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Abstract

For a function from the unit interval to itself with constant slope and one discontinuity,
the itineraries of the point of discontinuity are called the critical itineraries. These critical
itineraries play a significant role in the study of β-expansions (with positive or negative β)
and fractal transformations. A combinatorial characterization of the critical itineraries of
such functions is provided.

1. Introduction

The dynamics of a function from the unit interval to itself is a topic with a long history.
While most results concern continuous functions, this paper deals with the dynamics of
the archetypal families of discontinuous dynamical systems illustrated in Figure 1. These
discontinuous functions with constant slope, formally defined below, are often chosen as
canonical representatives of conjugacy classes of Lorenz maps [7, 9, 16]. The Lorenz maps
serve as models for Poincaré return maps for Lorenz flows [19] and play a central role in
recent work in fractal geometry [1, 3].

Continuous non-differentiable transformations, used in digital imaging and 3D printing
applications, can be constructed using conjugate pairs of such discontinuous systems [2].
Parameterised families of such discontinuous systems, and others that are conjugate or semi-
conjugate to them, occur in models for a large class of engineering applications such as cir-
cuits, electronics, control systems, and phenomena such as earthquakes; see [11, 14, 24] and
references therein.

The dynamics of β-transformations — functions of the type depicted in Figure 2 restric-
ted to the inner square — are integral to the study of the representation of the real numbers

† Supported by the projects FAN (ANR-12-IS01-0002, FWF I1136) and DynA3S (ANR-13-BS02-0003)
of the Agence Nationale de Recherche and the Austrian Science Fund.
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Fig. 1. Maps with constant slope and one discontinuity.

using non-integer bases. For positive β, there is a large literature on this subject beginning
with the pioneering work of Rényi and Parry [21, 23]. Generalizations such as linear mod
one functions — depicted in the left and middle panels of Figure 1 — have also been studied
extensively; see for example [6, 10]. The study of negative β-transformations, which were
often neglected, gained a new momentum with the paper [13] by Ito and Sadahiro. Many ar-
guments for positive slopes easily adapt to negative ones, but some properties of the positive
case are not true for the negative slopes, see e.g. [17] and Example 3 in Section 3.

It is well known that the behavior of such discontinuous dynamical systems is mediated
by the critical itineraries, namely certain symbolic orbits that are defined below. A similar
situation occurs for the dynamics of continuous systems, for which the canonical repres-
entative is the family of logistic maps La : [0, 1] → [0, 1], where La(x) = ax(1 − x),
a ∈ (0, 4]; see for example [4]. In this case, conditions under which a given continuous
system is conjugate to a logistic map are well understood in terms of a symbolic orbit of
the critical point, x = 0.5. This symbolic orbit (which is analogous to but not the same as
the critical itineraries in the present work) have been fully characterised [20]. This paper
provides an analogous, succinct, complete characterisation of the critical itineraries of the
discontinuous systems illustrated in Figure 1. While related results are present in the literat-
ure, many discussed in Section 6, the present characterisation appears new; in particular, the
case of negative slopes has not been treated elsewhere.

In the left and middle images in Figure 1, the restriction to the dotted square is (after
proper renormalisation) of the form βx + α mod 1 with |β| > 1. This is true in general
when β > 1. For β < −1, however, the right image in Figure 1 gives an example where the
situation is different, hence the class of functions that we consider is larger than that of the
maps βx + α mod 1 with one discontinuity.

It is convenient to consider generalised β-transformations of the form

fβ,p : R → R, x �→

⎧⎪⎪⎨
⎪⎪⎩

βx if x < p,

βx or β(x − 1) if x = p,

β(x − 1) if x > p,

with β, p ∈ R, and |β| > 1. More precisely, we define two functions fβ,p,± by

fβ,p,−(p) = βp, fβ,p,+(p) = β(p − 1), fβ,p,−(x) = fβ,p,+(x) = fβ,p(x) for x � p.

For the trajectories f n
β,p,±(p) of the discontinuity to be bounded, we need that

β > 1, 1 � p � 1

β − 1
, or β < −1,

β2 + β − 1

β2 − 1
� p � 1

β2 − 1
(1·1)
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Fig. 2. Greedy β-transformation and Ito–Sadahiro’s (−β)-transformation.

(which implies that |β| � 2). For these parameters, we have

fβ,p

([
0,

β

β − 1

])
= [

0,
β

β − 1

]
and fβ,p

([
β

β2 − 1
,

β2

β2 − 1

])
=

[
β

β2 − 1
,

β2

β2 − 1

]

when β > 1 and β < −1, respectively. The restriction of fβ,p to the respective interval has
the form of a map in Figure 1. Moreover, every expanding map from the unit interval to itself
with constant slope and one discontinuity is conjugate to the restriction to some interval of
some function fβ,p,− or fβ,p,+.

The trajectories of points in R by fβ,p,± can be coded by elements of

� = {0, 1}ω,

which denotes the set of infinite words (or sequences) c = c0c1c2 · · · on the alphabet {0, 1}.
For x ∈ R, the two itineraries of x are

τβ,p,−(x) = c0c1 · · · with cn =
{

0 if f n
β,p,−(x) � p,

1 if f n
β,p,−(x) > p,

τβ,p,+(x) = c0c1 · · · with cn =
{

0 if f n
β,p,+(x) < p,

1 if f n
β,p,+(x) � p.

The two itineraries of the point of discontinuity p play a special role. Call τ− := τβ,p,−(p)

and τ+ := τβ,p,+(p) the critical itineraries of fβ,p. The pair (τ−; τ+) is also referred to
as the kneading invariant of fβ,p. For β > 1, the critical itineraries are equal to the limit
itineraries limx↑p τβ,p,±(x) and limx↓p τβ,p,±(x). For β < −1, this relation is not necessarily
true, see Observation 1 in Section 3.

The main result in this paper is a combinatorial characterization of the critical itineraries
of a function fβ,p. The possible pairs (τ−; τ+) are exactly those which are lex-admissible or
alt-admissible, as defined in Section 2. As a corollary to the main result, we get a character-
isation of the critical itineraries of βx +α mod 1 (when this map has only one discontinuity).

For the particular case p = 1, 1 < β � 2, the critical itineraries were already described
in [21]. Indeed, we have β Tβ(x) = fβ,1,+(βx) for all x ∈ [0, 1), where Tβ is the greedy
β-transformation, defined by Tβ(x) := βx −�βx	; see also Figure 2. Here, since τβ,1,+(1) =
1000 · · · , it is sufficient to study τβ,1,−(1) = 0 τβ,1,−(β).

For p = 1/(1 − β), −2 < β < −1, we have β Tβ(x) = fβ,p,+(βx) for all x ∈
[β/(1 − β), 1/(1 − β)), where Tβ is the β-transformation defined in [13] by Tβ(x) :=
βx − �βx − β/1 − β	 (for negative β). The critical itineraries of these maps were char-
acterised in [27]. Here, we have τβ,p,−(p) = 00 τβ,p,−(β2 p) and τβ,p,+(p) = 1 τβ,p,+(β2 p).
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2. Admissible pairs of words

The lexicographic order on � is the total order defined by a < b if a � b and an < bn

where n is the least index such that an � bn . The alternating lexicographic order on � is
the total order defined by a < b if a � b and (−1)n (an − bn) < 0, where n is the least index
such that an � bn (with a = a0a1 · · · , b = b0b1 · · · ). We use the notation

(a, b) := {c ∈ � : a < c < b}
for the open interval with respect to the specified order (lexicographic or alternating lexico-
graphic); likewise for the closed and half open intervals.

Let S denote the shift operator on �, i.e., S(c0c1c2 · · · ) = c1c2 · · · . For a set X ⊆ �, let

�X := {c ∈ � : Sn(c) � X for all n � 0}.
Note that �X is shift invariant in the sense that S(�X ) = �X .

For � ⊆ �, let

�n := {u ∈ {0, 1}n : uc ∈ � for some c ∈ �}
be the set of length n prefixes of words in �, and let |�n| denote the cardinality of �n . The
exponential growth rate g(�) of � ⊆ � is given by

g(�) := lim
n→∞

n
√|�n|,

if the limit exits. In particular, the limit exists for � = �(a,b) (see e.g. [18]), and

h
(
�(a,b

) := log g
(
�(a,b)

)
is the topological entropy of �(a,b) considered as a symbolic dynamical system with the shift
map S operating on it (and � equipped with the product topology of the discrete toplogy).

Let A := {0, 1}. The set of finite words over A is denoted by A∗ = ⋃
n�0 An . The length

of a word u ∈ A∗ is denoted by |u|, i.e., |u| = n if u ∈ An . The Kleene star B∗ = ⋃
n�0 Bn

is also used for sets of words B ⊂ A∗; it denotes the set of finite concatenations of elements
from B. The set of infinite concatenations of elements from B is denoted by Bω. For u ∈ A∗

with |u| � 1, the only element of {u}ω is the periodic infinite word u := uuu · · · ∈ �.

Definition 1. Call a pair of words (a; b) with a ∈ 0 �, b ∈ 1 �, lex-admissible if the
properties (i)–(iii) below hold for the lexicographic order, alt-admissible if (i)–(iii) hold for
the alternating lexicographic order:

(i) Sn(a) � (a, b] and Sn(b) � [a, b) for all n � 0, i.e., a ∈ �(a,b], b ∈ �[a,b);

(ii) g
(
�(a,b)

)
> 1;

(iii) if a, b ∈ {u, v}ω for some finite words u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, with u ∈ �(u,v],
v ∈ �[u,v), and g

(
�(u,v)

) = g
(
�(a,b)

)
, then a = u and b = v.

Example 1 (Pairs with zero exponential growth rate). It is not hard to find examples of
a, b ∈ � satisfying condition (i) but g(�(a,b)) = 1. There are trivial examples such as a = 0
with arbitrary b satisfying (i), and this is also the case when a, b are the critical itineraries
of the function x + α mod 1 with irrational α.

We define the value of a sequence c = c0c1c2 · · · ∈ � in base β by

〈c〉β :=
∞∑

n=0

cn

βn
.
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3. Main results

Our main result is the following theorem, which is proved in Section 4.

THEOREM 1. Two words a, b ∈ � are the critical itineraries of fβ,p for some β > 1,
1 � p � 1/(β − 1), if and only if the pair (a; b) is lex-admissible.

Two words a, b ∈ � are the critical itineraries of fβ,p for some β < −1,
(β2 + β − 1)/(β2 − 1) � p � 1/(β2 − 1), if and only if the pair (a; b) is alt-admissible.

In either case, we have |β| = g
(
�(a,b)

)
, p = 〈a〉β = 〈b〉β , and 〈a〉γ � 〈b〉γ for all γ ∈ R

with sgn(γ ) = sgn(β) and |γ | > |β|.

The following theorem, which is proved in Section 5, shows that the conditions for β > 1
can be simplified. In fact, the equality g

(
�(u,v)

) = g
(
�(a,b)

)
in (iii) is automatically satisfied

for the lexicographic order (except for u = 0 or v = 1, where g
(
�(u,v)

) = 1).

THEOREM 2. A pair of words (a; b) with a ∈ 0 �, b ∈ 1 �, is lex-admissible if and only
if properties (i) and (ii) of Definition 1 and property (3’) below hold for the lexicographic
order.

(3’) If a, b ∈ {u, v}ω for some finite words u ∈ 01 {0, 1}∗, v ∈ 10 {0, 1}∗, with u ∈ �(u,v]

and v ∈ �[u,v), then a = u and b = v.

The following corollary of Theorem 1 characterises the critical itineraries of βx + α

mod 1, i.e., the itineraries of the discontinuity point of the maps

Tβ,α,+ : [0, 1) → [0, 1), x �→ βx + α − �βx + α	,
Tβ,α,− : (0, 1] → (0, 1], x �→ βx + α − �βx + α� + 1,

with β > 1, 0 � α � 2 − β, or β < −1, −β − 1 < α < 1. For these parameters, both maps
Tβ,α,− and Tβ,α,+ have a unique discontinuity point, which is at (1−α)/β when β > 1 and at
−α/β when β < −1. We define the itinerary of x ∈ [0, 1) under Tβ,α,+ as c0c1 · · · ∈ � with
cn = sgn(β) �β T n

β,α,+(x) + α	, and the itinerary of x ∈ (0, 1] under Tβ,α,− as c0c1 · · · ∈ �

with cn = sgn(β) (�β T n
β,α,−(x) + α� − 1).

COROLLARY 1. Two words a, b ∈ � are the critical itineraries of βx + α mod 1 for
some β > 1, 0 � α � 2 − β, if and only if the pair (a; b) is lex-admissible. In this case, we
have β = g

(
�(a,b)

)
and α = (〈a〉β − 1) (β − 1) = (〈b〉β − 1) (β − 1).

Two words a, b ∈ � are the critical itineraries of βx + α mod 1 for some β < −1,
−β − 1 < α < 1, if and only if the pair (a; b) is alt-admissible, S2(a) < S(b), and
S2(b) > S(a) (in the alternating lexicographic order). In this case, we have β = −g

(
�(a,b)

)
and α = 〈a〉β (1 − β) = 〈b〉β (1 − β).

As mentioned in the Introduction, what we call critical itineraries are not necessarily the
limit itineraries from the left and right to p, when β is negative. The relation between these
two notions is described by the following observation.

OBSERVATION 1. Let β < −1, (β2 + β − 1)/(β2 − 1) � p � 1/(β2 − 1). If a :=
τβ,p,−(p) is periodic with odd period length, let u be its primitive period. If b := τβ,p,+(p)
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is periodic with odd period length, let v be its primitive period. Then

lim
x↑p

τβ,p(x) =

⎧⎪⎨
⎪⎩

a if a is not periodic with odd period length,

ub if a is periodic with odd period length, but b is not,

uv if a and b are periodic with odd period length,

lim
x↓p

τβ,p(x) =

⎧⎪⎨
⎪⎩

b if b is not periodic with odd period length,

va if b is periodic with odd period length, but a is not,

vu if a and b are periodic with odd period length.

****

Remark 1. For the greedy β-transformation, we have the following: The pairs of critical
itineraries of fβ,1, 1 < β � 2, are exactly the pairs (0c; 10) with c ∈ 1 � and 10 � Sn(c) �
S(c) for all n � 1 (w.r.t. the lexicographic order); cf. [21].

For the cases corresponding to Ito–Sadahiro’s (−β)-transformations, we obtain the fol-
lowing characterization from [27]. Let d = 100111001001001110011 · · · ∈ � be the word
starting with ϕn(1) for all n � 0, where ϕ denotes the morphism on {0, 1}∗ defined by
ϕ(1) = 100, ϕ(0) = 1. Then the critical itineraries of fβ,1/(1−β), −2 � β < −1, are exactly
the pairs (00c; 1c) with c ∈ 1 � such that Sn(c) � c for all n � 1, c > d, and c � {u00, u1}ω

for all u ∈ {0, 1}∗ with u1 > d, and the pairs (00w; 1w) with w ∈ 1 {0, 1}∗ such that
Sn(w1) � w1 for all n � 1, w1 > d, and w1 � {u00, u1}∗ for all u ∈ {0, 1}∗ \ {w} with
u1 > d, where the inequalities refer to the alternating lexicographic order.

It should be mentioned that f−2,1/3,+ is not conjugate to the map T−2 from [13, 27] be-
cause f−2,1/3,+(4/3) = −2/3 � 4/3 = −2 T−2(−2/3). The critical itineraries of f−2,1/3 are
(0010; 110), which is a pair satisfying the conditions above. However, the word 10 does not
satisfy [27, condition (1·8)] because 10 ∈ {2, 10}ω.

Note also that the inequality c > d implies that g
(
�(00c,1c)

)
> 1. Moreover, it is not

necessary to verify the equation g
(
�(00c,1c)

) = g
(
�(00u,1u)

)
here.

Example 2 (Primality Tester). The pair

a = 0 1 1 0 1 0 1 0 0 0 1 0 1 · · ·
b = 1 0 0 0 · · · ,

where an = 1 if and only if n + 1 is prime is lex-admissible. It is easy to check conditions
(i) and (iii) of Definition 1. Concerning condition (ii), we have �(a,b) ⊃ �(01,10) and thus
g
(
�(a,b)

)
� g

(
�(01,10)

) = (
√

5 + 1)/2. Therefore, a and b are the critical itineraries of fβ,1,
where β ≈ 1.79, as stated in Theorem 1. By the definition of the critical itineraries, the
natural number n is prime if and only if f n−1

β,1,+(p) > p. In other words, to test whether n + 1
is prime, we apply the nth iterate of fβ,1,+ to the point of discontinuity 1. If this iterate lies to
the right of p, then n is prime; otherwise, it is composite. Two comments are in order. First,
this result has little to do with number theory. Second, the method is numerically problematic
because β, being an irrational number, can be estimated to at most finitely many places.

Example 3. (Words a, b ∈ {u, v}ω with g
(
�(a,b)

)
> g

(
�(u,v)

)
> 1 for the alternating

lexicographic order). The following example illustrates that 〈a〉β = 〈b〉β does not necessarily
have a unique solution and that it might be difficult to avoid the condition g(�(u,v)) =
g(�(a,b)) in property (iii) of Definition 1 for negative β. Let

u = 001100000, v = 110, a = uuv, b = vvu.
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By Lemma 3 below, we can calculate

g
(
�(a,b)

) = −β > −γ = g
(
�(u,v)

)
,

with β ≈ −1.135888346 satisfying β9 = −β6 − 1, and γ ≈ −1.123732821 satisfying
γ 5 = γ 4 − γ 2 + γ − 1. Note that 1/γ is a root of the power series K (z) defined by a and b
in Lemma 3, but the largest negative root is 1/β. Setting

p := 〈a〉β = 〈b〉β = β8 + β5 + β4 − β2 − 1

β12 − 1
≈ 0.070528093,

q := 〈u〉γ = 〈v〉γ = 〈a〉γ = 〈b〉γ = γ 3 + γ 2

γ 3 − 1
≈ 0.064590878,

we have

τβ,p,−(p) = a, τβ,p,+(p) = b, τγ,q,−(q) = u, τγ,q,+(q) = v.

According to Corollary 1, a and b are the critical itineraries of βx + p(1 − β) mod 1, while
u and v are the critical itineraries of γ x + q(1 − γ ) mod 1.

In this example, we have g
(
�(a,b)

) = g
( ⋃∞

n=0 Sn{u, v}ω) > g
(
�(u,v)

)
> 1. Such a situ-

ation cannot occur for positive β, where g
( ⋃∞

n=0 Sn{u, v}ω
)

� g
(
�(u,v)

)
always holds for

u, v as in (3’); see the proof of Lemma 8.

4. Admissible pair = critical itineraries

4·1. Address space

The description of the address space of fβ,p is fairly standard for positive β, see e.g. [15,
theorem 2·5] or [3, theorem 5·1]. We include its proof for completeness and to prepare the
slightly more complicated case of negative β.

LEMMA 1. Let β > 1, 1 � p � 1/(β − 1), a := τβ,p,−(p), and b := τβ,p,+(p). Then the
address spaces of fβ,p,± are

τβ,p,−(R)=τβ,p,−([0, β/(β − 1)])=�(a,b] and τβ,p,+(R)=τβ,p,+([0, β/(β − 1)])=�[a,b),

with the lexicographic order on �. In particular, we have a ∈ �(a,b] and b ∈ �[a,b).
Moreover, we have g

(
�(a,b)

) = β.

Proof. Let x ∈ Xβ := [0, β/(β − 1)], and recall that fβ,p(Xβ) = Xβ for β > 1, 1 � p �
1/(β − 1). If τβ,p,−(x) agrees with a or b on the first n letters, then f n

β,p,−(x) − f n
β,p,±(p) =

βn (x − p). Therefore, since f n
β,p(x) is bounded, x < p implies that f n

β,p,−(x) � p <

f n
β,p,−(p) for some n � 1, and p < x implies that f n

β,p,+(p) < p < f n
β,p,−(x) for some n �

1, hence τβ,p,−(x) � a if x � p and τβ,p,−(x) > b if x > p. This gives that Sn(τβ,p,−(x)) =
τβ,p,−( f n

β,p,−(x)) � (a, b] for all n � 0, i.e., τβ,p,−(x) ∈ �(a,b]. As τβ,p,−(x) = 0 = τβ,p,−(0)

for all x < 0, and τβ,p,−(x) = 1 = τβ,p,−(β/(β − 1)) for all x > β/(β − 1), we obtain that
τβ,p,−(R) = τβ,p,−(Xβ) ⊆ �(a,b].

To show the opposite inclusion, let c = c0c1 · · · ∈ �(a,b]. If c0 = 1, then let k1 be the length
of the maximal common prefix of c and b. Since c > b, we have ck1 = 1 and f k1

β,p,+(p) < p.
Recursively, let kn+1 � 1 be the length of the maximal common prefix of csn csn+1 · · · and b,
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with sn = k1 + · · · + kn . Then

〈c〉β − p = 〈cs1 cs1+1 · · · 〉β − f k1
β,p,+(p)

βs1
>

〈cs1 cs1+1 · · · 〉β − p

βs1
� · · ·

�
〈csn csn+1 · · · 〉β − f kn

β,p,+(p)

βsn
>

〈csn csn+1 · · · 〉β − p

βsn

for all n � 1. Since the latter quantity tends to 0 as n → ∞, we have 〈c〉β > p. Similarly,
we obtain that 〈c〉β � p when c0 = 0. Therefore, we have τβ,p,−(〈c〉β) = c for all c ∈ �(a,b],
hence �(a,b] ⊆ τβ,p,−(Xβ).

By symmetry, we also get that τβ,p,+(R) = τβ,p,+(Xβ) = �[a,b).
It is well known that g

(
τβ,p,−(Xβ)

) = β = g
(
τβ,p,+(Xβ)

)
; see for example [25, proposi-

tion 3·7]. Finally,

�(a,b) = �(a,b] � �[a,b)

gives that g(�(a,b)) = g(�(a,b]) = g(�[a,b)) = β.

The address space for negative β can be compared to [5, theorem 10]; see also
[13, theorem 10] for the case p = 1/(β − 1).

LEMMA 2. Let β < −1, (β2 + β − 1)/(β2 − 1) � p � 1/(β2 − 1). If a := τβ,p,−(p) is
periodic with odd period length, let u be its primitive period. If b := τβ,p,+(p) is periodic
with odd period length, let v be its primitive period. Then the address space of fβ,p,− is⎧⎪⎨

⎪⎩
�(a,b] if b is not periodic with odd period length,

�(a,b] \ {0, 1}∗ va if b is periodic with odd period length, but a is not,

�(a,b] \ {0, 1}∗ {vu, vu} if a and b are periodic with odd period length,

and the address space of fβ,p,+ is⎧⎪⎨
⎪⎩

�[a,b) if a is not periodic with odd period length,

�[a,b) \ {0, 1}∗ ub if a is periodic with odd period length, but b is not,

�[a,b) \ {0, 1}∗ {uv, uv} if a and b are periodic with odd period length,

with the alternating lexicographic order on �. In particular, we have a ∈ �(a,b] and b ∈
�[a,b). Moreover, we have g

(
�(a,b)

) = −β.

Proof. Let x ∈ Xβ := [β/(β2 − 1), β2/(β2 − 1)], and recall that fβ,p(Xβ) = Xβ for β <

−1, (β2 + β − 1)/(β2 − 1) � p � 1/(β2 − 1). Since f n
β,p,−(x) − f n

β,p,±(p) = βn (x − p)

when τβ,p,−(x) agrees with a or b on the first n letters, x < p implies that f n
β,p,−(x) � p <

f n
β,p,−(p) for some even n � 1 or f n

β,p,−(p) � p < f n
β,p,−(x) for some odd n � 1, hence

τβ,p,−(x) < a. Similarly, we have τβ,p,−(x) > b if x > p. This gives that τβ,p,−(x) ∈ �(a,b].
As τβ,p,−(x) = 01 = τβ,p,−(β/(β2 − 1)) for all x < β/(β2 − 1), and τβ,p,−(x) = 10 =
τβ,p,−(β2/(β − 1)) for all x > β2/(β2 − 1), we obtain that τβ,p,−(R) = τβ,p,−(Xβ) ⊆ �(a,b];
in particular, a ∈ �(a,b] and, by symmetry, b ∈ �[a,b). If b is periodic with odd period length,
then 〈va〉β = p, but va � a = fβ,p,−(p), hence va does not occur in the address space
of fβ,p,−. If both a and b are periodic with odd period length, then we can also exclude vu
because 〈vu〉β = p.
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Now, let c = c0c1 · · · ∈ �(a,b], �(a,b] \ {0, 1}∗ va, and �(a,b] \ {0, 1}∗ {vu, vu}, respectively.
If c0 = 1, then let k1 be the length of the maximal common prefix of c and b. If k1 is even,
then ck1 = 1 and f k1

β,p,+(p) < p. If k1 is odd, then ck1 = 0 and p � f k1
β,p,+(p). Recursively,

let sn = k1+· · ·+kn and kn+1 � 1 be the length of the maximal common prefix of csn csn+1 · · ·
and b, if sn is even, the length of the maximal common prefix of csn csn+1 · · · and a, if sn is
odd and csn csn+1 · · ·� a. If csn csn+1 · · ·� a all n � 1, then

〈c〉β − p = 〈cs1 cs1+1 · · · 〉β − f k1
β,p,+(p)

βs1
� 〈cs1 cs1+1 · · · 〉β − p

βs1
� · · ·

�
〈csn csn+1 · · · 〉β − f kn

β,p,±(p)

βsn
� 〈csn csn+1 · · · 〉β − p

βsn

for all n � 2. Here, f kn
β,p,±(p) stands for f kn

β,p,+(p) if sn−1 is even and for f kn
β,p,+(p) if sn−1

is odd. Since the latter quantity tends to 0 as n → ∞, we have 〈c〉β � p. This inequality
clearly also holds if csn csn+1 · · · = a for some n � 1. It remains to show that the inequality
is strict, i.e., f kn

β,p,±(p) � p for some n � 1. If b is not periodic with odd period length,
then this holds for n = 1. Assume that b is periodic with primitive period v of odd length.
Then c cannot start with vv because this would imply c = v and thus c � �(a,b]. Therefore,
the only possibility for f k1

β,p,+(p) = p is that k1 = |v| (and that ck1 = 0). Since we have
excluded that c = va, we have ck1 ck1+1 · · · < a. If a is not periodic with odd period length,
we have thus f k2

β,p,−(p) � p. In the remaining case of a with primitive period u of odd
length, ck1 ck1+1 · · · cannot start with uu, because this would imply that ck1 ck1+1 · · · = a.
Thus the only possibility for f k2

β,p,−(p) = p is that k2 = |u|. Repeating this argument
and since c � vu, we obtain that 〈c〉β > p. Since 〈c〉β � p when c0 = 0, we get that
τβ,p,−(〈c〉β) = c for all c ∈ �(a,b], �(a,b] \{0, 1}∗ va, and �(a,b] \{0, 1}∗ {vu, vu} respectively,
thus this set is equal to τβ,p,−(R) = τβ,p,−(Xβ). By symmetry, τβ,p,+(R) = τβ,p,+(Xβ) is
�[a,b), �[a,b) \ {0, 1}∗ ub, and �[a,b) \ {0, 1}∗ {uv, uv}, respectively.

We have g(τβ,p,−(Xβ)) = |β| = g(τβ,p,+(Xβ)) by [25, proposition 3·7]. The exponential
growth rate of �(a,b] is the same as that of �(a,b] \ {0, 1}∗ va and �(a,b] \ {0, 1}∗ {vu, vu}, and
a symmetric relation holds for �[a,b). Together with �(a,b) = �(a,b] � �[a,b), this concludes
the proof of the lemma.

4·2. Kneading invariant

The idea for the following lemma goes back to [20]; see also [6, 8]. Contrary to the cited
papers, we work directly with the symbolic space and do not require it to be the address
space of some map. The main novelty, however, is the treatment of the alternating case.

LEMMA 3. Let a = a0a1 · · · , b = b0b1 · · · ∈ �, with a0 = 0, b0 = 1, a, b ∈ �(a,b) and
g(�(a,b)) > 1, for the lexicographic or alternating lexicographic order on �. Set

K (z) :=
∞∑

n=0

(bn − an) zn = 〈b〉1/z − 〈a〉1/z.

In case of the lexicographic order, 1/g
(
�(a,b)

)
is the smallest positive root of K (z). In the

alternating case, −1/g
(
�(a,b)

)
is the largest negative root of K (z).
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Proof. Define the formal power series

L(z) :=
∞∑

n=0

|Ln| zn, with Ln := {
u ∈ {0, 1}n : uc ∈ �(a,b) for some c ∈ �

}
,

and

Q(z) :=
∞∑

n=0

|Q j | z j , with Qn := {
u ∈ {0, 1}n : ua ∈ �(a,b) and ub ∈ �(a,b)

}
.

We will prove that, for every n � 0,

1 +
n∑

j=0

|Q j | = |Ln+1| (4·1)

for both lexicographic and alternating lexicographic order, as well as
n∑

j=0

(bn− j − an− j ) |Q j | = 1 and
n∑

j=0

(−1) j (bn− j − an− j ) |Q j | = (−1)n (4·2)

for the lexicographic and alternating lexicographic order, respectively. By simple formal
power series calculations and since |L0| = 1 because L0 contains only the empty word, we
obtain from (4·1) that

1

1 − z

(
1 + Q(z)

) = 1

z

(
L(z) − 1

)
,

i.e., L(z) − 1/(1 − z) = Q(z) z/(1 − z). From (4·2), we get that

K (z) Q(z) = 1

1 − z
and K (z) Q(−z) = 1

1 + z
,

respectively, with the second equation being equivalent to K (−z) Q(z) = 1/(1 − z). Then

K (z)

(
L(z) − 1

1 − z

)
= z

(1 − z)2
(4·3)

in case of the lexicographic order, and

K (−z)

(
L(z) − 1

1 − z

)
= z

(1 − z)2
(4·4)

in the alternating case. Since the radius of convergence of L(z) is 1/g
(
�(a,b)

)
and L(z)

has a singularity at 1/g
(
�(a,b)

)
, the smallest positive root of K (z) and K (−z), respectively,

is 1/g
(
�(a,b)

)
. It remains to prove (4·1) and (4·2).

Consider first the lexicographic order, and order the elements of Ln+1 lexicographically,
from u(1) = 00 · · · 0 to u(|Ln+1|) = 11 · · · 1. For 1 � k < |Ln+1|, let u(k) = u(k)

0 u(k)

1 · · · u(k)
n and

v(k) := u(k)

0 u(k)

1 · · · u(k)

j−1 b0b1 · · · bn− j ,

where j is the minimal integer in [0, n] such that

u(k)

j u(k)

j+1 · · · u(k)
n = a0a1 · · · an− j . (4·5)

(Such an integer exists because u(k) � 11 · · · 1 and u(k)c ∈ �(a,b) for some c ∈ �.)
We claim that u(k)

0 u(k)

1 · · · u(k)

j−1 ∈ Q j . Since a, b ∈ �(a,b), we have to show that

u(k)

i u(k)

i+1 · · · u(k)

j−1 a � (a, b) and u(k)

i u(k)

i+1 · · · u(k)

j−1 b � (a, b)



Critical itineraries 557

for all 0 � i < j . If u(k)

i = 1, then (4·5) and u(k)c ∈ �(a,b) imply that

u(k)

i · · · u(k)

j−1 b > u(k)

i · · · u(k)

j−1 a � u(k)

i · · · u(k)
n c � b.

Assume now that u(k)

i = 0. Then u(k)c ∈ �(a,b) gives that u(k)

i · · · u(k)
n � a0 · · · an−i . We

have u(k)

i · · · u(k)

j−1 a < u(k)

i · · · u(k)

j−1 b < a if u(k)

i · · · u(k)

j−1 < a0 · · · a j−i−1, and u(k)

i · · · u(k)
n =

a0 · · · a j−i−1 a0 · · · an− j otherwise, by (4·5). In the latter case, a j−i = 0 implies that
u(k)

i · · · u(k)
n � a0 · · · an−i , contradicting the minimality of j . Hence we must have a j−i = 1

in this case, thus

u(k)

i · · · u(k)

j−1 a < u(k)

i · · · u(k)

j−1 b � a.

This proves that u(k)

0 · · · u(k)

j−1 ∈ Q j , thus

Ln+1 = {11 · · · 1} �
n⋃

j=0

{
u0 · · · u j−1 a0 · · · an− j : u0 · · · u j−1 ∈ Q j

}
. (4·6)

(The inclusion “⊇” is a direct consequence of the definition of Q j and Ln+1.) Suppose
that u0 · · · ui−1 a0 · · · an−i = u0 · · · u j−1 a0 · · · an− j with u0 · · · ui−1 ∈ Qi , u0 · · · u j−1 ∈ Q j ,
0 � i < j � n. Then we have a0 · · · a j−i−1 = ui · · · u j−1 ∈ Q j−i , thus a0 · · · a j−i−1 b � a,
contradicting that a j−i = a0. Therefore, the union in (4·6) is disjoint, which gives (4·1) for
the lexicographic order.

For 1 � k < |Ln+1|, we have v(k) ∈ Ln+1 since u(k)

0 · · · u(k)

j−1 ∈ Q j . As there can be no
element of Ln+1 between u(k) and v(k), we obtain that u(k+1) = v(k), thus

n∑
j=0

(bn− j − an− j ) |Q j | =
|Ln+1|−1∑

k=1

(
u(k+1)

n − u(k)
n

) = u(|Ln+1|)
n − u(1)

n = 1,

i.e., the left-hand equation in (4·2) holds for the lexicographic order.

Consider now the alternating lexicographic order, and order the elements of Ln+1 with
respect to this order, from u(1) = 01 · · · 0 to u(|Ln+1|) = 10 · · · 1 if n is even, from u(1) =
01 · · · 01 to u(|Ln+1|) = 10 · · · 10 if n is odd. For 1 � k < |Ln+1|, let j be the minimal integer
in [0, n] such that u(k)

j · · · u(k)
n = a0 · · · an− j and j is even, or u(k)

j · · · u(k)
n = b0 · · · bn− j and

j is odd, with u(k) = u(k)

0 · · · u(k)
n . (Such an integer exists because u(k) is not the maximal

element of Ln+1.) Set

v(k) := u(k)

0 · · · u(k)

j−1 b0 · · · bn− j and v(k) := u(k)

0 · · · u(k)

j−1 a0 · · · an− j

when j is even and odd, respectively.
We claim again that u(k)

0 · · · u(k)

j−1 ∈ Q j . Assume w.l.o.g. that j is even, the case of odd j
being symmetric. Let 0 � i < j . If i is even, then we obtain as above that

u(k)

i · · · u(k)

j−1 b > u(k)

i · · · u(k)

j−1 a � u(k)

i · · · u(k)
n c � b if u(k)

i = 1,

u(k)

i · · · u(k)

j−1 a < u(k)

i · · · u(k)

j−1 b � a if u(k)

i = 0.

If i is odd and u(k)

i = 0, then

u(k)

i · · · u(k)

j−1 b < u(k)

i · · · u(k)

j−1 a � u(k)

i · · · u(k)
n c � a.

Assume now that i is odd and u(k)

i = 1. Then u(k)c ∈ �(a,b) gives that u(k)

i · · · u(k)
n �

b0 · · · bn−i . If u(k)

i · · · u(k)

j−1 = b0 · · · b j−i−1, i.e., u(k)

i · · · u(k)
n = b0 · · · b j−i−1 a0 · · · an− j , then
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b j−i = 0 implies that u(k)

i · · · u(k)
n � b0 · · · bn−i , contradicting the minimality of j . Hence we

must have b j−i = 1 in this case, thus

u(k)

i · · · u(k)

j−1 a > u(k)

i · · · u(k)

j−1 b � b.

This proves that u(k)

0 · · · u(k)

j−1 ∈ Q j , thus

Ln+1 = {
u(|Ln+1|)} �

�n/2	⋃
j=0

{
u0 · · · u2 j−1 a0 · · · an−2 j : u0 · · · u2 j−1 ∈ Q2 j

}

�
�(n−1)/2	⋃

j=0

{
u0 · · · u2 j b0 · · · bn−2 j−1 : u0 · · · u2 j ∈ Q2 j+1

}
. (4·7)

Similarly to the lexicographic case, it is not possible that u0 · · · u2i−1 a0 · · · an−2i =
u0 · · · u2 j−1 a0 · · · an−2 j with u0 · · · u2i−1 ∈ Q2i , u0 · · · u2 j−1 ∈ Q2 j , 0 � 2i < 2 j � n.
If u0 · · · u2i−1 a0 · · · an−2i = u0 · · · u2 j b0 · · · bn−2 j−1 with u0 · · · u2i−1 ∈ Q2i , u0 · · · u2 j ∈
Q2 j+1, 0 � 2i � 2 j < n, then a0 · · · a2 j−2i = u2i · · · u2 j ∈ Q2 j−2i+1, thus a0 · · · a2 j−2i a �
a, contradicting that a2 j−2i+1 = b0. Other cases of non-empty intersections of two sets on
the right hand side of (4·7) are excluded symmetrically, thus (4·1) holds for the alternating
lexicographic order too.

As in the lexicographic case, we have u(k+1) = v(k) for 1 � k < |Ln+1|, thus

n∑
j=0

(−1) j (bn− j − an− j ) |Q j | =
|Ln+1|−1∑

k=1

(
u(k+1)

n − u(k)
n

) = u(|Ln+1|)
n − u(1)

n = (−1)n,

i.e., the right-hand equation in (4·2) holds for the alternating lexicographic order.

4·3. Monotonicity of 〈·〉β

LEMMA 4. For every β > 2, 〈·〉β and 〈·〉−β are strictly increasing functions on �, for the
lexicographic and alternating lexicographic order, respectively.

Proof. Let β > 2, and c, d ∈ � with c < d (for the lexicographic or alternating lexico-
graphic order). By removing the maximum initial portion of the strings where c and d are
equal, and exchanging the role of c and d if the length of this portion is odd in the alternating
case, we may assume w.l.o.g. that c starts with 0 and d starts with 1. Then we have

〈c〉β � 〈0 1〉β = 1

β − 1
< 1 = 〈1 0〉β � 〈d〉β

in the lexicographic case, and

〈c〉−β � 〈0 01〉−β = 1

β2 − 1
<

β2 − β − 1

β2 − 1
= 〈1 10〉−β � 〈d〉−β

in the alternating case. This proves the lemma.

LEMMA 5. Let a ∈ 0 �, b ∈ 1 �, with a, b ∈ �(a,b) and g
(
�(a,b)

)
> 1, where � is

equipped with the lexicographic or the alternating lexicographic order.
In case of the lexicographic order, 〈·〉g(�(a,b)) is an increasing function on �(a,b).
In the alternating case, 〈·〉−g(�(a,b)) is an increasing function on �(a,b).

Proof. In the following, we assume that � is equipped with the lexicographic order; for
the alternating case, we only have to change 〈·〉β to 〈·〉−β .
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We show that 〈·〉β is strictly increasing on �(a,b) for all β > g
(
�(a,b)

)
. By Lemma 4, this

is true for β > 2. From Lemma 3, we know that 〈a〉β � 〈b〉β for all β > g
(
�(a,b)

)
. By the

continuity of 〈a〉β and 〈b〉β as functions of β > 1 and since 〈a〉β < b〉β for all β > 2, we
obtain that 〈a〉β < 〈b〉β for all β > g

(
�(a,b)

)
.

Assume that c < d, but 〈c〉β � 〈d〉β for some c, d ∈ �(a,b), β > g
(
�(a,b)

)
. By removing

the longest common prefix of c and d, we may assume w.l.o.g. that c starts with 0 and d
starts with 1. (In the alternating case, we also have to exchange the role of c and d if the
length of this prefix is odd.) Consider


(β) := max
{〈c〉β − 〈d〉β : c, d ∈ �(a,b), c � a, b � d

}
, (β > 1).

This function is well defined because {〈c〉β : c ∈ �(a,b)} is compact; 
(·) is also continuous.
By Lemma 4, we have 
(β) < 0 for β > 2, and we have assumed that 
(β) � 0 for some
β > g

(
�(a,b)

)
. Therefore, there exists β > g

(
�(a,b)

)
such that 
(β) = 0. Fix this β, and

choose c, d ∈ �(a,b) with c � a, b � d, and 〈c〉β = 〈d〉β . Since 〈a〉β < 〈b〉β , we have
〈c〉β > 〈a〉β or 〈b〉β > 〈d〉β . If 〈c〉β > 〈a〉β , then removing the longest common prefix of a
and c gives sequences c′, d′ ∈ �(a,b) with c′ � a, d′ � b, and 〈c′〉β > 〈d′〉β , contradicting
that 
(β) = 0. Similarly, 〈b〉β > 〈d〉β leads to a contradiction. Therefore, we have shown
that 〈·〉β is strictly increasing on �(a,b) for all β > g

(
�(a,b)

)
.

By continuity in β, we obtain that 〈·〉g(�(a,b)) is increasing on �(a,b).

4·4. Periodic critical itineraries

Next we show that condition (iii) of Definition 1 is violated when (i) and (ii) hold but a
and b are not the critical itineraries of some fβ,p.

LEMMA 6. Let a ∈ 0 �, b ∈ 1 �, with a ∈ �(a,b], b ∈ �[a,b), and g
(
�(a,b)

)
> 1. Set

β := g
(
�(a,b)

)
when � is equipped with the lexicographic order, β := −g

(
�(a,b)

)
in case

of the alternating lexicographic order, and p := 〈a〉β . If a � τβ,p,−(p) or b � τβ,p,+(p),
then we have a, b ∈ {u, v}ω for some u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, with u ∈ �(u,v], v ∈ �[u,v),
g(�(u,v)) = g(�(a,b)), and a � u or b � v.

Proof. First note that 〈b〉β = 〈a〉β = p by Lemma 3. Assume that a � τβ,p,−(p); the
case of b � τβ,p,+(p) is symmetric. Write a = a0a1 · · · and τβ,p,−(p) = c0c1 · · · . If
a0 · · · an−1 = c0 · · · cn−1, n � 0, then f n

β,p,−(p) = 〈cncn+1 · · · 〉β = 〈anan+1 · · · 〉β . By
Lemma 5, 〈anan+1 · · · 〉β < p implies that an = 0, and 〈anan+1 · · · 〉β > p implies that
an = 1; hence an � cn is possible only when f n

β,p,−(p) = p. Since a � τβ,p,−(p) and
a0 = 0 = c0, the latter case occurs for some n � 1. Choose m � 1 minimal such that
f m
β,p,−(p) = p, and set u := a0 · · · am−1; then τβ,p,−(p) = u. Since a � τβ,p,−(p), there ex-

ists some � � 1 such that a1 · · · a�m−1 = u · · · u = c0 · · · c�m−1 and a�m = 1. Then we have
〈a�ma�m+1 · · · 〉β = p = 〈b〉β and a�ma�m+1 · · · > b since a ∈ �(a,b]. Similarly as for a0a1 · · ·
and c0c1 · · · , we obtain that there exists some n � 1 such that a�m · · · a�m+n−1 = b0 · · · bn−1

and 〈bnbn+1 · · · 〉β = p, hence we also have f k
β,p,+(p) = p for some k � 1. Let j � 1 be

minimal such that f j
β,p,+(p) = p, and set v := b0 · · · b j−1. Then we have τβ,p,+(p) = v and

a, b ∈ {u, v}ω.
Since u, v are the itineraries of fβ,p,±(p), we have u ∈ �(u,v], v ∈ �[u,v) and g

(
�(u,v)

) =
|β| = g

(
�(a,b)

)
by Lemma 1 and 2, respectively.

LEMMA 7. Let u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, |β| > 1, with 〈u〉β = 〈v〉β =: p.
Then 〈c〉β = p for all c ∈ {u, v}ω. If τβ,p,−(p) ∈ {u, v}ω, then τβ,p,−(p) = u. If

τβ,p,+(p) ∈ {u, v}ω, then τβ,p,+(p) = v.
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Proof. Let c = c0c1 · · · ∈ � with c ∈ {u, v}ω. If c starts with u, then

〈c〉β − p = 〈c〉β − 〈u〉β = 〈c|u|c|u|+1 · · · 〉β − 〈u〉β

β |u| = 〈c|u|c|u|+1 · · · 〉β − p

β |u| .

Similarly, we have 〈c〉β − p = (〈c|v|c|v|+1 · · · 〉β − p)/β |v| if c starts with v, and thus

〈c〉β − p = 〈cncn+1 · · · 〉β − p

βn

for each n � 1 such that c0 · · · cn−1 ∈ {u, v}∗. Since n is unbounded and 〈cncn+1 · · · 〉β is
bounded, we get that 〈c〉β = p.

If τβ,p,−(p) ∈ {u, v}ω, then τβ,p,−(p) starts with u, thus f |u|
β,p,−(p) = p and τβ,p,−(p) = u.

Similarly, τβ,p,+(p) ∈ {u, v}ω implies that b = v.

4·5. Proof of Theorem 1

Assume first that a = τβ,p,−(p) and b = τβ,p,+(p) for some β, p. Then condition (i) of
Definition 1 holds by Lemmas 1 and 2, respectively. These lemmas also give that g

(
�(a,b)

) =
|β| > 1. If u, v are as in condition (iii) of Definition 1, then 〈u〉β = 〈v〉β by Lemma 3,
and this value equals p by Lemma 7. Lemma 7 also gives that a = u and b = v, thus
condition (iii) of Definition 1 holds. Therefore, the pair (a; b) is lex-admissible if β > 1 and
alt-admissible if β < −1.

Now, let (a; b) be lex-admissible and β := g(�(a,b)), or alt-admissible and β :=
−g(�(a,b)). By Lemma 6 and condition (iii) of Definition 1, we have a = τβ,p,−(p) and
b = τβ,p,+(p), with p := 〈a〉β . Moreover, we have 1 � 〈b〉β = p = 〈a〉β � 1/(β − 1) in
case β > 1, and 1 + β/(β2 − 1) � 〈b〉β = p = 〈a〉β � 1/(β2 − 1) in case β < −1.

4·6. Proof of Corollary 1

Let β > 1, 0 � α � 2 − β, set p := α/(β − 1) + 1 and define the map ϕ : [0, 1] →
[β(p − 1), βp], x �→ β(x + p − 1). Then Tβ,α,± = ϕ−1 ◦ fβ,p,± ◦ ϕ. Therefore, τβ,p,−(p)

and τβ,p,+(p) are the itineraries of ϕ−1(p) = (1 − α)/β under Tβ,α,− and Tβ,α,+. Since each
p ∈ [

1, 1/(β − 1)
]

can be written as p = α/(β − 1) + 1 with 0 � α � 2 − β, the critical
itineraries of fβ,p are exactly those of βx + α mod 1.

Now, let β < −1, −β − 1 < α < 1, set p := α/(1 − β) and define the map ϕ : [0, 1] →
[βp, β(p − 1)], x �→ β(p − x). Then Tβ,α,± = ϕ−1 ◦ fβ,p,± ◦ ϕ. Therefore, the itineraries of
ϕ−1(p) = −α/β under Tβ,α,− and Tβ,α,+ are a = τβ,p,−(p) and b = τβ,p,+(p). Hence (a; b)

is alt-admissible. Moreover, we have a ∈ 00 �, b ∈ 11 �, and (β + 1)/(β − 1) < p <

1/(1 − β) holds if and only if f 2
β,p,−(p) = β2 p < β(p − 1) = fβ,p,+(p) and f 2

β,p,+(p) =
β2 p − β2 − β > βp = fβ,p,−(p), i.e., S2(a) < S(b) and S2(b) > S(a).

On the other hand, let (a; b) be alt-admissible, S2(a) < S(b) and S2(b) > S(a), and
set β := −g

(
�(a,b)

)
, α := p (1 − β) with p := 〈a〉β . We first show that a ∈ 00 � and

b ∈ 11 �. Assume that a starts with 01. Then each 0 in a or b is followed by a 1. Moreover,
S2(b) > S(a) implies that b starts with 111 or 101. In the latter case we have a = 01 and
b = 10, contradicting that g

(
�(a,b)

)
> 1. If b starts with 111, then we must have b = 1,

hence each 1 in a is followed by a 0 as otherwise a would end with b. This gives that a = 01,
also contradicting that g

(
�(a,b)

)
> 1. By symmetry, b cannot start with 10. Now, we obtain

from the considerations in the previous paragraph that a, b are the critical itineraries of
βx + α mod 1, with β < −1, −β − 1 < α < 1.
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5. Exponential growth rates

5·1. Lexicographic order

The following lemma is similar to [26, theorem 3].

LEMMA 8. Let a ∈ 0 �, b ∈ 1 �, u ∈ 01 {0, 1}∗, v ∈ 10 {0, 1}∗, such that a, b ∈ {u, v}ω,
a ∈ �(a,b], b ∈ �[a,b), u ∈ �(u,v], and v ∈ �[u,v), where � is equipped with the lexicographic
order. Then

g
(
�(u,v)

) = g
(
�(a,b)

)
.

Proof. Since

�(u,v) ⊆ �(a,b) ⊆ �(uv,vu),

it suffices to show that g
(
�(uv,vu)

) = g
(
�(u,v)

)
.

First we prove that

�(uv,vu) � [u, v] ⊆ {u, v}ω. (5·1)

Let c ∈ �(uv,vu) � [u, v], and consider an arbitrary decomposition c = wd with w ∈ {u, v}∗,
d ∈ �. Assume that d starts with 0. Then c ∈ �(uv,vu) implies that d � uv and that d � u
when w ends with a word in v {u}∗. If w contains no occurrence of v, i.e., w ∈ {u}∗, then
we get d � u from c ∈ [u, v]. Therefore, we have u � d � uv, hence d starts with u.
Symmetrically, we obtain that d starts with v whenever it starts with 1. Therefore, (5·1)
holds, and

�(u,v) ⊆ �(uv,vu) ⊆ �(u,v) �
∞⋃

n=0

�(u,v)
n {u, v}ω,

where �(u,v)
n denotes the set of length n prefixes of words in �(u,v). This implies that

g
(
�(u,v)

)
� g

(
�(uv,vu)

)
� max

(
g
(
�(u,v)

)
, g

( ⋃∞
n=0 Sn{u, v}ω

))
. Hence we only have to

show that g
( ⋃∞

n=0 Sn{u, v}ω
)

� g
(
�(u,v)

)
.

Next we prove that

{r, s}ω ⊆ �(u,v), (5·2)

where r is the longest common prefix of u and Sn(v), with n � 1 such that Sn(v) is maximal
among all suffixes of v starting with 0, and s is the longest common prefix of v and Sm(u),
with m � 1 such that Sm(u) is minimal among all suffixes of u starting with 1. Note that
r and s are finite words because Sn(v) < u by v ∈ �[u,v) and Sm(u) > v by u ∈ �(u,v].
Moreover, Sn(v) starts with r0 and u starts with r1, v starts with s0 and Sm(u) starts with s1.
Therefore, we have

Sn(v) � rSn(v) � · · · � r < s � · · · � sSm(u) � Sm(u).

Since Sn(v) ∈ �(u,v) and u ∈ �(u,v), we have rc ∈ �(u,v) for all c ∈ �(u,v) with c ∈
[Sn+|r|(v), S|r|(u)] ⊇ [Sn(v), Sm(u)]. Symmetrically, we also have sc ∈ �(u,v) for all c ∈
�(u,v) � [Sn(v), Sm(u)], thus

rc, sc ∈ �(u,v) � [Sn(v), Sm(u)] for all c ∈ �(u,v) � [Sn(v), Sm(u)].
By compactness of �, we get that (5·2) holds, thus g

( ⋃∞
n=0 Sn{r, s}ω

)
� g

(
�(u,v)

)
.

It remains to prove that g
( ⋃∞

n=0 Sn{u, v}ω
)

� g
( ⋃∞

n=0 Sn{r, s}ω
)
. To this end, we show

that min(|r|, |s|) � min(|u|, |v|) and max(|r|, |s|) � max(|u|, |v|). The latter inequality



562 M. BARNSLEY, W. STEINER AND A. VINCE

follows from the definition of r and s. If |u| = |v|, then the former inequality also holds. It
remains to consider the case |u| � |v|; w.l.o.g. |u| < |v|. Suppose that |r| > |u|. Then, for
some k � n, Sk(v) starts with ut0, with some prefix t of u, while u starts with ut1. Write
Sm(u) = w1c, with w a suffix of ut of length at most |u|. As Sk+|ut|−|w|(v) starts with w0,
and v � Sk+|ut|−|w|(v), we obtain that |s| � |w| � |u|. Therefore, we have min(|r|, |s|) �
min(|u|, |v|), which concludes the proof of the lemma.

5·2. Proof of Theorem 2

We show first that (3’) implies (iii), when (i) and (ii) hold. We only have to show that each
u satisfying the conditions of (iii) starts with 01 (and, symmetrically, v starts with 10). If u
started with 00, then we had u = 0 and thus g

(
�(u,v)

) = 1, contradicting the assumption
that g

(
�(u,v)

) = g
(
�(a,b)

)
> 1.

The converse implication is a direct consequence of Lemma 8.

5·3. Alternating lexicographic order

For the alternating case, the following lemma and the subsequent remarks show that the
condition g

(
�(u,v)

) = g
(
�(a,b)

)
is often easy to verify. (Recall that g

(
�(u,v)

)
can be determ-

ined by Lemma 3.) However, Example 3 in Section 3 shows that, contrary to the case of
positive β, it is not sufficient that a, b ∈ {u, v}ω and (u; v) is a pair of critical itineraries.

LEMMA 9. Let a ∈ 0 �, b ∈ 1 �, u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, such that a, b ∈ {u, v}ω,
a ∈ �(a,b], b ∈ �[a,b), u ∈ �(u,v], and v ∈ �[u,v), where � is equipped with the alternating
lexicographic order. If g(�(u,v))−|u| + g(�(u,v))−|v| < 1, then

g
(
�(u,v)

) = g
(
�(a,b)

)
.

Proof. Let

amin = u, amax = uv, bmin = vu, bmax = v, if |u| and |v| are even,

amin = uv, amax = uuv, bmin = vvu, bmax = vu, if |u| and |v| are odd,

amin = u, amax = uvu, bmin = vvu, bmax = vu, if |u| is even and |v| is odd,

amin = uv, amax = uuv, bmin = vuv, bmax = v, if |u| is odd and |v| is even.

Then amin � a � amax and bmin � b � bmax, thus

�(amin,bmax) ⊆ �(a,b) ⊆ �(amax,bmin)

and �(amin,bmax) ⊆ �(u,v) ⊆ �(amax,bmin). We first prove that

�(amax,bmin) � [amin, bmax] ⊆ {u, v}ω. (5·3)

Let c ∈ �(amax,bmin) � [amin, bmax], and consider an arbitrary decomposition c = wd with
w ∈ {u, v}∗, d ∈ �. Assume that d starts with 0. Then d starts with u because amin � d � a.
Here, the inequality amin � d comes from the following considerations. If |u| and |v| are
even, then d � u as in the proof of Lemma 8. If |u| and |v| are odd, then d � uv follows
from c ∈ [uv, vu] when w ∈ {uv}∗ � v {uv}∗ and from c ∈ �(uuv,vvu) when w ends with
a word in {u, vv} {uv}∗. If |u| is even and |v| is odd, then d � u follows from c ∈ [u, vu]
when w ∈ {u}∗ � v {u}∗ and from c ∈ �(uvu,vvu) when w ends with a word in {uv, vv} {u}∗.
Finally, if |u| is odd and |v| is even, then d � uv follows from c ∈ [uv, v] when w is the
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empty word and from c ∈ �(uuv,vuv) when w ends with u or v. Symmetrically, we obtain that
d starts with v whenever it starts with 1. Therefore, (5·3) holds, and we have

�(amin,bmax) ⊆ �(amax,bmin) ⊆ �(amin,bmax) �
∞⋃

n=0

�(amin,bmax)
n {u, v}ω,

thus g(�(amax,bmin)) = max(g(�(amin,bmax)), g
(⋃∞

n=0 Sn{u, v}ω)
)
.

Since g
( ⋃∞

n=0 Sn{u, v}ω
))

is the only solution of x−|u| + x−|v| = 1 with x � 1,
g(�(u,v))−|u| + g(�(u,v))−|v| < 1 implies that

g
(⋃∞

n=0 Sn{u, v}ω
)

< g
(
�(u,v)

)
� g

(
�(amax,bmin)

)
,

thus g
(
�(amax,bmin)

) = g
(
�(amin,bmax)

)
, which gives that g

(
�(u,v)

) = g
(
�(a,b)

)
.

From the proof of Lemma 9, we can also derive other conditions that guarantee
g
(
�(u,v)

) = g
(
�(a,b)

)
, e.g., g(�(amin,bmax))−|u| + g(�(amin,bmax))−|v| � 1, or g(�(u,v))−|u| +

g(�(u,v))−|v| � 1 and g
(
�(u,v)

)
� g

(
�(a,b)

)
.

6. Lorenz maps

A Lorenz map, as defined, e.g., in [12], is a function f : [0, 1] → [0, 1] satisfying:

(i) there exists a c ∈ (0, 1) such that f is continuous and strictly increasing on [0, c) and
on (c, 1];

(ii) limx↑c f (x) = 1 and limx↓c f (x) = 0.

For β > 1, 1 � p � 1/(β − 1), the restriction of fβ,p to
[
0, β/(β − 1)

]
is thus conjugate to

the Lorenz map with constant slope β and c = (β − 1)/β p.
In [12], the authors define a fairly weak notion of what it means for a Lorenz map to be

expanding. Specifically, a Lorenz map is said to be topologically expansive if there exists an
ε > 0 such that any two distinct forward orbits (x0, x1, x2, . . . ) and (y0, y1, y2, . . . ) satisfy
|xi −yi | � ε for some i � 0. They prove that a pair (a; b) of binary strings is a pair of critical
itineraries of a topologically expansive Lorenz map if and only if (a; b) satisfy condition (i)
in Definition 1.

In [7, 9], for example, the authors define a stronger notion of what it means for a Lorenz
map to be expanding. Specifically, a Lorenz map is an L1+ε map if f is differentiable except
at the point c of discontinuity and if there exists an ε > 0 such that f ′(x) � 1 + ε for all
x � c. In [22], the author proves that if an L1+ε map f is transitive, then f is topologically
conjugate to a (generalised) β-transformation. In [9], the authors give necessary and suffi-
cient conditions for an L1+ε map to be transitive in terms of its critical itineraries. In [7], the
author gives necessary and sufficient conditions for an L1+ε map to be topologically con-
jugate to a generalised β-transformation in terms of its critical itineraries. There does not,
however, seem to be a characterisation of the pairs of critical itineraries of an L1+ε map. The
pair (a; b) with

a = 011100, b = 100011,

is the pair of critical itineraries of an L1+ε map, but is not, according to the main result of
this paper, the pair of critical itineraries of a generalised β-transformation. The pair (a; b)

with

a = 011110, b = 10011110,
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is an example of a pair of critical itineraries of a topologically expanding Lorenz map, but
not the pair of critical itineraries of an L1+ε Lorenz map. This can be verified by noting that,
if (a; b) were the pair of critical itineraries of an L1+ε map, then by the criteria in [7], it
would be the pair of critical itineraries of a generalised β-transformation. But, by the main
theorem of this paper, that is not the case.
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Boston, 1980).

[5] K. DAJANI and C. KALLE. Transformations generating negative β-expansions. Integers 11B (2011),
Paper No. A5, 18.

[6] L. FLATTO and J. C. LAGARIAS. The lap-counting function for linear mod one transformations. I.
Explicit formulas and renormalizability. Ergodic Theory Dynam. Systems 16 (1996), no. 3, 451–
491.

[7] P. GLENDINNING. Topological conjugation of Lorenz maps by β-transformations. Math. Proc. Camb.
Phil. Soc. 107 (1990), no. 2, 401–413.

[8] P. GLENDINNING and T. HALL. Zeros of the kneading invariant and topological entropy for Lorenz
maps. Nonlinearity 9 (1996), no. 4, 999–1014.

[9] P. GLENDINNING and C. SPARROW. Prime and renormalisable kneading invariants and the dynamics
of expanding Lorenz maps. Phys. D 62 (1993), no. 1-4, 22–50.

[10] F. HOFBAUER. The maximal measure for linear mod one transformations. J. London Math. Soc. (2)
23 (1981), no. 1, 92–112.

[11] S. J. HOGAN, L. HIGHAM and T. C. L. GRIFFIN. Dynamics of a piecewise linear map with a gap.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2077, 49–65.

[12] J. H. HUBBARD and C. T. SPARROW. The classification of topologically expansive Lorenz maps.
Comm. Pure Appl. Math. 43 (1990), no. 4, 431–443.

[13] S. ITO and T. SADAHIRO. Beta-expansions with negative bases. Integers 9 (2009), A22, 239–
259.

[14] P. JAIN and S. BANERJEE. Border-collision bifurcations in one-dimensional discontinuous maps.
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 11, 3341–3351.

[15] C. KALLE and W. STEINER. Beta-expansions, natural extensions and multiple tilings associated with
Pisot units. Trans. Amer. Math. Soc. 364 (2012), no. 5, 2281–2318.

[16] J. P. KEENER. Chaotic behavior in piecewise continuous difference equations. Trans. Amer. Math.
Soc. 261 (1980), no. 2, 589–604.

[17] L. LIAO and W. STEINER. Dynamical properties of the negative beta-transformation. Ergodic Theory
Dynam. Systems 32 (2012), no. 5, 1673–1690.

[18] D. LIND and B. MARCUS. An Introduction to Symbolic Dynamics and Coding (Cambridge University
Press, Cambridge, 1995).

[19] E. N. LORENZ. Deterministic nonperiodic flows. Atmospheric Sciences 20 (1963), no. 2, 130–
141.

[20] J. MILNOR and W. THURSTON. On iterated maps of the interval. Dynamical systems (College
Park, MD, 1986–87), Lecture Notes in Math. vol. 1342 (Springer, Berlin, 1988), pp. 465–
563.

[21] W. PARRY. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–
416.

[22] W. PARRY. Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math. Soc. 122
(1966), 368–378.
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