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Abstract. Coxeter matroids, introduced by Gelfand and Serganova, are combinatorial structures 
associated with any finite Coxeter group and its parabolic subgroup; they include ordinary ma- 
troids as a special case. A basic result in the subject is a geometric characterization of Coxeter 
matroids, first stated by Gelfand and Serganova. This paper presents a self-contained, simple 
proof of a more general version of this geometric characterization. 
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1. Introduction 

Matroids were originally introduced by Hassler Whitney in 1935 to abstract certain 
properties of linear independence, of  circuits and bonds in graphs, and of duality. Now 
they comprise an essential branch of combinatorics [16]. Matroids have a wide vari- 
ety of  applications, ranging from the geometry of Grassmannians [11 ] to combinatorial 
optimization [ 10]. This paper deals with a generalization of the notion of  matroid intro- 
duced by Gelfand and Serganova about 1987 [12, 13]. To each finite Coxeter group W 
and parabolic subgroup P, they associated a collection of subsets of  W/P called Cox- 
eter matroids (originally called (W,P)-matroids). Ordinary matroids correspond to the 
case where W is the symmetric group Sn+t, and P is its maximal parabolic subgroup. 
Coxeter matroids and their further generalizations were studied in [ 1-7, 15]. 

The original definition of a Coxeter matroid was given in terms of  the Bruhat order 
on W/P (see Section 4). A fundamental result in the theory of Coxeter matroids gives an 
equivalent geometric definition in terms of the matroidpolytope associated with (W,P). 
This definition (with a sketch of a proof that two definitions are equivalent) appeared 
in [13]; a complete proof of the equivalence of two definitions for Weyl groups was 
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given in [15]. In this paper, we extend the result and proof of  [15] from Weyl groups 
to arbitrary finite Coxeter groups. In the process, we also provide a self-contained brief 
introduction to Coxeter matroids. 

In [15], the geometric interpretation of  Coxeter matroids corresponding to Weyl 
groups was used to obtain their characterization in terms of greedy algorithms for a 
generalized assignment problem. This result generalizes the classical Rado-Edmonds 
theorem for ordinary matroids. In a forthcoming publication, we will extend this result 
to arbitrary finite Coxeter groups. 

This paper is organized as follows. Definitions concerning Coxeter groups and 
complexes appear in Section 2. Results on Bruhat order appear in Section 3. The Bruhat 
order is defined on the collection ofcosets If/P. Moreover, with respect to any w E If,  
there is a twisted version of  the Bmhat order called the w-Bruhat order. Necessary 
geometric conditions for two elements to be comparable to each other in the w-Bruhat 
order with respect to a single element w of  the Coxeter group are known. Theorem 
3.1 gives a geometric condition necessary and sufficient for two elements of  a Coxeter 
group to be comparable to each other in the w-Bruhat order relative to every element w 
of the Coxeter group. Coxeter matroids are introduced in Section 4. In Section 5, we 
introduce matroid Coxeter potytopes and prove the geometric characterization theorem 
(Theorem 5.2). The proof is based on a general result about polytopes established 
in [15, Theorem 3.5]. For the convenience of  the reader, we reproduce this result in 
Theorem 5.1. 

2. Coxeter Groups and Coxeter Complexes 

In this section, we collect definitions and notation related to finite Coxeter groups (the 
standard reference is [8]). Let (W,S) be a finite Coxeter system of rank n. This means 
that W is a finite group with the set S consisting ofn  generators, and with the presenta- 
tion 

< s ~ S l  (ss')  m'e = 1 >, 

where mss, is the order ofss', and ross = 1 (hence, each generator is an involution). The 
group W is called a Coxeter group. The diagram of (W,S) is the graph where each 
generator is represented by a node, and nodes s and s' are joined by an edge labeled 
ms,, whenever rose >__ 3. By convention, the label is omitted if mse = 3. A Coxeter 
system is irreducible if its diagram is a connected graph. A reducible Coxeter group 
is the direct product of the Coxeter groups corresponding to the connected components 
of its diagram. Finite irreducible Coxeter groups have been completely classified and 
are usually denoted by An (n _> l),Bn (n _> 2),Dn (n >_ 4),E6,E7,Es,F4, G2,H3,H4, and 
I2(m) (m >_ 5, m 7~ 6), the subscript denoting the rank. 

A reflection in W is a conjugate of some element o f&  Let T = T(W) denote the 
set of all reflections in W. Every finite Coxeter group W can be realized as a reflection 
group in some Euclidean space E of  dimension equal to the rank of W. In this realiza- 
tion, each element of T corresponds to the orthogonal reflection through a hyperplane 
in E containing the origin. Each of  the irreducible Coxeter groups listed above, except 
Dn,E6,E7, and Es, is the symmetry group of  a regular convex polytope. The group An 
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is isomorphic to the symmetric group Sn+l, the set S consisting of the adjacent trans- 
positons si = ( i,i + 1). 

For a finite Coxeter system (W, S), let E denote the set of  all reflecting hyperplanes 
in E. Let E ~ = E \ OHez H. The connected components of  E'  are called chambers. For 
any chamber F, its closure F is a simplicial cone in E. These cones and all their faces 
form a fan in E called the Coxeter complex and denoted A := A(W,S). 

It is known that W acts simply transitively on the set of chambers. To identify 
the elements of  W with chambers, we choose a fundamental chamber F0 whose facets 
(i.e., faces of  codimension one) are reflecting hyperplanes for the simple reflections 
s E S, then the bijective correspondence between W and the set of  chambers is given by 
w ~ w(F0). Two chambers u(F0) and v(F0) share a facet if and only i fv  = us for some 
s E S. Thus, the Cayley graph G(W,S) of (W,S) can be identified with the dual graph 
of the complex A(W, S). 

A (standard)parabolic subgroup of W is a subgroup generated by some subset of  S. 
I f P  is a parabolic subgroup, we denote by F0(P) the set of  points in F0 whose stabilizer 
in W is exactly P. The closure Fo(P) is a face of  the cone F0, and the correspondence 
P ~-~ F0(P) is a bijection between the set of  parabolic subgroups of  W and the set of  
faces ofF0. The action of W extends this correspondence to a bijection wP ~-r w(Fo(P)) 
between the union of left coset spaces UW/P modulo all parabolic subgroups, and the 
set of  all faces of  the Coxeter complex. Under this correspondence, the codimension of 
the face w(Fo(P)) is equal to the number of  simple reflections that generate P. 

3. Bruhat Order 

In this section we review the main properties of  the Bruhat partial order on a Coxeter 
group W; for the proofs, see [6, 8, 9] or [14]. We will use the notation u _ w for the 
Bruhat order on W. It will be defined in two equivalent ways. 

For w E W, a factorization w = sis2.. .sk into the product of  simple reflections is 
called reduced if  it is the shortest possible. Let l(w) denote the length k of  a reduced 
factorization of w. 

Definition 1. Define u :L-_ v if there exists a sequence v = uo, u l , . . . ,  u m =  u such that 
ui = tiui-i for some reflection t i E T(W), and l(ui) > l(ui-1 ) for i = 1,2. . .  ,m. 

Definition 2. I f  u = sls2.. .sk is a reduced factorization, then u __. v if  and only if there 
exist indices 1 < il < .-. < ij < k such that v = si~ ...sij. 

The Bruhat order can be also defined on the leg coset space W / P  for any parabolic 
subgroup P of G; again there are several equivalent definitions. 

Definition 3. Define Bruhat order on W /P  by ~ ~- ~ if there exists a u E ~ and v E 
such that u ~ v. 

It is known (see, e.g., [14]) that any coset ~ E W/P  has a unique representative of  
minimal length. We denote this representative by Umin.  

Definition 4. We have ~ ~ ~ in the Bruhat order on W/P  if and only if ~rnin ___ V-min. 
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As in Section 2, we represent W as a reflection group in some Euclidean space E; 
we retain all the notation in Section 2. Fix any point 8 E Fo(P). Since, by definition, 
the stabilizer o f  8 in W is P, we can unambiguously define the point ~8 E E for any 
-a E W/P. Using Definitions 1 and 3, we obtain the following geometric definition of  
the Bruhat order on W/P. 

Definition 5. We have ~ _;L- V in the Bruhat order on W/P if there exists a sequence o f  
points ~8 = 80,81,. . .  ,Sin = ~8 in E such that 5i = liSi-I for some reflection ti E T(W),  
and, for all i, the reflecting hyperplane ofti separates 5i from the chamber F0. 

This definition admits a convenient reformulation in terms o f  the standard inner 
product (-, .) on E. 

Definition 6. We have ~ ~ V in the Bruhat order on W/P if there exists a sequence o f  
points 75 = 80,51,. . .  ,Sin = ~5 in E such that 5i = tiSi-I for some reflection ti E T(W), 
and (5i,rl) < (5/-1 ,rl) for all i and all r I E Fo. 

To illustrate the above definitions, consider the example of  type An, where W = S,+t 
is the group of  all permutations o f [ l ,  n + l] = { 1 ,2 , . . . ,  n + 1 }. I f  A = {al < . . .  < a ,}  
and B = {bl < . . .  < bk} are two subsets of  the same cardinality in [ l ,n + 1] arranged 
in increasing order, we denote by A > B the partial order given by 

al >b l , a2>b2 , . . . , ak>bk .  

This partial order is known as the Gale order [10]. It is well known that the Bruhat 
order on Sn+l can be described in terms o f  the Gale order as follows: u ;L'_ v if  and only 
if, for any k = 1,. . .  ,n, the subsets u([1 ,k]) and v([1,k]) satisfy u([l ,k]) > v([l ,k]). The 
Bruhat order on W/P looks especially simple when P is a maximal parabolic subgroup 
in W generated by sl,. . .  ,sk-t,sk+l,... ,s,, for some k = 1,.. .  ,n. This subgroup is 
naturally isomorphic to Sk • S ,+l -k ,  and the correspondence u ~ u([1,k]) is a bijection 
of  Sn+l/(Sk • Sn+l-k) with the set o f  all k-element subsets of  [1,n + 1]. Under this 
correspondence, the Bruhat order on Sn+l/(Sk • S,+I-k) corresponds to the Gale order 
on k-element subsets. 

Returning to the general case, we note that, in view of  Definition 6, i f ~  ~ ~ in the 
Bruhat order on W/P, then (~5,rl) < (~5,rl) for all r 1 E F0. In some special cases 
this geometric condition is equivalent to ~ 5- ~, for example, this is true in the case 
W/P = S,+l/(Sk • Sn+l-k) just considered. In general, however, the Bruhat order 
is not characterized by this geometric condition. We illustrate this by the following 
counterexample. 

Consider the group W = B3 with Coxeter presentation 

W = <  s 1 , s 2 , s 3  I s  2 : s 2 = s~3 = ( s i s 2 )  4 = ( s i s 3 )  2 = ( s 2 s 3 )  3 = 1 > .  

Its geometric realization is the symmetry group of  a cube in the standard Euclidean 
space R 3, where the generating reflections are given by 

(~176 (i i) (i~ S l = 1 , s2  = 0 , s3  = 0 . 

0 0 1 
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The fundamental chamber can be chosen as follows: 

ro = { (x ,y ,z)  E ~ 3 : O < x < y < z} .  

Let P = {e}, and take u = $3sis2sis3 and v = szsjs2. These two factorizations are 
easily seen to be reduced. By Definition 2, u and v are incomparable in the Bruhat 
order on W. On the other hand, choosing 6 = (1,2, 3), we see that u8 = ( - 3 , 2 ,  - 1) and 
v8 = ( 1, - 2 ,  3), hence, for any rl = (x,y,z) E F0, we have (vS, 11) - (uS, rl) = 4x + 4 ( z -  
y)>0. 

For a general finite Coxeter group W and its parabolic subgroup P, we will associate 
with each w E W a twisted version o f  the Bruhat order on W/P, which will be called 
the w-Bruhat order and denoted by :'-w. 

Definition 7. Define ~ _:L-w ~ in the w-Bruhat order on W/P  i f w - I ~  _:L- w-I~ .  

Definitions 5 and 6 have obvious analogues for the w-Bruhat order, with I'0 replaced 
by the chamber wF0. Either of  these definitions implies at once that, i f~  = t~ for some 
reflection t E T(W), then ~ and ~ are comparable in every w-Bruhat order on W/P. The 
converse statement is also true. 

Theorem 3.1. Two distinct elements -ff and ~ in W/P  are comparable in the w-Bruhat 
order for every w E W if and only i f  ~ = t-ff for some reflection t E T(W). 

Proof We will deduce the theorem from the following lemma. 

L e m m a  3.2. For every two elements -~ and ~ in W/P, there exists w E W such that 
0 ~ l ( (w- lV)min)-  l((w-lU)min) '< 1. 

Suppose two elements ~ and ~ of  W/P  are comparable in every w-Bruhat order. 
Choose w as in Lemma 3.2, and set (w-  t~)min = w-  t v and (w-z U)min --- w-  1U. By Def- 
inition 4, we have w- iv  ~_ w-lu.  Now consider two cases. I f l (w-~v)  = l (w-lu) ,  then 
we obviously have w-Iv  = w-lu,  i.e., v = u and hence u = v. If l (w-lv)  = l (w-lu)  + 1 
then, by Definition 1, we have w-Iv  = t /w-lu for some t / E T(W). In this case v = tu, 
and hence ~ = t~, where t = wt/w - I. To complete the proof  o f  the theorem, it only 
remains to notice that t E T(W) since T(W) is closed under conjugation. II 

Proof of  Lemma 3.2. Choose representatives u E ~ and v E ~ so that i (u-lv)  is minimal 
(that is, u and v are at the minimal distance in the Cayley graph G(W,S)). Choose a 
reduced factorization u- iv  = sis2...sin. Let k = [m/2] and w = usls2...sk. We have 
w- lu  =sk . . . s l  and w-Iv  = s k + l - . . S m ,  so 0 < l ( w - l v ) - l ( w - t u )  = m - 2 k  < 1. It 
remains to show that w- iv  and w- lu  are minimal elements in their cosets w - l ~  and 
w - l ~ .  Let w-Iv  ' = (w-I~)min and w - l u  ' = (w-l~)min. Assuming that u' r u or r :~ v, 
we would have 

l(u'-Zv ') = l( ) S Z(w-  u ') + l(w- v ') < l(w-  u) + t ( w - l v )  = l(u- v) , 

which contradicts the choice o f  u and v. This contradiction completes the proof  of  
Lemma 3.2. II 
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4. Coxeter Matroids 

Following [12, 13], we now define Coxeter matroids, the central object of  study in this 
paper. Let (W,S) be a finite Coxeter system and P a parabolic subgroup in/4". A subset 
M C_ W/P  is called a Coxeter matroid (for W and P) if, for each w E W, there is a unique 
minimal element in M with respect to the w-Bruhat order. 

To show that this definition includes ordinary matroids as a special case, recall that 
one of  the many equivalent definitions of  ordinary matroids is in terms of  the Gale order 
on k-element subsets of  a linearly ordered finite set I. This order is defined as follows: 
i fA = {al , . . . ,ak}  and B = {b~,...,bk}, each with elements arranged in increasing 
order, then A >_ B i fai  >_ bi for i =  1, . . . ,k.  According to [10], a matroid (of rank 
k) on a finite set I can be defined as a collection B of k-element subsets of  I, called 
bases, such that, for any linear ordering of  I, there exists a unique base B E B minimal 
in the corresponding Gale ordering. Now if we take I = [l,n + l], then, as shown 
in the previous section, the set of  all k-element subsets of  I is identified with W/P,  
where W = S,+l and P = St x Sn+I-~. Furthermore, linear orderings of /correspond to 
permutations w E S,+I. Under this correspondence, the Gale order corresponds to the 
w-Bruhat order on W/P. In other words, matroids of  rank k on [I, n + 1] are precisely 
Coxeter matroids for W = Sn+l and P = Sk x Sn+l-k. 

The next result shows that the concept of  a Coxeter matroid for W and an arbitrary 
parabolic subgroup P can be reduced to the concept of  Coxeter matroid for W and the 
trivial subgroup P0 = {e}. 

Proposition 4.1. Let P be a parabolic subgroup of  W, and p : W --+ W / P  be the natural 
projection. Then 

(l) I f M  C_ V~" is a Coxeter matroid in W, then p(M) is a Coxeter matroid in W/P. 
(2) I f M  C_ gr ip  is a Coxeter matroid in Vr'/P, then p - |  (M) is a Coxeter matroid in I4". 

Proof Part (1) follows from Definition 3, and part (2) follows from Definition 4. II 

In particular, for type An, it suffices to study Coxeter matroids in W = Sn+l. This 
notion also admits a reformulation in terms of ordinary matroids. To present it we need 
to recall some standard terminology from matroid theory. Let B be the collection of  
bases of  a matroid on a finite set I. The rank rk(d) of  a subset J C 1 is the maximal 
cardinality of  the intersection Jf3B for B E B. A subset F _C I is closed with respect to 
B i f r k (FU {x}) = rk(F) + 1 for all x E I - F .  The following proposition was proved 
in [13]. 

Proposition 4.2. Let M C Sn+l, and for k = 1 , . . . ,  n, let Bk be the collection of  subsets 
w([1, k]) for w E M. Then M is a Coxeter matroid if  and only if  each Bk is the collection 
of  bases of  a matroid of  rank k on [1, n + 1], and every subset closed with respect to Bk 
is also closed with respect to Bk+1. 

5. Geometric Characterization of Coxeter Matroids 

To every Coxeter matroid will be associated a convex polytope called the matroid poly- 
tope. In the case of  an ordinary matroid M on a finite set I with the collection B of  
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bases, let E be a Euclidean space with a given basis (8i) (i E I). With every B E B, we 
associate the vector 

~B = E Ci �9 
iEB 

The matroidpolytope A(M) is the convex hull of the ks for all B E B. 
To extend this definition to general Coxeter matroids, let M C_ W/P, where W is a 

finite Coxeter group and P is a parabolic subgroup in W. The notation that follows was 
introduced in previous sections. For any ~5 E F0(P), let 6~(M) be the convex hull of the 
points ~6 for ~ E M. Note that, since W acts on E by orthogonal transformations, all 
the points ~6 lie at the same distance from the origin. It follows that all these points 
are vertices of As(M). It is shown in [7] that the combinatorial type of As(M) does not 
depend on the choice of 5 E F0(P). Moreover, if5 and ~7 are two points in Fo(P), then 
corresponding edges of A~(M) and As,(M ) are parallel. In view of these results, we 
will sometimes write A(M) for A~(M). I fM is a Coxeter matroid, the polytope A(M) is 
called the matroidpolytope of M. 

I 

2 (2,4) 4 

Figure 1: Example of a matroid polytope. 

Figure 1 shows the matroid polytope ofthe ordinary rank 2 matroid M on { 1,2, 3,4} 
with the collection of bases B = { { 1,3 }, { 1,4}, {2, 3 }, {2, 4} }. The Coxeter group W = 
$4 is the symmetry group of the regular tetrahedron. The point ~5 is taken as the midpoint 
of an edge of the tetrahedron. The matroid polytope is the square, whose four vertices 
correspond to the four bases of the matroid. 

Before formulating and proving our main result about Coxeter matroids (Theorem 
5.2), we establish a general result about convex polytopes in Euclidean spaces. Let E 
be a finite-dimensional Euclidean space with inner product (., .). Let H~,.. .  ,HN be a 
collection ofcodimension 1 subspaces of E, and set E ~ = E \ UHi. A vector r I E E is 
regular i f r  I E E t. Connected components o fE  t will be called chambers. We associate 
with every chamber F a partial ordering < r  on E by setting 

~1<r~2 if (~l,rl) < (~2,rl) forevery r lEF .  

Theorem 5.1. Let A be a convex polytope in E. The following conditions are equiva- 
lent. 

(1) Every edge o f  A is orthogonal to some hyperplane t1~.. 
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(2) For every regular vector q, the maximum maxima (~, rl) is attained at a unique vertex 

of~X. 
(3) For every chamber F, there is a unique vertex ~(F) of  A maximal with respect to the 

ordering <_1-. 

Proof (3) :=~ (2). I f r  1 E F, then, by definition, max~A(~,,rl) is attained at the unique 
vertex ~(1-'). 

(2) =I, (3). For each regular r 1, denote by ~(rl) the unique vertex in ,5 at which 
max~A(~, rl) is attained. The map r I ~-+ ~(rl) is locally constant, and hence, constant on 
each chamber I'. The value of  this map at points o f f  is, by definition, the vertex ~(F). 

(2) :=> (1). Assume that an edge lot, 13] of  A is not orthogonal to any Hi. This implies 
that there exists a regular vector rio such that (ct, qo) = (13,qo). Now let r 1 E E be 
a vector such that max~,~a(~,rl) is attained along the whole edge [ct,13]. Adding, if 
necessary, a vector Erl0 with sufficiently small e > 0 to r 1 results in a regular vector 
q'  = rl + erl0. But (ot, rl' ) = (13,rl'), which contradicts (2). 

(1) ~ (2). Let r 1 be regular and to a vertex at which max~A(~,rl) is attained. 
Since r I is regular, it is not orthogonal to any edge [~,0,~1] of  A, which implies that 
(~o,rl) -r (~l,rl). Hence, (~o,rl) > (~l,rl) for all ~l adjacent to to, and therefore, 
also for all ~l E A, ~l # ~,0. I 

Now everything is ready for the proof of  our main result. 

Theorem 5.2. Let (W,S) be a finite Coxeter system, P a parabolic subgroup of  W, and 
any point in Fo(P). Let M be a subset o f  W / P  and A(M) = As(M) the corresponding 

polytope. The following statements are equivalent. 

( 1 ) M is a Coxeter matroid. 
(2) Every edge of  A(M) is orthogonal to one of  the reflecting hyperplanes. 
(3) For any two adjacent vertices ot and ~ of  A(M), there is a reflection t E W such that 

t(1=13. 
(4) For any regular rl E E, the linear functional ~ ~-~ (~,rl) attains its maximum on 

A(M) at a unique point. 
(5) For any chamber F, the polytope A(M) has a unique maximal point with respect to 

the ordering <r. 

Proof The equivalence of(2),  (4), and (5) follows from Theorem 5. I applied to the col- 
lection of  reflecting hyperplanes. The implication (1) ~ (5) is an easy consequence of  
Definition 6 of  the Bruhat order on W / P  (see the discussion in Section 3). To complete 
the proof, it suffices to show that (2) =~ (3) and (3) =~ (1). 

(2) ~ (3). Let [ct, 13] be an edge of  A(M) and t E W the reflection in the hyperplane 
orthogonal to [ct, 13]. Then Gt, 13, and tQt lie on a line. Since all three points are at the 
same distance from the origin, it follows that 13 = ta.  

(3) =~ (1). Let w be any element of  W and F = wF0 the corresponding chamber. 
Choose a point r 1 in F and let ~ be any element of  M that maximizes (~5,rl). We claim 
that ~ ~ .  ~ for any ~ E M, hence, M is a Coxeter matroid. Since (~5, rl) < (~5, rl), there 
is a sequence u = uo, u l , . . . ,  ~,n = 7 in M such that each [ui- l 5, ~i5] is an edge of  A(M) 
and (Ui_l~,rl) < (~i~,q) for i = l , . . . ,m .  Combining (3) with Theorem 3.1, we see 
that any two elements ~ _  t and ~i are comparable in the w-Bruhat order. Moreover, by 
Definition 6, ~_~ ~ Ui, hence, u = u0 :'-w ~ ~-w "'" >'-w ~m = ~, as claimed. I 
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We illustrate the theorem in Figure 1. Condition (2) of  Theorem 5.2 requires that 
every edge of  A(M) be orthogonal to a reflecting hyperplane, i.e., be parallel to an edge 
of  the tetrahedron. Since this is the case for the square in the figure, the collection 
B = {{ 1,3}, { 1,4}, {2, 3}, {2,4}} is indeed the collection of  bases o f a  matroid. 

We conclude with the following remark: in view of  Theorem 5.2, if any of  the 
statements (2), (3), (4) or (5) is true for some choice o f &  then they are all true for all 
choices o f  8. 
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