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The classical approach to maps, as surveyed by Coxeter and Moser (“Generators 
and Relations for Discrete Groups,” Springer-Verlag, 1980), is by cell decom- 
position of a surface. A more recent approach, by way of graph embedding 
schemes, is taken by Edmonds (Notices Amer. Math. Sot. 7 (1960), 646), Tutte 
(Canad. J. Math. 31 (5) (1979), 986-1004), and others. Our intention is to 
formulate a purely combinatorial generalization of a map, called a combinatorial 
map. Besides maps on orientable and nonorientable surfaces, combinatorial maps 
include polytopes, tessellations, the hypermaps of Walsh, higher dimensional 
analogues of maps, and certain toroidal complexes of Coxeter and Shephard (J. 
Combin. Theory Ser. B. 22 (1977), 131-138) and Griinbaum (Colloques inter- 
nationaux C.N.R.S. No. 260, Problemes Combinatoire et Thtorie des Graphes,” 
Orsay, 1976). The concept of a combinatorial map is formulated graph 
theoretically. The present paper treats the incidence structure, the diagram, 
reduciblity, order, geometric realizations, and group theoretic and topological 
properties of combinatorial maps. Another paper investigates highly symmetric 
combinatorial maps. 

1. 1NTRoDucTl0~ 

A polytope is the convex hull of a finite set of points in Euclidean space 
E”. A supporting hyperplane of a polytope P is a hyperplane that intersects 
P in such a way that P lies in one of the closed half spaces determined by the 
hyperplane. Intersections of a polytope P with supporting hyperplanes are 
polytopes. With the exception of P itself, these are called faces. The faces of 
dimension k are k-faces. The set of all faces of an n-dimensional polytope P 
forms a cell complex of dimension n - 1, called the boundary complex of P. 
The polytopes of dimension 2 and 3 are polygons and polyhedra, respec- 
tively. 

A map on a surface, i.e., a cell decomposition of a surface is a topological 
generalization of the boundary complex of a polyhedron. Several authors 
have further extended the concept of a map. Such extensions include 
permutation maps [ 1,5, 9, 15, 181, the “combinatorial polytopes” of 
McMullen [ 121, toroidal complexes of Coxeter and Shephard [4] and the 
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“polystromas” of Griinbaum [8]. In this paper a generalization of a map on 
a surface, called a combinatorial map, will be formulated in terms of edge 
colored graphs. This generalization originally appeared in the author’s work 
[ 191. At the time of writing, the relationship to the work of J. Tits on 
incidence structures, chamber complexes and chamber systems became 
known. Some of this is treated in Section 3. We acknowledge the influence of 
Tit’s research [ 16, 171. Another related concept, called a crystallization, was 
independently investigated in a topological setting by Ferri [6] and Gagliardi 
[ 7 ]. It was rediscovered by Lins [ 111, where it is called a graph-encoded 
map. 

Associated with each combinatorial map G is an incidence structure S(G), 
a diagram D(G) and a topological space ] G]. Definitions and examples are 
given in Section 2. The diagram D(G) of a combinatorial map generalizes the 
classical Schlafli symbol of a polytope. Irreducibility of a combinatorial map 
is characterized by a connected diagram. The faces of a polytope are 
partially order by inclusion. A class of combinatorial maps, called ordered 
maps, includes the polytopes and most other classical examples, and it is 
shown that these are characterized by a linear diagram. The incidence 
structure S(G) generalizes the facial structure of a polytope. 

The examples that motivated this paper are the maps on surfaces. There is 
a vast literature on this subject, [ 1, 3, 10, 15, 181 being a sample. An 
agreeable outcome of the theory of combinatorial maps is that the cell 
decomposition and embedding schemes approaches to maps on surfaces 
become unified. In Section 5 it is shown that the ordered rank 3 
combinatorial maps are exactly the maps on surfaces. The set of all rank 3 
combinatorial maps corresponds to the hypermaps of Walsh [21]. More 
generally, a cell decomposition of a manifold yields an ordered 
combinatorial map, but for rank >3 not every ordered combinatorial map 
can be so realized. 

Every combinatorial map G has an underlying topological space ] G]. 
Topological properties of 1 G ], such as orientability, the fundamental group 
and coverings are related to the combinatorial properties of G in Section 6. 
Ramified coverings have been important in the theory of maps on surfaces, 
in the proof of the Heawood map coloring theorem, and more recently in the 
theory of chamber complexes and systems [ 13, 171. The latter ideas of Tits 
and Ronan are incorporated in order to develop a combinatorial analogue of 
topological ramified covering space theory. A sequence n’(G) + x2(G) + ... 
-+ n”-‘(G) r r,(lGl) o combinatorial fundamental groups is defined such f 
that each is a refinement of its successor. The coverings of a given 
combinatorial map are shown to be in one-to-one correspondence with 
permutation representations of the appropriate combinatorial fundamental 
group. This result is used in [20] to construct highly symmetric 
combinatorial maps. 
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In Section 7 an equivalent formulation of a combinatorial map, the 
Schreier representation, is given in terms of a group generated by 
involutions. With respect to this formulation, expressions are obtained for the 
automorphism group, the fundamental groups and for universal covers of a 
combinatorial map. 

2. COMBINATORIAL MAPS 

To motivate the definition of a combinatorial map consider the boundary 
complex B(P) of a 3-dimensional polytope P. The definition of a 
combinatorial map will reflect the following essential property of B(P): 

(*) Every edge is incident with exactly two vertices; on a given face each 
vertex is incident with exactly two edges; every edge is incident with exactly 
two faces. 

Let AP denote the barycentric subdivision of B(P). The three vertices of 
any 2-simplex in AP can be labeled 0, 1, and 2 according to whether the 
vertex represents a 0, 1, or 2-face of P. Now form a labeled graph G(P) as 
follows: The points of G(P) are the 2-simplexes of AP and two distinct points 
are joined by a line labeled i if and only if the respective 2-simplexes have a 
common edge without label i. The graph G(P) completely determines AP 
because AP can be retrieved by “glueing” together labeled 2-simplexes that 
correspond to adjacent points of the graph and making the appropriate iden- 
tifications. Property (*) of the polyhedron P has an equivalent interpretation 
in terms of the graph G(P): 

(**) Every point of G(P) is incident with exactly one line labeled i for 
i=o, 1,2. 

Turning to the general situation, let I be a finite set. A combinatorial map 
over I is a connected graph G, regular of degree 111, whose lines are 111. 
colored such that no two incident lines are the same color. A combinatorial 
map may be finite or infinite. Let the function r: E(G) + I, from the line set 
of G to 1, be the coloring. The image of a line or set of lines under r is called 
its type. The rank of G is III. An isomorphism of two combinatorial maps is 
a type preserving graph isomorphism. Automorphism is similarly defined. 
For J c I two points of G are J-adjacent (J-adj) if they are joined by a path 
colored in J. Points that are {i}-adj are adjacent in the usual sense. 

For J s Z let G, be the subgraph of G obtained by deleting all lines of type 
not in J. Each connected component of G, is a combinatorial map over J 
and is called a residue of type J. The only residue of rank 111 is G itself. The 
residues of rank 0 are the points of G. The residues of type I-{i} are called i- 
faces of G. Figure 1 shows a 2-face and a l-face of the rank 3 combinatorial 
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FIG. 1. Faces of the combinatorial map associated with the boundary complex of the 
cube. 

map associated with the cube. Intuitively we have in mind the front 2-face of 
the cube and its right edge. Two distinct residues R and R’ are called 
incident if R r‘l R’ # 0. As expected, the l-face and 2-face in Fig. 1 are 
incident. Let X denote the set of faces of G; let r: X+ Z be defined by 
r(x) = i if x is an i-face; and let * denote the incidence relation on faces. 
Then the triple S(G) = (X, r, *) is referred to as the incidence structure of G. 

To any combinatorial map G is associated an (IZl - 1)-dimensional 
simplicial complex AG as follows: For each point u in the point set V(G) of 
G, let Av be a simplex of dimension [Zl- 1. Arbitrarily assign to each vertex 
of AU a distinct element of I. Call the set of elements assigned to a face s of 
Au the type of s. Let K be the disjoint union of the set {Av 1 u E V(G)}. In K 
identify two simplexes s s Au and S’ c Au’ of the same type J if and only if u 
and u’ are (Z -.Z)-adj. If - denotes this identification, take AG = K/-. 
Intuitively AG can be thought of as being built from (III - 1)-simplexes, one 
for each point of G, such that two (III - 1)-simplexes share a common 
codimension 1 face if the corresponding points are adjacent in G. The space 
I G 1 := I AG I is called the underlying topological space of G. 

EXAMPLE 1. The example of Fig. 1, the combinatorial map of a 
polyhedron, can be extended. Let K be a cell complex with underlying 
topological space I K) . If 1 K I is a connected manifold without boundary, then 
K will be called a map on a manifold. In particular, if lK/ is a surface, then 
K is called a map on a surface. Given a map K on a manifold, a 
combinatorial map G(K) is obtained as the dual l-skeleton of the barycentric 
subdivision of K. Each vertex of the barycentric subdivision can be labeled 
with the dimension of the cell it represents. A line of G(K) is then colored i if 
it joins two maximal simplexes whose labels differ only by i. An i-face of the 
incidence structure S(G) corresponds to an i-cell of K. Note that G and K 
have the same underlying topological space. If K is the boundary complex of 
a polytope P, then the combinatorial map obtained is denoted G(P). 
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There is exactly one rank 0 and one rank 1 combinatorial map. The 
classification of rank 2 combinatorial maps is also immediate. 

PROPOSITION 2.1. The rank 2 combinatorial maps are exactly G(P,), 
n > 2, where P, is an n-gon. 

In Proposition 2.1 we do not rule out the possibility that n = co. This 
infinite combinatorial map consists of lines alternately labeled 0 and 1. 

3. INCIDENCE STRUCTURES 

In the terminology of Tits [ 161, the incidence structure of a combinatorial 
map is a thin incidence structure. In this section we explain in what sense 
thin incidence structures and combinatorial maps are equivalent (Theorem 
3.3). First recall some terminology of J. Tits. 

Consider a triple S = (X, r, *) consisting of a set X, a surjective map 
t: X-+ Z and a binary symmetric relation * on X such that for any two 
elements x, y E X with r(x) = r(y), the relation x*y holds if and only if 
x = y. The image by r of an element or subset of X is called its type. The 
relation * is the incidence relation. A flag of S is a set of pairwise incident 
elements of X. A flag is maximal if there is no flag properly containing it. If 
every maximal flag has cardinality 1Z1, then S is called an incidence structure 
over I. To any incidence structure S over Z we can associate a vertex colored 
abstract simplicial complex called the chamber complex AS = (X, t, s). The 
vertex set of AS is X. The set s of simplexes of AS is the set of flags of S. 
The maximal simplexes of AS are called chambers. Both S and AS are called 
thin if every simplex of codimension 1 in AS is contained in exactly two 
chambers. 

To any thin incidence structure S we can associate a combinatorial map 
G(S) that is the dual graph of S in the following sense: The points of G(S) 
are the chambers of AS and two distinct points u and u’ are i-adj in G(S) if 
and only if u and u’ contain a common simplex of type Z-(i). 

EXAMPLE 2. Consider a map K on a manifold. Let X be the set of cells 
of K and r(x) the dimension of a cell x. Call two cells incident if one is 
contained in the other. Then S(K) = (X, r, *) is an incidence structure. Under 
conditions that will be specified in Theorem 3.1, G(S(K)) and G(K) are 
isomorphic. 

EXAMPLE 3. A hypergraph H = (Y, E) consists of a vertex set Y and a 
family E of subsets of Y, called edges, whose union is Y. If all edges have 
cardinality 2, then H is a graph. Define a hypermap r? as a two-colored map 
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on a surface. More precisely H = (K, 0) consists of a map K on a surface 
and a function 8: K, + { 1,2} from the set K, of 2-cells of K to the two 
element set { 1, 2) such that neighboring 2-cells are assigned different values. 
The underlying hypergraph of e is H = (Y, E), where Y is the set of vertices 
of K and an edge in E is the set of vertices of a 2-cell c in K with e(c) = 1. 
In particular, H is a graph if all the 2cells colored 1 are digons. From a 
hypermap H = (K, 0) define an incidence structure S(H) over I = {O, 1,2} as 
follows: The type 0 elements are the vertices of K; the type 1 elements are 
the 2-cells c with e(c) = 1 and the type 2 elements are the 2-cells c with 
e(c) = 2. A type 0 element is incident with a type 1 or 2 element if the vertex 
lies on the respective 2-cell. A type 1 and type 2 element are incident if the 
respective 2-cells have an edge in common. Then G(g) := G(S(fl)) is a 
combinatorial map. 

As it stands, the correspondence f: S N G(S), taking thin incidence 
structures to combinatorial maps is neither one-to-one nor onto. To see thatf 
is not one-to-one consider the 2-dimensional cell complexes K, and K, in 
Fig. 2. Both are formed from a triangular prism and two tetrahedra; the 
interior 2-simplexes are not considered in K, and K,. If S, = S(K,) and 
S, = S(K,) are the associated incidence structures, as in Example 2, then 
G(S,) z G(S,). This duplicity can be eliminated by removing from 
consideration certain incidence structures, like S(K,), that are disconnected 
in the following sense: A thin incidence structure S is called residually 
connected if the topological link of every simplex in dS of codimension > 1 is 
connected, and the link of every codimension 1 simplex is two vertices. The 

FIG. 2. Incidence structure S(K,) is not residually connected. 
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simplicial complex dS itself is considered the link of the empty simplex. So 
S residually connected implies, in particular, that AS is connected. Note that 
S, is not residually connected because the link of the vertex u in AS(K,) is 
not connected. 

To see that f: S --+ G(S) is not onto, let G, be the combinatorial map in 
Fig. 3. Here G, is associated, as in Example 1, with the map K on the torus 
consisting of 2 faces, 4 edges and 2 vertices. It is a consequence of the next 
theorem that there is no thin incidence structure S, such that G, z G(S,). A 
combinatorial map G is called nondegenerate if for any finite set (Rj} of 
pairwise incident residues of G, nRj is also a residue of G. Note that G, is 
degenerate, because a residue of type { 0, 1 } and a residue of type { 1,2} 
intersect in two residues of type { 1 }. 

THEOREM 3.1. Let G be a combinatorial map. The following statements 
are equivalent: 

(1) G is nondegenerate. 

(2) AG g AS(G). 

(3) G E G(S,) for some thin, residually connected incidence structure 
S 0’ 

ProoJ (1) + (2). Assume statement (1). If s is a simplex in AS(G), 
then s corresponds to a set {Rj} of pairwise incident faces of G. By 
assumption T)Rj is a residue in G and hence corresponds to a simplex s” in G. 
The assignment s I-+ s^ induces an isomorphism AS(G) + AG. 

(2) 3 (3). Assume AG r AS(G). Since G is the dual graph of AG and 
GS(G) is the dual graph of AS(G), we have G z GS(G). Take So = S(G). By 
its construction AG has connected links, and hence S, is residually con- 
nected. 

(3) * (1). Assume G z G(S,). Consider the assignment g: R tt s, from 
residues of G to simplexes of AS,, where s is the intersection of the 
chambers of AS, corresponding to the points of R. The function g takes 
residues of type J to simplexes of type Z-J. Since So is residually 

K Go = G(K) 

FIG. 3. Degenerate combinatorial map. Opposite sides of K and opposite lines of G(K) 
are to be identified. 
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connected, g is a one-to-one correspondence; the inverse is such that the 
points of R correspond to chambers of AS, containing s. Now let {Rj} be a 
set of pairwise incident residues of G, and let sj = g(Rj). The vertices of usj, 
considered as elements of S,, are pairwise incident. Hence they form a 
simplex s in AS,. Let R = g - l(s). Now sj c s for all j implies R, 2 R for all j 
implies nR, 2 R. If Lj is the type of R,, then both nRj and R have type 
nLj. To conclude that nRj = R it only remains to show that every point of 
nRj is a point of R. If u is a point of nRj, then g(u) 3 sj for allj. Therefore 
g(x) 2 s, and x is a point of R. 1 

The following result is implicit in the proof of Theorem 3.1: 

THEOREM 3.2. Let G be a nondegenerate combinatorial map over I. 
There is a one-to-one correspondence g from the set of residues of G to the 
set of simplexes of AG such that for all residues R and R’ 

(1) typeg(R)=I-typeR. 

(2) R E R’ if and only ifg(R) zg(R’). 

We are now in a position to state the appropriate correspondence between 
combinatorial maps and thin incidence structures. 

THEOREM 3.3. Let F be the set of nondegenerate combinatorial maps 
and Y the set of residually connected thin incidence structures. Then the 
functions f: F--t 9 and g: Y + F given by G I-+ S(G) and S w G(S) are 
inverse to each other. In particular, there is a one-to-one correspondence 
between nondegenerate combinatorial maps and thin residually connected 
incidence structures. 

Proof Let S, be a residually connected thin incidence structure and let x 
be an element of type i in S,. The set of all chambers in AS, containing x 
corresponds to a residue R, of type I - {i) in G(S,) and hence to an element 
.? of type i in SG(S,). The assignment x M 2 induces an isomorphism 
S, -, SG(S,). 

Conversely, let u be a point of a nondegenerate combinatorial map G,. 
Let u^ = {Ri ( i E I}, where Ri is the residue of type I - {i} in G containing u. 
Then u^ is a point in GS(G,). Theorem 3.1 implies that the assignment u H u^ 
induces an isomorphism G, --f GS(G,). 1 

4. REDUCIBLE AND ORDERED COMBINATORIAL MAPS 

Let G be a combinatorial map over I and R a rank 2 residue over {i,j). If 
R is finite, then it is a cycle in G consisting of lines alternately colored i and 
j. Let p(R) be half the length of this cycle. If R is infinite, then p(R) = co. 
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Now let p,, = lcm,p(R), where the lcm is taken over all residues of type 
{i,j). The diagram D(G) of G is obtained by representating each i E Z as a 
node labeled i and connecting nodes i and j by a line labeled pij. By 
convention the line is omitted when pri = 2 and the line label is omitted when 
pij = 3. The diagram is a generalization of the Schlafli symbol of a regular 
polytope. For example, the Schlafli symbol of a cube Q in Fig. 1 is {4,3} 
indicating that each face is a 4-gon and 3 faces surround each vertex. The 
diagram of G(Q) is 

L. 
0 I 2 

In general, different combinatorial maps may have the same diagram. The 
relationship between the diagram of a combinatorial map and the diagram of 
a Coxeter group is explained in Section 7. 

There is a straightforward construction of a rank (n, + n,) combinatorial 
map from combinatorial maps of rank n, and rank n,. Let G,and G, be 
combinatorial maps over disjoint sets I, and I, with point sets V(G,) and 
V(G,). The product G, * G, is a combinatorial map over I, U I, with point 
set V(G,) x V(G,). Two points (u,, u2) and (u,, u2) are i-adj whenever 
[u, =ZJ, and u2 i-adj u2] or [u2=u2 and ui i-adj vi]. This is the standard 
product construction for graphs, together with the appropriate line coloring. 
An example is shown in Fig. 4. A combinatorial map is called reducible if it 
is isomorphic to the product of two other combinatorial maps. Otherwise it 
is irreducible. 

THEOREM 4.1. Let G be a combinatorial map. Zf D(G) is connected, then 
G is irreducible. Conversely, if G is irreducible and nondegenerate, then 
D(G) is connected. 

FIG. 4. A reducible combinatorial map. 
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ProoJ: Assume G is reducible G = G, * G,. It is a consequence of the 
product construction that pv = 2 for all i E I, and j E I,. Hence D(G) is 
disconnected. 

Conversely, assume that D(G) is disconnected. Let I, and I, be the nodes 
in two disjoint components of D(G) with I, U I, = I. For any given point u 
in G let G, be the residue of type I, containing u and G, the residue of type 
I, containing U. We claim that G is isomorphic to G, * G,. If 
a = (i,, i, ,..., ik} is a sequence of elements of 1, let ti denote the terminal 
point in G of a path with initial point u and successive lines labelled 
i, , i, ,..., i,. Because the diagram D(G) is disconnected, each residue of type 
{ i,j} with i E I, andj E I, is a 4-cycle. This implies that for sequences a E I, 
and b G I, we have ab = %. If (u, , uz) is an arbitrary point in G, * G,, let 
a E I, and b s I, be any sequences such that a = u1 and b= u2. Define a 
point f(u, , z+) in G by f(u,, z+) = ab. Note that f(u, , UJ is independent of 
the choice of a and b; because if there is another pair of sequences a’ and b’ _--- 
with~=u,,acI,and~=uu,,bcI,,then~=alb=ba’=b’a’=a’b’. 
The function f: G, * G, -+ G is an isomorphism. By its definition f preserves 
i-adjacency. Also f is injective: if f(u,, u2) =f(u;, us), then there are 
sequences a,a’cI, and b,b’cI, with a=~,, b=uz, ~=ul,~=u; and 
such that ab = a’b’. Letting a-’ denote the sequence a in reverse order, this 
implies bb’-‘a = abb’-’ = arb’b’-’ z 2. Hence bb’-’ = a’a-’ f 
G, n G, = (u). The last equality follows from the nondegeneracy of G. 
Therefore u 1 = 5 = 7 = u; and u2 = b = v = us. The surjectivity off now 
follows automatically from the connectivity of G. 1 

The faces of a polytope are partially ordered by inclusion. In general, an 
incidence structure (X, t, *) is called ordered if there is a partial order > on 
X such that x*y if and only if x > y or y > x. A combinatorial map G is 
called ordered if S(G) is ordered. Even rank 3 combinatorial maps exist that 
are not ordered. Consider, for example, a tessellation of the Euclidean plane 
by regular congruent hexagons. A 3-coloring of the lines such that each 
hexagon is 2-colored, yields a rank 3 combinatorial map G, and S(G) is not 
ordered. 

We call a diagram linear if it has the form 

The pi are allowed to take the value 2, i.e., the diagram may be disconnected. 

THEOREM 4.2. Let G be a combinatorial map. If D(G) is linear, then G 
is ordered. Conversely, if G is ordered and nondegenerate, then D(G) is 
linear. 
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ProoJ: Assume D(G) is linear. Reading D(G) from left to right yields an 
ordering of I: i, < i, < . . . < i,. Define an ordering on S(G) as follows: x < y 
if and only if x*y and r(x) < r(y). To prove that G is ordered we have only 
to show that < is transitive. Assume x < y and y < z. It is sufficient to show 
that x n y # 0. Let y be a path from a point in x to a point in z lying 
entirely in y and satisfying the conditions: (1) y is minimal with respect to its 
length m, and (2) of all paths satisfying (1) y is minimal with respect to the 
length m’ of the initial subpath with lines labeled <r(y). We must show that 
m = 0. Assume m # 0. If m’ = 0, then the first line in y can be deleted, 
contradicting the minimality of m. Similarly the last line in y must be labeled 
>r(y). Let u be the first point along y such that if U’ preceeds u and U” 
succeeds I( along y, then r(u’, u) < r(y) < r(u, u”). Then there is another path 
U’UU” from U’ to U” such that r(u’, v) = t(~, u”) and $0, u”) = r(u’, u), 
contradicting the minimality of m’. 

Conversely, assume that G is ordered and nondegenerate. Let 
{Xl? x2,..., xn} be a maximal flag of S(G) such that xi < x2 < ... < x,. There 
is a well-defined total ordering < of I given by $x1) < t(xJ < .. . < t(x,,). 
Let i,j E I be nonconsecutive in this order. Let F be a flag of type I - { i,j} 
in S(G). Then F is contained in exactly 4 maximal flags. In terms of 
G z GS(G) this implies that pij = 2. Thus the diagram obtained by 
positioning nodes r(xi), t(x&..., t(x,) in a row is linear. 1 

Let > be an ordering on an ordered combinatorial map G. There is an 
obvious dual ordering > ’ defined by x > ’ y if and only if y > x. 

THEOREM 4.3. The ordering on an ordered irreducible nondegenerate 
combinatorial map is unique up to dualization. 

ProoJ Assume G is an irreducible nondegenerate combinatorial map 
with two nondual orders. By Theorem 4.2, the nodes of the diagram D(G) 
can be ordered in two ways, one not obtainable from the other by merely 
reversing directions. This implies that D(G) is disconnected, contradicting 
the assumption that G is irreducible. 1 

5. GEOMETRIC REALIZATION 

In Examples 1 and 3, combinatorial maps are obtained from maps on 
surfaces and hypermaps. We now show that any nondegenerate rank 3 
combinatorial map can be realized as a hypermap and any ordered rank 3 
combinatorial map as a map on a surface. 

THEOREM 5.1. For any nondegenerate rank 3 combinatorial map G there 
is a hypermap I? such that G z G(H). 
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Proof: Assume that G is a combinatorial map over Z = (0, 1, 2). Let X,, 
be the set of simplexes of dG = (X, r, s) of type { 1,2 1. We form an abstract 
simplicial complex d’ that is a subdivision of AG. The simplicial complex A’ 
has vertex set X’ = XV X0 and the 2-simplexes are triples {x, y, z }, where 
r(x) = 0 and z = { y, w} E X,, with x*y and x*w. The cells of a map on a 
surface K are now formed from the unions of simplexes of A’ as follows: For 
a vertex x E X,, let cl(x) be the union of the two edges of A’ containing x and 
a vertex of type 0. Take {cl(x) 1 x E X,,} as the set of l-cells of K. There are 
two kinds of 2-cells. For a vertex x of A’ let c*(x) be the union of the 2- 
simplexes of A’ containing x. The set of 2-cells of K with e-value 1 are 
(Q(X) 1 r(x) = 1 ), and those with o-value 2 are {q(x) 1 r(x) = 2). Then (K, 0) 
is the desired hypermap. 1 

THEOREM 5.2. For any ordered rank 3 combinatorial map G there is a 
map K on a surface such that G g G(K). 

Proof: There is no loss of generality in assuming that G is a 
combinatorial map over (0, 1,2). The simplicial complex AG = (X, t, s) is a 
2-dimensional pseudomanifold and hence AG is a surface. For x E X let c(x) 
denote the subcomplex of AG consisting of those simplexes whose vertices 
are incident with x and are of type <r(x). Since G is ordered, c(x) is a 
pseudomanifold of dimension r(x). Let Ic(x)l denote the union of the 
simplexes of c(x). Let K be the map with underlying surface 1 G I, where the 
set of i-cells of K is { 1 c(x)1 1 r(x) = i}. Then G z G(K). m 

Theorem 5.2 does not extend to combinatorial maps of rank >3. As in 
Example 1, every map on a manifold yields a combinatorial map. However, 
not all ordered combinatorial maps arise in this way. In general, 1 G 1 need 
not be a manifold at all. Consider 

EXAMPLE 4. Let L, = (0, 1, 2 ,..., n ) and K,, , an abstract simplicial 
complex whose vertex set is L n X L n + 1 and whose simplexes are the sets of 
the form { (0, m,), (1, m,),..., (n, m,)} and all nonempty subsets, where the mi 
are distinct. The spaces 1 K, I and I K, I are homeomorphic to a 1 -sphere and a 
torus, respectively. It is easy to verify that the link of any vertex of K, is 
isomorphic to K,-, . Hence the link of each vertex of K, is a torus. If 
G = G(K,), then 1 G 1 g I K, 1 is not a manifold. 

6. TOPOLOGICAL CONCEPTS 

For a combinatorial map, properties of the underlying topological space 
(G( are related to the combinatorial properties of G. In this section orien- 
tability and the fundamental group are discussed. 
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THEOREM 6.1. Let G be a combinatorial map. Then ( GJ is orientable if 
and only if G is a bipartite graph. 

Proof: Without loss of generality assume that Z = (0, I,..., n). A 
collection (o(c)} of orientations of the n-simplexes of dG is called 
compatible (see [ 111) if for any (n - 1)-simplex s which is a face of n- 
simplexes c and c’ the orientations a(c) and -o(c’) induce the same orien- 
tation on s. The space ] G] is orientable if and only if there exists such a 
compatible collection of orientations. There is a natural orientation on each 
chamber of G given by labeling each vertex with its type. These local orien- 
tations can be altered in sign to be made compatible if and only if all be 
cycles in G have even length, i.e., if and only if G is bipartite. 1 

A path in a combinatorial map G is a sequence of points (a,, a*,..., a,} 
such that consecutive points are adjacent. The following notion of m- 
homotopy is due to Tits [ 171. If a and /3 are paths such that the last point in 
a is the first point in pi, then the product ~$2 is the concatenated path. The 
inverse a - ’ is the path obtained by listing the points of a in reverse order. 
Two paths a =/3$ and a’ = ay’6 are called elementary m-homotopic 
(a-a’ ) if y and y’ are contained in some residue of rank m. Two paths a 
and a’ are m-homotopic if there is a sequence of elementary m-homotopies 
a=a,-aa,-... -a,- - a’ such that all the a1 have the same first and last 
elements. If u0 is a fixed base point of G, the set of m-homotopy classes of 
closed path based at a,, forms a group in the usual way. This group, which is 
independent of the base point, is called the h-homotopy group of G and is 
denoted by n”(G). The relation between this combinatorial notion and the 
fundamental group x(1 G/) of the underlying topological space is the subject 
of the next result. 

THEOREM 6.2. Zf G is a rank n combinatorial map, then ~(1 GJ) z 
d’-‘(G). 

Proof: Define a homomorphism 0: II”-‘(G)-+ rr(]GI) as follows: A 
closed path a in G is mapped to the closed path @a in JG] formed by joining 
the barycenters of the chambers of dG corresponding to consecutive points 
of a via the common codimension 1 simplex. In this proof - denotes (n - l)- 
homotopy in G and N denotes topological homotopy in ] G I. To show that 0 
is a welldefined isomorphism it is sufficient to prove that 0 is surjective and 
that a - 0 if and only if @a N 0. Let a be a closed path in j G] based at an 
interior point of some chamber. By a general position argument there is a 
path a’ such that a N a’ and a’ does not pass through any simplex of 
codimension >l. This is sufftcient to show that 0 is surjective. 

Assume a - 0. To prove @a -0 it is sufficient to show that if a -/I is an 
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elementary (n - 1)-homotopy, then @a 2: O/I. But Oa and @I differ only on 
the open star of some vertex of ]dGl . Since such a subspace is contractible 
@a 2: Op. Conversely, assume that @a 2: 0. Let F: [0, 1 ] X [0, 1 ] + ] G 1 be 
the homotopy from @a to 0 so that F(0, s) = @a(s) and F(l, s) = 0. We may 
assume by standard topological arguments that there are sequences of 
numbers 0 < I, < t, < .a, < t, < 1 and s i, z ,..., s, such that F(t, s) does not s 
lie on a simplex of codimension 1 unless (t, s) = (ti, si) for some i. Let 
ti < fi < ti+ 1 and let aii be the path in G corresponding to F(ti, +). If F(ti, si) 
lies on a simplex cr of codimension > 1, then ali-, and at! differ only on the 
residue of rank <n corresponding to the chambers of dG containing u. 
Therefore al,-, and ai, are elementary (n - 1)-homotopic and a - 0. I 

COROLLARY 6.3. Let G be a combinatorial map. If the underlying 
topological space 1 G 1 is a simply connected manifold, then z’(G) = 0. 

Proof: Since G is a simply connected manifold, each open star St(s) is 
contactible, hence simply connected, when s is a simplex of codimension >2 
in AG. Applying the argument in the proof of Theorem 6.2 to residues, any 
two paths in a residue R of rank m > 2 with the same initial and end points 
are (m - l)-homotopic in R. If a is a closed path in G, then a is (n - I)- 
homotopic to 0, where n = rank G. But for m > 2 any sequence of 
elementary m-homotopies a = a, - a2 - .a. - ak = 0 can be refined to a 
sequence of elementary (m - 1)-homotopies a = ai - a; - ... - a;, = 0. 
Therefore a is 2-homotopic to 0. I 

Ramified coverings have been studied by both Tits [ 171 and Ronan [ 13 ] 
in a more general setting. We repeat the definitions in the present context. 
Let G and G’ be maps over I. For a nonnegative integer m, an m-covering 
G’ + G is a function f: V(G’) -+ V(G) that preserves i-adjacency for all i E I 
and is bijective when restricted to rank m residues. An m-covering is 
automatically an (m - 1)-covering. An ]1lcovering is an isomorphism. By a 
covering we mean an m-covering for some m > 0. The covering f naturally 
induces a topological map If]: 1 G’I -+ ] GI. An (II]- I)-covering induces a 
topological covering of the underlying topological spaces. The integer m can 
be thought of as a measure of the ramification of the covering. For u E V(G) 
the set f-‘(u) is called the fiber above u. It is easy to show that any two 
fibers have the same cardinality. If this cardinality is d, we say that f is a d- 
foZd covering. The group of automorphisms of G’ preserving each fiber is 
called the group of covering transformations off: Two coverings f: G; + G, 
and g: G$ + G, are called equivalent if there exist isomorphisms 8: G; + G; 
and 4: G, -+ G, such that 4 of = g. 8. 

An m-covering G -+ G is called a universal m-covering if it possesses the 
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following universal property: If g: G’ -+ G is any other m-covering, then f 
factors through g: 

d / I f / * 
G’- G 

g 

For example, consider the map K on a torus obtained by identifying opposite 
sides of the square in Fig. 5. The universal 2-cover of G(K) is G(k), where I? 
is the infinite tessellation of the Euclidean plane into squares. It is clear that 
if G possesses a universal m-covering, then it is unique. The existence of a 
universal m-covering of G is shown as in topological covering space theory: 
Let G be a combinatorial map over I with base point u and 0 < m < rank G. 
Let C? be the I-labeled graph whose points are the m-homotopy classes of 
paths with initial point u0 in G. Two points a and p are i-adj in e if and only 
if their endpoints are i-adj in G. The universal m-covering f: 6 -+ G is 
obtained by mapping each point a of d to its endpoint in G. A combinatorial 
map G is called simply m-connected if G is its own universal m-cover. A 
simply (III - l)- connected combinatorial map is called simply connected. By 
Theorem 6.2 and Proposition 6.4, simple connectivity corresponds to the 
usual topological notion. The first part of the proposition follows 
immediately from the construction of the universal m-covering. The second 
part has essentially the same proof as Corollary 6.3 and we omit it. 

PROPOSITION 6.4. Let G be a combinatorial map. 

(1) G is simply m-connected if and only ly T(G) = 0. 

(2) If all residues of rank >m in G are simply connected, then G is 
simply m-connected. 

An intuitive idea for constructing a d-fold m-covering f of a combinatorial 
map G is to stack d chambers above each chamber in AG and “glue” 

FIG. 5. G(k) is the universal 2-cover of G(K). 
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together pairs of chambers in adjacent stacks according to rules that insure 
that the natural projection onto dG induces an m-covering. We now 
formulate this idea rigorously. It will be applied to the construction of highly 
symmetric maps in [20]. 

Let Z,, denote the symmetric group acting on the set D = { 1, 2,..., d}. A 
permutation representation of a group 7c in Zd is a homomorphism 
f*: ?l-+Zd. Two such permutation representations f* , f 6: x + C, are 
equiualent if there is a permutation u E Ed such that o o f*a =f La o 5 for 
all a E n. A permutation representation is called transitive iff*(rr) acts tran- 
sitively on D. 

We now set up a correspondence between m-coverings of G and transitive 
permutation representations of the homotopy group rim(G). Let f: G’ --t G be 
a d-fold m-covering. Let u, be a fixed base point of G and denote by 
D = ( 1, 2,..., d} the set of points in the fiber off lying above u,,. For s E D 
any closed path a based at u,, has a unique lifting to a path a’ in G’ with 
initial point s. Let t be the terminal point of a’ and let f*(a): D + D be 
defined by s ct t. The permutation representation f*: n’“(G) + 2, is well 
defined up to equivalence. The connectedness of the graph G’ implies the 
transitivity of f*. Hence we have a function @:f k+f* from d-fold m- 
coverings to transitive permutation representations of rim(G) in C,. 

In the other direction let f*: rrm(G) + C, be a transitive permutation 
representation of z”(G). Let T be a spanning tree of G. Construct a 
combinatorial map G’ with point set V(G) x D. Two points (u, r) and 
(u’, r’) of G’ are declared i-adj if u and u’ are i-adj and either (1) (u, u’) E T 
and r = r’ or (2) (u, u’) @ T and r’ = df, a) r, where a is the unique cycle in 
TV {u, u’} containing the ordered pair (u, u’). Let f: G’ -+ G be the covering 
defined by (a, r) t-+ U. It is not difficult to show that f is an m-covering and 
independent of the choice of base point. The independence of the choice of 
the spanning tree T is part of the proof of Theorem 6.5. Thus we obtain a 
function a,: f* t-, f from transitive permutation representations of n”(G) in 
Zd to d-fold m-coverings of G. 

THEOREM 6.5. For a combinatorial map G the functions Q, and @* 
defined above are inverse to each other. In particular, the d-fold m-coverings 
of G are in one-to-one correspondence with the transitive permutation 
representations of n”(G) in Zd. 

Proox We first show that for a given f* the corresponding f is 
independent of the spanning tree. For the covering f: G’ -+ G constructed 
above define functions a,: V(G) -+ Zd for all i E I as follows: (@,u) r = r’ if 
(u, r) is i-adj to (u’, r’) in G’ for some a’. Now let u0 be the base point of G 
and a a path {ug, U, ,..., uk = u} from u,, to u in G, where uj- z is ii-adj to uj. 
Let @(a) be the permutation ai,uk-, o Qik-,uk-* o ... o Qi,u,,. If a is a 
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closed path, then @a depends only on the m-homotopy class of a. This is 
because @a =f*a in this case. Now let f be another spanning tree of G with 
corresponding covering fi G--t G and corresponding function @. If a and p 
are any two paths from u,, to u, then @a/l-’ = &a/I-’ implies &a 0 @-‘a = 
&I o @-‘/I. Therefore the function d 0 @ - ’ : V(G) + Zd is independent of the 
path. The function g: G’ -P G given by (u, r) k+ (u, (6 0 @-‘u) r) is an 
isomorphism. Since 30 g = f, the coverings f and 3 are equivalent. 

To show that @* o @ = id, let f: G’ -+ G be a covering; let f*: a”(G) --, C, 
be the corresponding permutation representation and let f= Qp, f*: G -+ G. 
Chose a base point u,, in G. In the process of constructing f* we gave the 
numeral 1 to a point in the fiber off above u,. Let U; be this point. Let U’ be 
an arbitrary point of G’ and a’ a path from u/, to U’ in G’. Let di be the 
unique lifting off (a’) for the covering f: d + G starting at the point (u, 1). 
Let u^ be the end point of 8. If g: G’ -+ G is the isomorphism given by U’ k u^ 
we have the equivalence f =j\o g. In the opposite direction @ o @* = id 
follows directly from the definitions. I 

7. SCHREIER REPRESENTATION 

In this section we discuss a group theoretic representation of a 
combinatorial map. Let W be a group generated by involutions ( ri 1 i E I}. 
By abuse of language we often use the letter W to indicate both the group 
and the distinguished set of involutions. If H is a subgroup of W the Schreier 
coset graph G(W, H) is an I-labeled graph defined as follows: The points of 
G( W, H) are the right cosets of W/H and two points u and U’ are i-adj if and 
only if u’ = uri. When H is the trivial subgroup of W, the Schreier coset 
graph is the Cayley graph of W with respect to the generators {ri / i E ii. 
The graph G( W, H) is a combinatorial map over I. For example, let W = 
(rO, rl, r2 ) ri = r: = rg = (rOr,)4 = (r, r2)4 = (rOr2)’ = 1) and H = ((rOr, r2)*, 
(r,r2rO)*). Then G(W, H) = G,, where G, is the combinatorial map in 
Fig. 3. 

Let G be any combinatorial map over I. For each iE I define a 
permutation pi of V(G) by piu = U’ if u i-adj u’. Let P be the permutation 
group on I’(G) generated by the (pi} and let P, be the stabilizer of a point u 
of G. The function G(P, P,) + G given by P, b g-‘(u) is an isomorphism, 
yielding the following result: 

THEOREM 7.1. If G is a combinatorial map, then G = G(W, H) for some 
group W generated by involutions and subgroup H < W. 

If G = G( W, H) then G( W, H) will be called a Schreier representation of 
the combinatorial map G. By the previous result, every combinatorial map 
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has a Schreier representation. According to the next result the Schreier 
representation is essentially unique. Recall that the core of H in W is the 
largest subgroup of H normal in W. Also - denotes conjugacy and 
Hg =g-‘Hg. 

THEOREM 7.2. Let W and W’ be groups generated by involutions 
( ri 1 i E I} and (rj 1 i E I} respectively, and let H < W and H’ < W’. Then 
G( W, H) 2 G( W’, H’) if and only if the bijection ri @ r; induces an 
isomorphism 4: W/N+ WI/N’ and #(H/N) - HI/N’, where N and N’ are 
the cores of H in W and H’ in W’. 

Proof. It is easily shown that G( W/N, H/N) E G(W, H) and G( WI/N’, 
H//N’) z G( W’, H’). Hence we may assume without loss of generality that 
N and N’ are the trivial subgroups. Assume #: W-t W’ is an isomorphism 
and $(H) E H’g. Then the function Ha F-+ H’g$(a) induces an isomorphism 
G( W, H) E G( W’, H’). Conversely, let f: G( W, H) + G( W’, H’) be an 
isomorphism and sayf(H) = H’g. Let A be the subgroup of W consisting of 
all finite products n rij such that n r;j = 1 in W’. Define fi’ in the same 
way by reversing the roles of ri and r;. Note that fi < H.and fi g W. But 
fi < N = { 1 } implies that fi = { 1). In the same way A’ = { 1). This is 
sufficient for ri t-+ r; to induce an isomorphism 4: W-t W’. Sincef(H) = H’g 
we have Ha = H if and only if H’ggi(a) = H’g. Therefore qi(H) = H’g. 1 

COROLLARY 1.3. If W is a group generated by involutions with 
subgroups H and H’, then G( W, H) s G( W, H’) if and only if H - H’. 

There are two particularly useful Schreier representations of a 
combinatorial map---the Coxeter representation and the canonical represen- 
tation. A Coxeter group over I is a group generated by involutions with the 
presentation 

W=(ri,iEZ((rirj)Pc= l,p,,= l,pij>2). (7.1) 

By abuse of language, W refers to presentation (7.1) as well as the group. 
We do not eliminate the possibility that pi, = co in which case the relation 
(rirj)Pij= 1 is absent. The diagram for a Coxeter group is constructed by 
representing ri by a node labeled i and connecting nodes i and j by a line 
labeled pii. By the usual convention the line is omitted when pij = 2, and the 
line label is omitted when pij = 3. The significance of a disconnected diagram 
D is that W is the direct product of the subgroups generated by the 
involutions corresponding to the nodes of each connected component of D. A 
Coxeter group is therefore said to be irreducible if its diagram is connected. 
Coxeter [2] classified all finite irreducible groups with presentation (7.1). 
These will be discussed in detail in relation to regular combinatorial maps 
[201* 
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If W is a Coxeter group it is apparent that the diagram of the 
combinatorial map G( W, { 1)) is the same as the diagram of W. For 
example, if W is the Coxeter group with diagram k, then for r = 3, 
G(W, { 1)) is a tetrahedron, i.e., G(W, { 1 }) z G(P), where P is a tetrahedron. 
If r = 4, then G(W, (1)) is a cube. If r = 5, then G(W, { 1)) is a 
dodecahedron. If r = 6, then G( W, ( I}) is the tessellation of the Euclidean 
plane into regular hexagons. If r > 6, then G( W, ( 1)) is the tessellation of the 
hyperbolic plane (open unit disk) into regular r-gons, 3 of them surrounding 
each vertex. 

Let G be a combinatorial map over I. Let P be the permutation group on 
V(G), with generators {pi}, described at the beginning of this section. If W is 
any group generated by involutions (ri} and 4: W--t P is a homomorphism 
induced by r, t+ pi, then G( W, #-‘(P,J) z G(P, P,) z G. By taking W to be 
the Coxeter group of form (7.1) with diagram D(G), we obtain the following 
result: 

COROLLARY 7.4. Every combinatorial map G has a Schreier represen- 
tation G( W, H), where W is a Coxeter group with the same diagram as G. 

The representation of Corollary 7.4 is the Coxeter representation. If we 
take W, = (rjr i E II rt = l), then G( W,, d- ‘(Pu)) is called the canonical 
representation of G. 

We conclude this section by expressing several properties of a 
combinatorial map in terms of the Schreier representation. Let T(G) denote 
the automorphism group of the combinatorial map G as defined in Section 2. 
Also N,(H) denotes the normalizer of the subgroup H in W. 

THEOREM 7.5. If G is a combinatorial map with Schreier representation 
G( W, H), then T(G) r N,(H)/H. Moreover T(G) acts transitively on V(G) if 
and only if H 4 W. 

ProoJ For each a EN,(H) the function f,: Hb+ Hab induces an 
automorphism of G( W, H). Hence there is a homomorphism 4: N,(H) -+ 
TG( W, H) given by a I-+ f,. Since ker 4 = H we have only to show that 4 is 
surjective. Let fE TG( W, H) and assume that f(H) = Ha. This implies that 

f(Hb) = Hab for all b E W. Therefore f = f, . Moreover, a E N,(H) because 
Hah = f (Hh) = f (H) = Ha for all h f H. 

The automorphism group T(G) is transitive on V(G) if and only if for all 
a E W there is an n E N,(H) such that Hn = Ha, i.e., a E N,(H). But this is 
equivalent to W = N,(H). 1 

THEREM 7.6. Let f: G’ + G be a covering of combinatorial maps with 
group T of covering transformations. There is an equivalent covering 
f: G( W, H’) -+ G( W, H) with H’ < H defined by f (H’a) = Ha. Moreover 
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(1) f is an (H: H/)-fold covering. 

(2) T G NH(H’)/H’. 

(3) T acts transitively on each fiber if and only if H’ 4 H. 

Proof With notation as above let G( IV,, H;) be the canonical represen- 
tatation of G’ and G( IV,, H,) the canonical representation of G. Iff(H&) = 
H* g, take W = W, , H’ = H$ , and H = HB, . Then H’ < H and the covering 
f: G( W, H’) + G( W, H) defined by f(H’a) = Ha is equivalent tof: Statement 
(1) follows immediately. To prove (2) consider the homomorphism 
4: N,(H) + Z(G( W, H’)) defined by (@a)(H’b) = H’ab. Then 4a E T if and 
only if f0 #a =j; which occurs exactly when a E H. Hence we have a 
surjective homomorphism 4’: iV,(H’) + T and ker 4’ = H’. To show (3) let 
h E H. If T acts transitively on each fiber, then there exists an automorphism 
taking H’ to H’h, i.e., there exists an a E N,(H’) such that H’a = H’h. 
Therefore h E H’a (N,,(H’). Conversely, assume H’ 4 H and let H’a and 
H’b lie in the same fiber. Then ba-’ E H = N,(H’). The automorphism 
#(ba-‘) takes Ha to Hb. 1 

Let G be a combinatorial map with canonical representation G( W, H). 
For J c Z let W, be the subgroup of W generated by ( ti 1 i E J) and let H,,, be 
the subgroup of H generated by the subgroups {WY n H 1 a E W and 
IJI=m}. 

THEOREM 1.1. Let G be a combinatorial map with canonical Schreier 
representation G( W, H). With the notation as above f,: G(W, H,) --) 
G( W, H) defined by f,,,(H,,,a) = Ha is equivalent to the universal m-covering 
of G. 

ProoJ: We first show that f, is an m-covering. Assume that H,a and 
H,,, b are two points in the same residue of type J, 1 JI = m, and fm(H,,,a) = 
f,(H, b). That Ha =fm(Hma) =fm(Hm b) = Hb, implies ab-’ E H. That H,a 
and H,,, b are in the same residue of type J implies that there exists an 
x E W, such that H,,,ax = H,,,b, i.e., axb-’ E H, c H. Since ab-’ E H and 
axb-‘EH we have axa-‘EHnW’jcH,. Since axa-IEH,,, and 
axb-’ E H, we have ab-’ = (axa-‘)-’ (axb-‘) E H,. Therefore H,,,a = 
H,,, b. 

Now assume that f: G( W, H’) + G(W, H) is any other m-covering of G 
where we may assume without loss of generality that H’ <H and 
f (H’a) = Ha for all a E W. We claim that H,,, <H’. It is sufficient to show 
that any element of WY n H belongs to H’. So assume awa - ’ E Wj n H, 
where w E W,. Then Hawa - ’ = H implies Haw = Ha. Since H’aw and H’a 
lie in the same residue of type J and f is bijective on residues of type J, 
H’aw = H’a. Therefore awa- ’ E H’. Now if g: G(W, H,) + G(W, H’) is 
defined by g(H,a) = H’a for all a E W, then f o g = f,. 1 
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THEOREM 7.8. If G s a combinatorial map with canonical representation 
G(W, H), then zm(G) z H/H, for m > 1. 

Proof: Regarding G as a Schreier coset graph there is a well-defined 
homomorphism 4: H--f a”(G) defined by ((r,,ri2 ... rik) = (1, ri,, ri,ri *,..., 
ril ri2 ... Tit}. The subgroups H n WY with IJI = m generate H,. Since 
H n WT s ker 0 we have H,,, E ker $. The converse, that h E ker # 5 h E H, , 
is proved by an easy induction on the length of the chain d(h) = a1 - a2 - ... 
- a/( - -0. I 
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