1 ) P r o m = 2 , 3  . . . . .  

Proof. Proceeding by induction, it is sufficient to show that Tn_ 2 # T ~ T~ and 
Un-x # P ~ Un. The first equivalence is shown in Fig. 6, where dipole {c, d} is added 
and dipole {a, b} is removed. The second equivalence is almost immediate. [] 

0 1 0 1 ." . . -~ .. 

0 "" 0 0 ~  ~ 1  

Tn_2# T T n 

Fig. 6. T._ 2 # T = T~ 

Lemma 3 and Proposition 4 imply that the canonical 3-graphs encode all the 
surfaces described in the introduction. 

5. The  Class i f i cat ion  o f  3-Graphs .  

The main results, Theorem 1 and its corollaries, classify 3-graphs up to equivalence. 
In view of Propositions 1-4, the classification of surfaces is a direct consequence. 

Theorem 1. Every 3-graph is equivalent to a unique nT, n = 0, 1 . . . . .  or nP, n = 1, 
2~ . . . .  

Proof. Let G be a 3-graph and proceed by induction on n = n(G). There is no loss 
of generality in assuming that G is reduced. A reduced 3-graph consists of a bigon 
with chords. Two cases are now considered separately: O(G) = bipartite and O(G) = 
nonbipartite. 

/ - - \  

In the bipartite case we prove that G ~ ( ~ - ~ ) T .  If n = 1 there is only one 
% / 

possibility G ,~ S = 0T. In general refer to Fig. 7 for the bipartite case. Straight lines 
in the figure signify edges in the graph and curves signify paths. Two of the chords 
must cross each other if G is to have only 3 bigons. Adding dipole {h, i}, removing 
dipole {a, e}, and adding dipole { j, k} results in G ~ G' # T. But G' remains reduced, 

biparti teandn(G')=n-2, so, byinduction, G ' ~ ( ~ f 3 ) T .  

In the non-bipartite case we prove that G ~ (n - 1)P. If n = 2 there is only one 
possibility G = P. In general, refer to Fig. 8 for the nonbipartite case. Because G is 
nonbipartite there must be a chord with colors 0 and 1 on its left, and because there 
are an odd number of vertices to the right of this chord there must exist a chord 
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Fig. 7. Bipartite case 

(c,d} that crosses {a,b}. After adding dipole {e,f)  and removing dipole {c,d}, 
G ~ G' # P where G' is reduced and n(G') = n - 1. By induction G' ~ (n - 2)P or 

~ T # P .~ (n - I)P. The last equivalence is proved by repeated appli- 

cation of T # P ~ 3P, which is part (c) of Lemma 1. Uniqueness in Theorem 1 
folows from Lemma 3 and the fact that no two distinct canonical 3-graphs are 
equivalent. E 

Corollary 1. Every 3-graph is equivalent to a unique canonical 3-graph. 

Proof. Corollary 1 follows immediately from Lemma 3 and Theorem 1. [] 

Corollary 2. A 3-graph is uniquely determined up to equivalence by the invariants (9 
and Z. 

Proof. Assume that G1 and G 2 have the same invariants and that G~ and G[ are the 
canonical graphs that are, by Corollary 1, equivalent to G1 and G2, respectively. 
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Since canonical  graphs  are uniquely determined by O and Z we have G 1 ,~ G'I 
G~ ~ G 2. [ ]  

Corollary 3. A reduced 3-graph is uniquely determined by 0 and n. 

Proof. Corol la ry  3 follows f rom Corol la ry  2 because, for a reduced 3-graph, Z = 
3 - n .  [ ]  

Corollar ies  2 and 3 translate,  in light of  Propos i t ion  3, to the fact that  a surface 
is uniquely determined up to h o m e o m o r p h i s m  by orientabil i ty and the Euler 
characteristic.  
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