
Digit Tiling of Eu
lidean Spa
eAndrew Vin
eAbstra
t. This is an expository paper on digit tiling of Eu
lidean spa
e, aspe
ial kind of self-aÆne tiling by translates of a single tile. In parti
ular, thefollowing topi
s are dis
ussed: the 
onstru
tion of digit tiles and the 
onstru
-tion of the boundary, the Hausdor� dimension of the boundary, the relationbetween digit tiles and positional number systems, the self-repli
ating prop-erties of digit tiling, and latti
e and 
rystallographi
 digit tiling. In the lastse
tions digit tiling is pla
ed into the broader 
ontext of both periodi
 andnonperiodi
 self-aÆne tiling of Eu
lidean spa
e by a �nite set of proto-tiles. Inparti
ular, the following topi
s are dis
ussed: general results on hierar
hi
altiling, results spe
i�
 to self-aÆne and self-similar tiling, the 
onstru
tion ofself-aÆne and self-similar tilings using graph iterated fun
tion systems, andsome illustrative examples. 1. Introdu
tionSelf-similar tilings of Rd have attra
ted the interest of mathemati
ians in re
entyears for a variety of reasons that are dis
ussed in this paper. One primary reason,espe
ially relevant in the 
ontext of this volume, is that many of these tilingsare \quasiperiodi
" and serve as models for real quasi
rystals. The dis
overy ofquasi
rystals in 1984 [SBGC℄ was the impetus for, not just intensi�ed resear
h ontilings, but for mu
h of the re
ent work on the mathemati
s of long-range aperiodi
order. In this paper there is a shift of emphasis between the �rst and se
ond parts.Se
tions 1-7 deal mainly with periodi
 tilings; se
tions 8-10 mainly with nonperiodi
tilings. It is worth noting that self-similar tilings are a relatively re
ent addition tothe large body of work on the geometry and symmetry of tilings, a topi
 surveyed,beginning with the mosai
s in the Alhambra at Granada in Spain, in the book [GS℄by Gr�unbaum and Shephard.Two 
ompa
t sets in Rd are said to be non-overlapping if their interiors aredisjoint. A tiling of Rd is a de
omposition of Rd into non-overlapping 
ompa
t sets,ea
h the 
losure of its interior and ea
h with boundary having Lebesgue measure0. This paper is organized as follows. The de�nitions of self-aÆne and self-similartile and, in parti
ular, digit tile are given in x2. Digit tiles possess a self-similarproperty like that of the \Gosper 
owsnake" shown in Figure 1. The union of theseven tiles is similar to ea
h small tile. The 
onstru
tion of digit tiles in x2 is byway of iterated fun
tion systems, a standard method for 
onstru
ting fra
tals. Theboundary of a digit tile is usually fra
tal.1
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Figure 1. Gosper 
owsnake tiling.The 
onstru
tion of a digit tile T := T (A;D) depends only on an expandingmatrix A and a �nite set D of latti
e points in Rd . The terminology \digit tile"
omes from this data, whi
h is analogous to the usual base and digits used to rep-resent the integers. This 
onne
tion to positional number systems (radix systems)is dis
ussed in x3. In parti
ular, the tiling in Figure 1 is related to a 
ertain radixsystem with appli
ations to image pro
essing.Se
tions 2 and 3 
on
ern the digit tiles themselves; x4 
on
erns tilings by trans-lates of a single digit tile. Every digit tile admits a tiling of Rd with a strong globalproperty 
alled self-repli
ation. When this self-repli
ating tiling is a latti
e tilingthere are appli
ations to the 
onstru
tion of wavelet bases. The main theoremof x4 gives ten 
onditions, all equivalent to the self-repli
ating latti
e tiling prop-erty. One of the 
onditions is measure theoreti
; some 
on
ern the behavior of theboundary; some 
on
ern unique radix representation of latti
e points; and some arealgorithmi
, allowing for eÆ
ient testing pro
edures. One su
h 
ondition involvesthe A-adi
 numbers, a generalization of the p-adi
s, p prime.The boundary of a digit tile is the subje
t of x5 and x6. In the book Classi
son Fra
tals [E℄, Edgar asked what the Hausdor� dimension of the boundary ofthe L�evy Dragon might be. In general Edgar asked what 
ould be said about thedimension of the boundary of a self-similar tile. In x5 an easily 
omputable formulais provided for the Hausdor� dimension of the boundary of a self-similar digit tile.Se
tion 6 
on
erns the 
onstru
tion of the boundary of a digit tile. The re-
urrent set method for 
onstru
ting a fra
tal 
urve, due to Dekking [De1, De2℄,is related to L-systems, the \L" for Lindenmayer who used the method to modelbiologi
al growth [Lin℄. Given an alphabet and a rewriting rule, the idea is toiterate the rule to produ
e progressively longer strings of symbols. Ea
h symbol isthen interpreted geometri
ally, produ
ing a �gure in the plane. The main theoremin x6 gives a bije
tion between the parameters used to 
onstru
t a digit tile in R2by an iterated fun
tion system and the parameters used to 
onstru
t a 
urve by there
urrent set method. The bije
tion is su
h that the 
urve 
onstru
ted by the re-
urrent set method is the boundary of the tile 
onstru
ted by the iterated fun
tionsystem. Figure 1 in this paper was 
onstru
ted by the re
urrent set method.It is an open question as to whether every tile T that admits a tiling of Rdby translates of T also admits a periodi
 tiling by translates of T . Related to this



DIGIT TILING OF EUCLIDEAN SPACE 3question is the Latti
e Tiling Question of Gr�o
henig and Haas [GH℄: every digittile admits a tiling of Rd by translates; does every digit tile admit a (not ne
essarilyself-repli
ating) latti
e tiling? This question and its solution by Lagarias and Wang[LW4℄ are dis
ussed in x7. It is also open whether every tile T that admits a tilingof R2 (not ne
essarily by translates) also admits a periodi
 tiling by 
opies of T .In other words, does there exist an aperiodi
 proto-tile? Gummelt's solution of theanalogous problem for 
overings of R2 [Gu℄, where tiles are allowed to overlap, hasre
eived 
onsiderable attention re
ently be
ause of its impli
ations for the stru
tureof quasi
rystals. This is also dis
ussed brie
y in x7.Se
tions 1 - 7 are restri
ted to digit tiling. The remaining three se
tions 
on-
ern generalizations. The intent is to pla
e digit tiling into a broader 
ontext. Thefollowing topi
s are brie
y dis
ussed: (x8) 
rystallographi
 digit tiling; (x9) hierar-
hi
al tiling; and (x10) self-aÆne and self-similar tiling by 
opies of tiles taken froma �nite set of proto-tiles.Crystallographi
 digit tiling, due to Gelbri
h [Ge1℄, is a generalization fromtilings by the image of single tile under the a
tion of a latti
e group to tilings by asingle tile under the a
tion of a 
rystallographi
 group.Se
tions 9 and 10 extend the subje
t from tiling by 
opies of a single tileto tilings by 
opies of tiles taken from a �nite set of proto-tiles. These in
ludethe nonperiodi
 Penrose tilings [P1℄ and the Pisot tilings of Thurston [Th℄. Weintrodu
e the notion of a hierar
hy. Asso
iated with a given hierar
hy P are hier-ar
hi
al tilings, 
alled P-tilings. General properties of hierar
hies and their tilingsare dis
ussed in x9. In
luded are results about 
odes of P-tilings, number of tilings,nonperiodi
ity, and quasiperiodi
ity. Two spe
ial types of hierar
hies are self-aÆneand self-similar hierar
hies. Mis
ellaneous properties of their tilings are surveyed inx10. A 
onstru
tive approa
h to self-aÆne and self-similar tiling, by way of graphiterated fun
tion systems, is also dis
ussed.Many of the tilings in x10 are quasiperiodi
 and serve as models for real qua-si
rystals. Ex
ept for brief 
omments in x7 and on X-ray di�ra
tion in x10.2, thephysi
s of quasi
rystals is not dis
ussed. For an introdu
tory a

ount of quasi
rys-tals we refer the reader to M. Sene
hal's book [Se℄ and M. Baake's paper [Ba℄. For
urrent resear
h trends refer to the papers in [M℄ and in this volume.This paper is basi
ally expository. Proofs of theorems that are readily foundelsewhere are omitted. The subje
t of self-similar sets is vast. The paper is notintended to be 
omprehensive, and we apologize for any favorite topi
s or resultsthat are omitted. 2. Digit TilesThe systemati
 study of self-similarity properties goes ba
k at least to 1964.Golomb [Go℄ de�ned a set T in the plane to be rep-N if T 
an be tiled by N
ongruent similar sets. Three rep-4 �gures are shown in Figure 2. These examplesare somewhat misleading be
ause the boundary of a rep-N �gure is often fra
tal.Fra
tal tiles were 
onstru
ted early on, for example, by Mandelbrot [Ma℄ andin the repli
ating super�gures of Giles [Gil℄. But perhaps the best known methodof 
onstru
ting fra
tals at this time is by iterated fun
tion systems [Hu℄ . Manyof the illustrations of fra
tals in the popular literature use this method; see, forexample, the ni
e expositions by Barnsley [Bar℄ and Fal
oner [F1℄. An iterated
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Figure 2. Rep-4 �gures.fun
tion system (IFS) is a �nite set ff1; f2; : : : ; fNg of 
ontra
tions:fi : Rd ! Rd :A fun
tion f : Rd ! Rd is a 
ontra
tion if there is a number 
 with 0 < 
 < 1 su
hthat jf(x) � f(y)j � 
jx � yj for all x; y 2 Rd . Let C(Rd) denote the 
olle
tion ofall nonempty 
ompa
t subsets of Rd . The Hausdor� metri
 h on C(Rd) is de�nedas follows: h(A;B) = inff� jA � B� and B � A�g;where A� = fx 2 Rd : jx � yj � � for some y 2 Ag. With respe
t to this metri
the fun
tion F : C(Rd)! C(Rd )F (X) = N[i=1 fi(X)is a 
ontra
tion on the 
omplete metri
 spa
e C(Rd ) and thus, by the 
ontra
tionmapping theorem, has a unique �xed point or attra
tor T that satis�esT = N[i=1 fi(T ): (2:1)There is an alternative representation for the attra
tor given byT = limn!1F (n)(T0); (2:2)where F (n) denotes the nth iterate of F and T0 is an arbitrary 
ompa
t subset ofRd . The limit is with respe
t to the Hausdor� metri
. The setTn = F (n)(T0) (2:3)is an nth approximation to T and is easy to express in algorithmi
 form. It isusually su
h an algorithm (or a randomized version) that is used to produ
e thefra
tal graphi
s that appear in many books and papers on the subje
t.Consider the spe
ial 
ase of an IFS where the 
ontra
tions fi are aÆne withthe same linear part A�1 and with translational parts D = fd1; d2; : : : ; dNg:fi(x) = A�1(x + di): (2:4)Let A be an expanding matrix, where expanding means that the modulus of ea
heigenvalue is greater than 1. With respe
t to an appropriate metri
 related tothe Eu
lidean metri
 [Li℄, A�1 is a 
ontra
tion. The inverse is used merely as a
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onvenien
e for stating 
ertain results. The fun
tional equation (2.1), for example,is equivalent to A(T ) = N[i=1 (T + di): (2:5)Let m denote d-dimensional Lebesgue measure and � the boundary. If1. the attra
tor T is the 
losure of its interior and m(�T ) = 0 and2. the union in Eq. (2.5) is non-overlapping,then T is 
alled a self-aÆne tile. If, in addition, A is a similarity, then T is 
alled aself-similar tile. A linear map is a similarity with expansion fa
tor 
 if kAxk = 
kxkfor some 
 > 1 and for all x 2 Rd . The term self-aÆne refers to the geometri
interpretation of Eq. (2.5): the large tile A(T ) is the non-overlapping union oftranslates of the small tile T . The Gosper 
owsnake in Figure 1 is a self-similartile. Figure 3 shows the �rst 12 approximations to the self-similar \twin dragon,"where the IFS is given in Example 2.1 and T0 in Eq. (2.3) is a unit square.Example 2.1. Twin dragon.f1� xy � = � 1 �11 1 ��1�� xy �+� 00 ��f2� xy � = � 1 �11 1 ��1�� xy �+� 10 ��

Figure 3. Approximations to the twin dragon.



6 ANDREW VINCEThe attra
tor of the IFS (2.4) usually does not satisfy 
onditions (1) and (2)in the de�nition of self-aÆne tile. One 
ase for whi
h it does is a digit tile. Su
htiles have been the subje
t of resear
h by, among others, Bandt [B2℄, Dekking[De1, De2℄, Gelbri
h [BGe, Ge2℄, Gr�o
henig and Haas [GH℄, Gr�o
henig andMady
h [GM℄, Kenyon [Ke2℄, Lagarias and Wang [LW2, LW3, LW4℄, Solomyak[So1, So2℄, Stri
hartz [Str℄ and Vin
e [V1, V2, V3, V4℄. By a latti
e in Rd ismeant the set of all integer linear 
ombinations of d linearly independent ve
tors.If A is a linear map and L is a latti
e, we say that L is A-invariant if A(L) � L.If, for some expanding matrix A, there exists a latti
e L, invariant under A, thena set D of 
oset representatives of the quotient L=A(L) is 
alled a digit set. It isassumed that 0 2 D. By standard results in algebra, for D to be a digit set it isne
essary that jDj = j detA j:If A is expanding and D = fd1; : : : ; dNg is a digit set, then the attra
tor of theaÆne IFS in Eq. (2.4) is 
alled a digit tile. Note that a digit tile is 
ompletelydetermined by the pair (A;D) and will be denoted T (A;D). Theorem 2.5 belowstates that a digit tile is indeed a self-aÆne tile. Figures 1 and 3 are self-similardigit tiles, based on the hexagonal and integer latti
es, respe
tively. Both of thesetiles are homeomorphi
 to a disk. Topologi
ally more 
ompli
ated self-similar digittiles (Examples 2.2, 2.3, 2.4) appear in Figure 4. The last example in this �gureshows the large tile as the non-overlapping union of the nine small tiles.

Figure 4. Gasket, ro
ket and shooter.Example 2.2. Gasket.A = � 2 00 2 �D = f(0; 0); (1; 0); (0; 1); (�1;�1)gExample 2.3. Ro
ket.A = � 3 00 3 �D = f(0; 0); (1; 1); (2; 2); (�1; 0); (�2; 0); (�1; 1); (0;�1); (0;�2); (1;�1)g



DIGIT TILING OF EUCLIDEAN SPACE 7Example 2.4. Shooter.A = � 3 00 3 �D = f(0; 0); (1; 0); (2; 0); (0; 1); (0; 2); (2; 2); (4; 4); (2; 1); (1; 2)gWhat we 
all a digit set D, Lagarias and Wang [LW3℄ 
all a standard digit set.They 
all D nonstandard if jDj = j detAj but D is not a set of 
oset representativesof L=A(L) for any latti
e L. For example, in 1-dimension D = f0; 1; 8; 9g is non-standard for matrix A = (4). The attra
tor of the 
orresponding IFS is [0; 1℄[ [2; 3℄.For most nonstandard digit sets D, however, the attra
tor T has Lebesgue mea-sure 0; in parti
ular, the interior of T is empty. For example, if j detAj is prime,then this is always the 
ase [LW3℄. In general, it seems a nontrivial problem todetermine whether a nonstandard digit tile has positive Lebesgue measure. For(standard) digit tiles this is not an issue; a proof of the follow result 
an be foundin [GH, LW2, V1℄.Theorem 2.5. A digit tile T is a self-aÆne tile. Namely T is 
ompa
t; T is the
losure of its interior; m(�T ) = 0; and the union in Eq. (2.5) is non-overlapping.For ease of exposition and with essentially no loss of generality, we will oftenmake the following three assumptions 
on
erning digit tiles. A pair (A;D), 
onsist-ing of an expanding matrix A and a digit set D, will be 
alled basi
 if the followingthree statements hold. In this 
ase the tile T (A;D) is also 
alled basi
.1. A is an integer matrix and D is a set of 
oset representatives of Zd=A(Zd).2. (A;D) is pure.3. (A;D) is primitive.By assumption (1) the invariant latti
e is the integer latti
e. By pure is meantthat 0 is 
ontained in the interior of T (A;D). By primitive is meant that D is
ontained in no proper A-invariant sublatti
e of Zd. Example 2.6 is a pair (A;D)in R2 that is not primitive, and Figure 5 shows the �rst three approximations tothe 
orresponding digit tile T (A;D), whi
h is a square. Note that the sublatti
e ofZ2 
onsisting of all latti
e points with even 
oordinate sum is a proper A-invariantsublatti
e.Example 2.6. Non-primitive digit tile.A = � 3 00 3 �D = f(0; 0); (2; 0); (1;�1); (�1; 1); (1; 1); (3; 1); (0; 2); (2; 2); (1; 3)gThat little loss of generality is in
urred by restri
ting to basi
 digit tiles is thestatement of the following result [LW2, V1℄.Theorem 2.7. Let A : Rd ! Rd be a linear expanding map, L an A-invariantlatti
e, and D a digit set. There exists a basi
 pair (A0; D0) su
h that A0 is similarto some power of A and T (A0; D0) = �(T (A;D)), where � is an invertible aÆnemap. Moreover, if L = Zd, then \similar to" 
an be repla
ed by \equal to", and if(A;D) is already primitive, then � is just a translation.
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Figure 5. Non-primitive digit tile.It is usually the 
ase that a digit tile is not homeomorphi
 to a ball. Bandt andGelbri
h 
all two digit tiles T and T 0 isomorphi
 if there is an aÆne bije
tion � fromT to T 0 that preserves pie
es at all levels. For a pre
ise de�nition of \preservingthe pie
es" see [BGe℄.Theorem 2.8. (Bandt and Gelbri
h [BGe℄, Gelbri
h [Ge2℄)1. For any N � 2 there are �nitely many isomorphism 
lasses of digit tiles inR2 with N pie
es and homeomorphi
 to a disk.2. There are �nitely many isomorphism 
lasses of digit tiles in Rd with 2 pie
esand homeomorphi
 to a d-ball.The authors have determined, for example, that there are three types of disk-like digit tiles in R2 with two pie
es and seven types with three pie
es. In [GH℄Gr�o
henig and Haas give, in the 2-dimensional 
ase, a suÆ
ient 
ondition on thepair (A;D) for T (A;D) to be 
onne
ted. In any dimension, Ha
on, Salanha andVeerman [HSV℄ prove that any digit tile with two pie
es is 
onne
ted.3. Radix RepresentationTo justify the terminology \digit" tile, 
onsider an expanding matrix A as abase for an A-invariant latti
e L (so A(L) � L), and a digit set D � L as a set ofdigits for L. Use the Minkowski sum notation X + Y = fx+ y jx 2 X; y 2 Y g andA(D) = fA(d) j d 2 Dg, and letDn = n�1Xi=0 Ai(D) and D1 = 1[i=1Dn: (3:1)Then Dn is the subset of the latti
e that 
an be expressed using at most n digits,and D1 is the set of latti
e points that 
an be expressed using any �nite sequen
eof digits. Let the initial approximation to the tile T = T (A;D) be a single point:T0 = f0g. In this 
ase Eq. (2.2) be
omesT := T (A;D) = limn!1 nXi=1 A�i(D); (3:2);where the limit is with respe
t to the Hausdor� metri
. Then T (A;D), a

ordingto Eq. (3.2), is the set of points in Rd that 
an be expressed using digits only tothe \right" of the of the de
imal point. In parti
ular, 
onsider the 1-dimensional
ase where A = (10); L = Z, and D = f0; 1; : : : ; 9g. Then Dn is the set of integersthat 
an be represented in the ordinary base 10 system using at most n digits; D1is the set of non-negative integers; and T is the 
losed interval [0; 1℄. For the above



DIGIT TILING OF EUCLIDEAN SPACE 9reasons we refer to the pair (A;D) as a radix system (positional number system)for latti
e L.The representation of numbers using positional number systems has an ex-tensive literature prior to the advent of fra
tals. Knuth's 
lassi
 [Kn℄ 
ontainsearly referen
es dating ba
k to Cau
hy, who noted that negative digits make itunne
essary for a person to memorize the multipli
ation table past 5� 5. Gilbert[Gi1, Gi2, Gi3℄ 
onsidered radix representation for the Gaussian integers Z[i℄ =fa + b i j a; b 2 Zg and for integers in other algebrai
 number �elds. For example,every Gaussian integer has a unique base � = �1 + i representation of the formPni=0 di�i, where di 2 D = f0; 1g. This is analogous to a binary system for theGaussian integers. Of 
ourse, this is just the radix system (A;D) for the latti
eZ2 = Z[i℄, where A is the linear map given by Ax = �x.Two obvious questions 
on
erning radix representation are as follows.Question 3.1. Given an expanding integer matrix A and digit set D, when isit the 
ase that every latti
e point x has a unique representation of the formx = n�1Xi=0 Ai(ei); ei 2 D: (3:3)Question 3.2. Given an expanding integer matrix A, does there exist a digitset D su
h that every latti
e point x 
an be uniquely represented in the radix form(3.3).Question 3.1 will be addressed as part of Theorem 4.2 in x4. The answer toQuestion 3.2 is \no, but almost." We mention two parti
ular results. Here I is theidentity matrix.Theorem 3.3. (Vin
e [V1℄) If det(I � A) = �1, then there is no digit set Dsu
h that every latti
e point x has a unique representation of the form (3.3).Examples of su
h matri
es in
lude� 1 �11 1 � ; � 2 a0 2 � ; � 0 �a1 a � :Re
all that for any matrix A there exist orthogonal matri
es U and V su
h thatUTAV is diagonal [GvL℄. The diagonal entries are 
alled the singular values of A.Let C denote the 
anoni
al fundamental domain of the the origin with respe
t tothe 
ubi
 latti
e (the 
losure of C is a unit 
ube 
entered at the origin).Theorem 3.4. (Vin
e [V1℄) Let A be a d-dimensional matrix and L an A-invariant latti
e. If the singular values of A are greater than 3pd and D = A(C)\L,then every latti
e point x has a unique representation of the form (3.3). In the 1and 2-dimensional 
ases, the bound 3pd 
an be improved to 2.The following previously known result follows dire
tly from the two theoremsabove.Corollary 3.5. For any Gaussian integer � 2 Z[i℄, ex
ept 0; �1; �i; 2 and1 � i, there is a digit set D su
h that every Gaussian integer has a unique radixrepresentation of the form Pn�1i=0 ei �i; ei 2 D. No su
h digit set exists for � = 2and � = 1� i.



10 ANDREW VINCEIt follows from Eq. (3.2) thatT = limn!1A�n(Dn);so it should not be surprising that properties of the set D1 on a large s
ale aredire
tly related to properties of the digit tile T on a small s
ale. The followingtheorem is an example. A set S 2 Rd is uniformly dis
rete if there is a bound r > 0su
h that distin
t x; y 2 S satisfy jx� yj � r. Note that, in this theorem, it is notassumed that D is a digit set.Theorem 3.6. (Lagarias and Wang [LW2℄) Assume that A is a real expandingmatrix with j detAj = m 2 Z and D a subset of Rd with jDj = m and 0 2 D. Thenthe following statements are equivalent.1. T := T (A;D) is the 
losure of its interior and m(�T ) = 0.2. All mn elements of Dn are distin
t and D1 is a uniformly dis
rete set.We now 
onsider in more detail a radix system, 
alled the generalized balan
edternary, whi
h has appli
ations to image pro
essing. Consider a moni
 polynomialf(x) = xd + ad�1xd�1 + � � � + a0 2 Z[x℄. In the quotient ring �f = Z[x℄=(f) let� = x+(f). Then �f has the stru
ture of aZ-modulewith basis (1; �; �2; : : : ; �d�1).In other words �f is a latti
e whi
h 
an be realized (in many ways) in Rd byembedding the d basis elements as d linearly independent ve
tors in Rd .If f(x) is irredu
ible over Z then, as rings, �f = Z[x℄=(f) �= Z[�℄ where � isany root of f(x) in an appropriate extension �eld of the rationals. For example, iff(x) = x2 + 1 then the latti
e �f is the ring of Gaussian integers Z[i℄ with basis(1; i) and 
an be realized as the square latti
e in the 
omplex plane.Consider the spe
ial 
ase f(x) = 1 + x + x2 + � � � + xd. Let ! = x + (f). Inthe ring �d = Z[x℄=(f) we have 1 + ! + � � � + !d = 0 and !d+1 = 1. For the sakeof symmetry we take as a generating set for the latti
e �d the set (1; !; !2; : : : ; !d)although it is linearly dependent. Embed the latti
e �d in d-dimensional Eu
lideanspa
e by de�ning an inner produ
t on pairs of basis elements (1; !; !2; : : : ; !d) by(!i; !j) = � 1 if i = j� 1d if i 6= j:In dimension d = 1 this is the integer latti
e; for d = 2 it is the hexagonallatti
e; and for d = 3 it is the latti
e that 
onsists of the 
enters of the tiling ofspa
e by trun
ated o
tahedra. In general it is the dual of the 
lassi
al d-dimensionalroot latti
e Ad; so the weight latti
e A�d = �d [CS℄. Now let � = 2�! and de�nea linear expanding map A� : �d ! �dby A�(x) = �x:Although not well-de�ned, a matrix for A� with respe
t to the generating set(1; !; !2; : : : ; !d) is
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A� = 0BBBBBBB� 2 0 0 : : : 0 �1�1 2 0 : : : 0 00 �1 2 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 2 00 0 0 : : : �1 2:

1CCCCCCCALet D� = f�0 + �1! + �2!2 + � � �+ �d!d : �i 2 f0; 1gg;where not all �i = 0. Note that jD� j = 2d+1 � 1. It 
an be shown that D� is adigit set for A� with respe
t to the latti
e �d. Hen
e (A� ; D�) is a radix system forlatti
e �d, 
alled the generalized balan
ed ternary (GBT). Moreover, if follows froma variant of Theorem 4.9 that every latti
e point in �d has a unique representationin the GBT.In dimension 1 A� = (3) D = f�1; 0; 1g:This is a base 3 system 
lassi
ally 
alled the balan
ed ternary. Every integer (posi-tive or negative) 
an be uniquely expressed base three using the three digits (trits).For d = 2 the digit set D� is the subset of the hexagonal latti
e 
onsisting of theorigin and all 6th roots of unity. The 
orresponding tile T (A�; D�) is shown in Fig-ure 1. The GBT radix system has been suggested for spatial addressing of imagesas a viable alternative to a re
tangular grid - for both geometri
 reasons (the roundshape of the pixels) and algebrai
 reasons (the eÆ
ient algorithmi
 properties ofthe radix system [GL, KVW, vR℄).4. Self-Repli
ating TilingLet A be an expanding integer matrix, D a digit set, and assume that the pair(A;D) is basi
. Se
tion 2 
on
erns the self-aÆne tile T (A;D). The term \tile" wasused, rather than \set", be
ause, given any self-aÆne tile T , there always existsa tiling of Rd by translates of T . To see this, iterate fun
tional equation (2.5) toobtain An(T ) = [d2Dn(T + d):Sin
e (A;D) is pure, 0 lies in the interior of An(T ). Sin
e A is an expansion, anyball 
entered at the origin lies in An(T ) for some n. In the notation of (3.1), thesets D1 � D2 � : : : are nested be
ause 0 2 D and hen
eT1 := fT + d j d 2 D1g (4:1)is a tiling of Rd .In fa
t, T1 is a spe
ial type of tiling by digit tiles, 
alled a self-repli
atingtiling. A tiling T of Rd by 
opies of a single tile is 
alled self-repli
ating if, for somelinear expansion A, the expanded tile A(T ) is, for ea
h T 2 T , tiled by elements ofT . Note that the self-repli
ating property is a global property of the tiling, nota property of the tile. This self-repli
ating property was investigated by Thurston[Th℄ for more general tilings to be dis
ussed in x10. The tiling by twin dragons inFigure 6 is self-repli
ating; the image of ea
h dragon under the mapping A is the



12 ANDREW VINCEunion of two horizontally adja
ent dragons. The following proposition is an easy
onsequen
e of Eq. (2.5).

Figure 6. Latti
e tiling by twin dragons.Proposition 4.1. Given any basi
 digit tile T , the 
orresponding tiling T1 isself-repli
ating.A

ording to Proposition 4.1, for any basi
 digit tile T there is a self-repli
atingtiling by translates of T . The proposition does not imply, however, that this tilingis by translation by the integer latti
e, as is the 
ase in Figure 6. A tiling T is alatti
e tiling of Rd if T is a tiling by translation by a latti
e, i.e., T = fT+x j x 2 Lgfor some latti
e L. Consider Example 4.1; the 
orresponding tiling T1 shown inFigure 7 is not a latti
e tiling.

Figure 7. Not a latti
e tiling.



DIGIT TILING OF EUCLIDEAN SPACE 13Example 4.1.A = � 3 00 3 �D = f(�1;�3); (�1;�1); (�1; 1); (0;�2); (0; 0); (0; 2); (1;�2); (1; 0); (1; 2)gThe following theorem [V4℄ is 
entral and gives ten equivalent 
onditions forthe existen
e of a self-repli
ating latti
e tiling. All terms not yet de�ned will bedis
ussed after the statement of the theorem.Theorem 4.2. Let T = T (A;D) be a basi
 digit tile. Let Tn = F (n)(T0) be theapproximating tiles, where T0 is the unit d-
ube 
entered at the origin with edgesparallel to the axes. The following statements are equivalent. Limits are with respe
tto the Hausdor� metri
.1. T := fT + x jx 2 Zdg is a tiling of Rd .2. T := fT + x jx 2 Zdg is a self-repli
ating tiling of Rd .3. m(T ) = 1.4. The 
hara
teristi
 fun
tion �T (x) is a s
aling fun
tion of a multiresolutionanalysis.5. limn!1 �Tn = �T .6. limn!1 �Tn is not spa
e �lling.7. D1 = Zd.8. Every latti
e point has a unique �nite address.9. Every latti
e point in the ball B(A;D) has a �nite address.10. �(A;D) < j detAj.Condition (3) states that the Lebesgue measure of T is 1. This is 
learlyne
essary if statement (1) is to hold. The 
onverse appears in [GH℄. It is known thatm(T ) is always an integer [LW3℄, but is not always 1. For the tile of Example 4.1the measure is 2. Figure 8, showing the �rst few approximations to this tile, mayprovide insight into why the tile is \stret
hed."
Figure 8. Digit tile with Lebesgue measure 2.The equivalen
e of 
onditions (1) and (4) is due to Gr�o
henig and Mady
h[GM℄. An important appli
ation of digit tiling is to wavelets, the 
onstru
tion of



14 ANDREW VINCEorthonormal wavelet bases in Rd . The multiresolution analysis ma
hinery produ
esan orthonormal wavelet bases of L2(Rd ). We refer the reader to [GM, Str℄ andany number of introdu
tory texts, for example [Ch℄, rather than elaborating onwavelets in this paper.Conditions (5) and (6) 
on
ern the boundary of the approximating tiles; proofof their equivalen
e to the other 
onditions appears in [V4℄. Condition (5) statesthat the boundaries of the approximating tiles approa
h the boundary of the limittile in the Hausdor� topology. It is easy to see that this is not the 
ase for the tile inFigure 8. Condition (6) states that, if the 
onditions of Theorem 4.2 fail, then thebehavior of the boundary is indeed pathologi
al; the limit of the boundaries of theapproximates is spa
e �lling - 
ontains some open set. In the 
ase of Example 4.1,the limit is the whole tile T .Conditions (7) and (8) relate to Question 3.1 in x3. They state that everylatti
e point x has a unique base A representation with digits D. In other wordsx = Pn�1i=0 Ai(ei); ei 2 D. The proof of the equivalen
e of 
onditions (7), (8)and (9) to the other 
onditions in [V1℄ relies on the 
on
ept of A-adi
 integer,analogous to the 
lassi
al p-adi
 integer, p a prime (see [Se℄ for ba
kground on thep-adi
 integers). The set of A-adi
 integers is the 
ompletion of Zd with respe
t tothe metri
 indu
ed by the norm jxj = 1j detAj� ;where � is the greatest integer su
h that x 2 A�(Zd). Analogous to the p-adi
 
ase,there is a 
anoni
al representation of ea
h A-adi
 number in the formx = 1Xi=0 Ai(ei); ei 2 D:De�ne the address of su
h an A-adi
 as: : : e3e2e1e0:It 
an be shown that, given a digit set D for A, ea
h point in Zd has an addressthat eventually repeats, in the same sense as an ordinary repeating de
imal. Alatti
e point is said to have a �nite address if en = 0 for all n suÆ
iently large. Infa
t, there is an easy algorithm to obtain the address of any latti
e point x.Algorithm (x0 = x) en � xn mod A(Zd)xn+1 = A�1(xn � en)Moreover there is a 
omputable bound on the number of iterations of this algorithmsuÆ
ient to determine whether or not the latti
e point has a �nite address.Example 4.3. In 1-dimension the 3-adi
 address, i.e., A = (3), of the integer2 with respe
t to digit set f�1; 0; 4g is (�1)(4)(�1):



DIGIT TILING OF EUCLIDEAN SPACE 15x0 = 2 e0 = �1x1 = 1 e1 = 4x2 = �1 e2 = �1x3 = 0 e3 = 0:Note that 
ondition (8) together with formula (3.2) imply that every point inRd , ex
ept those on the overlap of two tiles in T , 
an be uniquely expressed in theform en : : : e1e0:e�1e�2 � � � := nXi=�1Ai(ei); ei 2 D:The representation of points on the overlap of two tiles is not unique; for examplefor A = (10) and D = f0; 1; : : : ; 9g, we have :999 � � � = 1.Conditions (9) and (10) are algorithmi
. They provide eÆ
ient methods to
he
k that all 
onditions in Theorem 4.2 hold. The number �(A;D) in 
ondition(10) is the largest eigenvalue of 
ertain easily 
omputable matrix. A de�nitionand dis
ussion of this matrix appears in x5. Condition (9) states that there is ballB(A;D) 
entered at the origin, whose radius r(A;D) depends only on (A;D), su
hthat, if every latti
e point in B(A;D) has a �nite address, then all latti
e pointsdo. In the 
ase that A is a similarity with expansion fa
tor 
, an expli
it value ofthe radius is easy to express:r(A;D) = maxfjdj : d 2 Dg
� 1 :Applying the formula for r(A;D) to Example 4.4, the only latti
e point in B(A;D) isthe origin, whi
h obviously has a �nite address. By 
ondition (9) in Theorem 4.2,the 
orresponding latti
e tiling is a self-repli
ating latti
e tiling; it is shown inFigure 9.Example 4.4. A = � 2 1�1 2 �D = f(0; 0); (1; 0); (0; 1); (�1; 0); (0;�1)gr(A;D) = 1p5� 1 = :8090 : : :It should be remarked that either 
ondition (7) or (8) automati
ally impliesthat (A;D) is basi
 [V1℄. In Example 4.5 there are 21 points in B(A;D) to 
he
kusing 
ondition (9), in
luding the point (�1; 0). The algorithm gives the repeatingaddress (1; 0); (0; 0); (1; 0); (0; 0); : : : for the point (�1; 0), not a �nite address. Theproblem in this 
ase is that (A;D) is not basi
; it is not pure. As pointed out inx2, there is a related basi
 pair (A0; D0) su
h that T (A;D) and T (A0; D0) are thesame up to translation. Then T (A0; D0) does satisfy the 
onditions of Theorem 4.2.The 
orresponding tiling is the twin dragon tiling in Figure 6, whi
h is indeed aself-repli
ating latti
e tiling.
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Figure 9. Self-repli
ating tiling.Example 4.5. A = � 1 �11 1 �D = f(0; 0); (1; 0)gr(A;D) = 1p2� 1 = 1 +p2 = 2:4142 : : :5. Dimension of the BoundaryFor some well studied tiles, like the Twin Dragon in Figure 3, the Hausdor�dimension of the boundary is known and has been 
omputed by various means.More re
ently Duvall and Keesling [DK℄ determined the Hausdor� dimension ofthe boundary of a parti
ular tile, the L�evy Dragon. In [Kees℄ Keesling showed thatthe Hausdor� dimension of the boundary of any self-similar tile in Rd is less thand, but that this dimension 
ould be arbitrarily 
lose to d. This se
tion outlines amethod due to Duvall, Keesling and Vin
e [DKV℄ for determining the Hausdor�dimension of the boundary of any self-similar digit tile. After our results wereobtained we 
ame a
ross unpublished preprints by Veerman [Ve℄ and by Stri
hartzand Wang [SW℄ whi
h 
ontain similar results obtained by di�erent methods. Theonly 
ondition that is needed on the digit tile T for our formula in Theorem 5.1is that one of the equivalent 
onditions given in Theorem 4.2 holds for T . Thisis not unexpe
ted in light of 
onditions (5) and (6) of that theorem. The methodgiven below either determines pre
isely the Hausdor� dimension of the boundaryof T or it determines that 
ondition (10) of Theorem 4.2 fails. The problem ofdetermining an exa
t formula for a self-aÆne (not ne
essarily self-similar) digit tileremains open.Re
all the de�nition of Hausdor� dimension; an introdu
tory treatment 
an befound, for example, in [F1℄. An �-
over of a set X � Rd is a 
olle
tion of sets ofdiameter at most � su
h that X is 
ontained in their union. Let jU j denote thediameter of the set U , and let s be a non-negative number. For any � > 0 de�ne



DIGIT TILING OF EUCLIDEAN SPACE 17Hs� (X) = inf f 1Xi=1 jUijs : fUig is an �-
over of Xg:As � de
reases, the 
olle
tion of possible 
overs is redu
ed; hen
e Hs� (X) de
reases.De�ne the s-dimensional Hausdor� measure of X byHs(X) = lim�!0Hs� (X):It is easy to show that there is a 
riti
al value of s at whi
h this limit jumps from1 to 0. De�ne the Hausdor� dimension bydimH(X) = inf fs : Hs(X) = 0g = sup fs : Hs(X) =1g:To state the main result, the 
onta
t matrix, �rst de�ned by Gr�o
henig andHaas [GH℄, is introdu
ed. Given an expanding integer matrix A and digit set Dfor the integer latti
e in Rd , a set N = N(A;D) of integer latti
e points, 
alledthe neighborhood for (A;D), is used to index the rows and 
olumns of the 
onta
tmatrix.The neighborhood N(A;D) is de�ned as follows. Let fe1; : : : ; edg denote the
anoni
al basis of Rd and let N0 = f0g [ f�e1; : : : ;�edg. Then N(A;D) is theunique smallest �nite set N � Zd su
h that N0 � N and D+N � A(N) +D. Theneighborhood 
an easily be 
omputed using the following algorithm, and it is easyto show that the algorithm terminates after a �nite number of steps. Be
ause Dis a set of 
oset representatives of Zd=A(Zd), for any latti
e point y the equationAx+ d = y has a unique solution pair (x; d), where x 2 Zd and d 2 D.AlgorithmN = N0Repeat until the two sets are equal:N  N [ fx 2 Zd jAx+ d = y for some d 2 D and y 2 D +Ng:For ea
h x 2 N and d 2 D, let xd denote the unique latti
e point su
h thatd+x 2 Axd+D. By the de�nition of N we have xd 2 N . Let C 0 be the k�k matrixwhose rows and 
olumns are indexed by the elements in N and whose entries areas follows. For x; y 2 N 
xy = jfd 2 D jxd = ygj:By 
onvention let the �rst index of C 0 
orrespond to the element 0 2 N . Note that
00 = jDj and 
0y = 0 for y 6= 0. Thus the �rst row of C 0 
onsists of all zerosex
ept for one entry. Let C denote the (k�1)� (k�1) matrix obtained from C 0 byremoving the �rst row and 
olumn. Call C the 
onta
t matrix for the pair (A;D).(In [GH℄ it is a
tually C 0 that is referred to as the 
onta
t matrix.)A

ording to the Perron-Frobenius Theorem for non-negative matri
es, C hasa real eigenvalue � su
h that, for any other eigenvalue �, we have � � j�j. In otherwords, the spe
tral radius of C is an eigenvalue.Theorem 5.1. (Duval, Keesling and Vin
e [DKV℄) Let T = T (A;D) be aself-similar digit tile where A has expansion fa
tor 
 and the 
onta
t matrix has



18 ANDREW VINCElargest eigenvalue � := �(A;D). Under any of the 
onditions in Theorem 4.2 wehave dimH(�T ) = log�log 
 :Examples. Twin dragon. The dimension of the boundary of the Twin Dragon(Example 2.1 and Figure 3) has been 
al
ulated by various means. Using ourmethod the neighborhood is the following set of latti
e points:N = f(0; 0); (0; 1); (1; 0); (1;�1); (0;�1); (�1; 0); (�1; 1)gOrdering the elements of N r f0g as above (
lo
kwise around a hexagon) the 
on-ta
t matrix C, 
omputed using the de�nition, is the following integer matrix with
y
li
al stru
ture. C = 0BBBBBB� 1 1 0 0 0 00 0 1 0 0 00 0 0 2 0 00 0 0 1 1 00 0 0 0 0 12 0 0 0 0 0
1CCCCCCAThe 
hara
teristi
 polynomial is easy to 
ompute be
ause of the near diagonalstru
ture of the matrix:det(C � �I) = �4(1� �)2 � 4 = (�+ 1)(�2 � 2�+ 2)(�3 � �2 � 2):So the largest eigenvalue of C is the real root of �3 � �2 � 2. Hen
e the Hausdor�dimension of the twin dragon isdimH �T = log�logp2 ' 1:523627Gasket. For the Gasket (Example 2.2 and Figure 4), the neighborhood N isagain in a hexagonal pattern:N = f(0; 0); (1; 0); (1; 1); (0; 1); (�1; 0); (�1;�1); (0;�1)gThe 
onta
t matrix is a 
y
li
 matrix with three ones in ea
h row:C = 0BBBBBB� 1 1 0 0 0 11 1 1 0 0 00 1 1 1 0 00 0 1 1 1 00 0 0 1 1 11 0 0 0 1 1
1CCCCCCAHen
e the Perron-Frobenius eigenve
tor, the unique eigenve
tor with positive en-tries, is the all ones ve
tor. The 
orresponding eigenvalue is � = 3.dimH �K = log 3log 2 = 1:5849625 : : :
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Figure 10. Lander.Lander. The lander is the digit tile T (A;D) where A = � 3 00 3 � andD = f(0; 0); (1; 1); (1;�1); (2; 0); (�1;�2); (3;�2); (�1; 2); (3; 2); (1; 3)g. The di-mension of the boundary of the Lander in Figure 10 is somewhat greater thanfor the other examples. dimH �T ' 1:913624Sket
h of the proof of Theorem 5.1. Let T0 be the unit 
ube 
entered at the ori-gin with edges parallel to the axes and let Tn = F (n)(T0) denote the nth approxima-tion to the tile T := T (A;D) as given in Eq. (2.3). Then Tn is the non-overlappingunion of 
opies of 
ubes of edge length 1=
n. For ea
h latti
e point, 
onsider theunit 
ube 
entered at that point. Hen
e the neighborhood N := N(A;D) 
an alsobe regarded as the non-overlapping union of 
ubes. Let Nn denote the neighbor-hood N 
ontra
ted by a fa
tor of 1=
n. Then it 
an be shown by indu
tion that thesum of the elements in the nth power Cn of the 
onta
t matrix C is approximatelyequal to the number �n of small 
ubes q in Tn su
h that the neighborhood, 
enteredat q, lies both inside and outside of Tn. In other words, �n 
ounts the number ofsmall 
ubes in Tn \
lose" to �Tn. When we use the term \approximately" here wemean that there are upper and lower bounds of one quantity by a 
onstant multipleof the other quantity, where the 
onstants do not depend on n.What simpli�es the 
al
ulation of the Hausdor� dimension of �T is that, forthe boundary of a self-similar digit tile, the Hausdor� dimension 
oin
ides with thebox-
ounting dimension. This is a 
onsequen
e of a result of Fal
oner [F2℄ on sub-self-similar sets. Consider the 
olle
tion of 
ubes in the �-
oordinate mesh of Rd .For a given set X 2 Rd let ��(X) denote the number of su
h 
ubes that interse
tX . The box-
ounting dimension is de�ned bydimB(X) = lim�!0 log��(X)� log � :



20 ANDREW VINCELetting � = 1=
n, it 
an be proved, in the 
ase of our digit tile T , that the numberof small 
ubes that interse
t �T is approximately equal to the number of small
ubes �n in Tn that are \
lose" to �Tn. ThereforedimH(�T ) = dimB(�T ) = limn!1 log�nn log 
 = limn!1 log jCnjn log 
 ;where jCj denotes the sum of all the entries in a matrix C. What 
ompletes thetheorem is the fa
t that the largest eigenvalue of any nonnegative matrix C is givenby the formula �(A;D) = limn!1 jCnj1=n.6. Constru
tion of the BoundaryThe main result of this se
tion is an expli
it 
orresponden
e between two knownmethods for 
onstru
ting digit tiles in the plane. The IFS method produ
es the tileitself; the re
urrent set method, due to Dekking [De1, De2℄, produ
es the boundaryof the tile. The proof of the theorem in this se
tion appears in [V4℄. Another
onne
tion between the IFS and re
urrent set method appears in Bedford [Be1,Be2℄ in the 
ontext of 
onstru
ting Markov partition boundaries for hyperboli
toral endomorphisms. Kenyon [Ke3℄ uses the re
urrent set method in a settingdis
ussed in x10.The IFS \data" from whi
h a digit tile T = T (A;D) is 
onstru
ted is simplythe expanding matrix A and the digit set D. The pair (A;D) will be referred to astile data if1. A is an expanding 2� 2 integer matrix and2. D is a set of 
oset representatives of Z2=A(Z2).We use an integer matrix to keep the exposition simple. As explained in x2, allresults are easily extended to the 
ase of a tile based on a general latti
e.The \data" for the re
urrent set method is a free group endomorphism ([Lo℄is an introdu
tory text on 
ombinatorial group theory). Let G := G ha; bi be thefree group on two generators a and b. Thus G 
onsists of all words in the lettersfa; b; a�1; b�1g, in
luding the empty word e. The operation is 
on
atenation, andthe only relations are aa�1 = e = a�1a and bb�1 = e = bb�1. Consider anendomorphism � : G ! G. Note that � is determined by its a
tion on a and b.De�ne a matrix A� = � maa mabmba mbb � ;where m�� is the number of o

urren
es of � in �(�), 
ounting ��1 as o

urring�1 time. Here � and � are ea
h either a or b. This pro
ess is 
alled abelianization.Example 6.1. Twin dragon.�(a) = ab�(b) = a�1bA� = � 1 �11 1 �



DIGIT TILING OF EUCLIDEAN SPACE 21Example 6.2. Gasket. �(a) = a�1b�1abaa�(b) = ba�1baA� = � 2 00 2 �Denote by f : G ! R2 the homomorphism determined by f(a) = (1; 0) andf(b) = (0; 1). Let w = �1�2 : : : �n be any word in whi
h ea
h �i is an element offa; b; a�1; b�1g, and 
onsider the sequen
e of points xi 2 R2 ; i = 0; 1; : : : ; n, givenby x0 = (0; 0) and xi = f(�1�2 : : : �i) = f(�1) + f(�2) + � � � + f(�i); i � 1. Jointhe points x0; x1; : : : ; xn sequentially by line segments to obtain a polygonal pathp(w) and let Kn := Kn(�) = A�n� p(�n(aba�1b�1)): (6:1)Basi
ally the path is obtained by traveling one unit left or right for an o

urren
eof a or a�1, resp., in the string and one unit up or down for an o

urren
e of b orb�1, resp.; then the path is 
ontra
ted by A�n. It is known [De1℄ that, if A� isexpanding, then the sequen
e fKng 
onverges with respe
t to the Hausdor� metri
to a 
losed 
urve K := K(�) = limn!1Kn:Some line segments may be traversed byKn more than one time. We impose the
onvention that ea
h traversal of a line segment in one dire
tion 
an
els a traversalof that line segment in the opposite dire
tion. ThusKn 
an 
onsist of several 
losed
urves, and hen
e Kn, and also K, may be dis
onne
ted. It 
an happen that thewinding number of Kn about a point is more than 1. In this 
ase there is no wellde�ned region en
losed by Kn. The following result makes this situation easy todete
t [V4℄.Lemma 6.3. If the winding number of K1 about every point of R2rK1 is either0 or 1, then the same is true of Kn; n > 1.The endomorphism � : G! G will be referred to as boundary data if1. A� is expanding, and2. the winding number of K1 about every point of R2 rK1 is either 0 or 1.From Eq. (6.1) the path A(K1(�)) has sides that are parallel to the axes and joinsinteger latti
e points. Let D� be the set of latti
e points that are the lower left
orners of unit squares that lie inside A(K1(�)).Theorem 6.4. (Vin
e [V4℄) The mapping � : � 7! (A� ; D�) indu
es a bije
-tion from the 
olle
tion of all boundary data to the 
olle
tion of all tile data su
hthat �Tn(A� ; D�) = Kn(�):Moreover, if any of the 
onditions in Theorem 4.2 hold, then�T (A�; D�) = K(�):
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Figure 11. Approximations to the boundary of the twin dragon.

Figure 12. Boundary of the gasket.The bije
tion is algorithmi
 and was used to draw Figure 11, whi
h gives the�rst approximations to the boundary of the twin dragon 
orresponding to the ap-proximations in Figure 3 drawn by the IFS method. The endomorphism is that ofExample 6.1. Figure 12 shows the boundary of the topologi
ally more 
ompli
atedgasket originally pi
tured in Figure 4. The endomorphism is that of Example 6.2.7. Latti
e Tiling Problem and Aperiodi
 Proto-tile ProblemOne part of Hilbert's 18th problem asks whether there exists a polyhedron,
opies of whi
h tile spa
e, but whi
h is not the fundamental region of a groupof isometries. In other words, the symmetry group of the tiling is not transitiveon tiles. Examples were dis
overed early on, a polyhedron in 3 dimensions byReinhardt [Re℄ in 1928 and a 
onvex pentagon in 2 dimensions by Kershner [Ker℄



DIGIT TILING OF EUCLIDEAN SPACE 23in 1968. All known examples, however, are periodi
. A tiling of Rd is periodi
 if itssymmetry group 
ontains translations in d linearly independent dire
tions.A strong version of Hilbert's question is whether there exists a single tile whi
hadmits only nonperiodi
 tilings. A nonperiodi
 tiling is one that admits no transla-tions. The Penrose tiles 
omprise a set of two tiles, 
opies of whi
h tile the plane inun
ountably many ways, but no su
h tiling is periodi
. A set of proto-tiles, 
opiesof whi
h tile Rd but only nonperiodi
ally, is 
alled aperiodi
. The S
hmitt-Conway-Danzer (SCD) tile [Da, S
h℄, for example, is a single, 
onvex, aperiodi
 tile in R3(under the restri
tion that mirror image 
opies of the proto-tile are not allowed ands
rew symmetry does not 
ount as a periodi
 symmetry). The SCD tile provides asolution to the above question, but the following questions remain open.Question 7.1. Does there exists a single aperiodi
 proto-tile in R2?Question 7.2. Does there exist an aperiodi
 proto-tile that tiles Rd by trans-lation?The answer to Question 7.2 in dimension 1 is no [LW1℄. Venkov [Ven℄ answeredQuestion 7.2 in 1954 in any dimension for the 
ase of a 
onvex proto-tile, a resultindependently redis
overed by M
Mullen [M
M℄. Their result: if a 
onvex T tilesRd by translation, then there is a latti
e tiling of Rd by 
opies of T . The same resultis true in dimension 2 for polyominoes1 [BN, KV, WvL℄. However, the Venkov-M
Mullen result is not true for non-
onvex tiles in general. The 1-dimensional tile[0; 1℄ [ [2; 3℄ allows a a tiling, but no latti
e tiling of R. Szab�o [Sz℄ 
onstru
ts a3-dimensional, 
entrally symmetri
, star polyhedron whose translates tile R3 , butadmits no latti
e tiling of R3 . A latti
e tiling is periodi
, but a periodi
 tiling is notne
essarily a latti
e tiling. So Question 7.2 remains unresolved in the non-
onvex,non-polyomino 
ase.A natural pla
e to seek an example that might aÆrmatively answer Question 7.2is among the digit tiles. Any digit tile T admits a tiling by translation as given byEq. (4.1) in x4. However this tiling is sometimes not periodi
, as in Example 4.1 andFigure 7. The tile in Figure 7, however, does admit a latti
e tiling - by translationby the latti
e generated by ve
tors (1; 0) and (0; 2). Gr�o
henig and Haas [GH℄
onje
tured that every digit tile admits a latti
e tiling. What makes the 
onje
turediÆ
ult is the existen
e of tiles, as in Example 4.1, that do not satisfy the 
onditionsof Theorem 4.2. The latti
e tiling 
onje
ture was re
ently veri�ed by Lagarias andWang; so it is not possible to �nd an aperiodi
 digit tile. Note that the tilingguaranteed by their theorem is not ne
essarily self-repli
ating in the sense of x4.Theorem 7.3. (Lagarias and Wang [LW4℄) Every digit tile T admits a latti
etiling of Rd for some latti
e L � Zd.For remarks on Question 7.1 see Penrose's paper [P2℄. Although there is noknown single aperiodi
 proto-tile in R2 , the analogous problem for 
overings ofR2 is solved. Moreover, the result has re
eived 
onsiderable attention re
entlybe
ause of its impli
ations for the stru
ture of real quasi
rystals. Consider themarked regular de
agon on the left in Figure 13. This proto-tile is used to 
overthe plane with overlap allowed, but only a

ording to the following overlap rule:two de
agons may overlap only if shaded regions overlap and the overlap area isgreater than or equal to the area of the overlap hexagon in the 
enter illustration in1A polyomino is a rookwise 
onne
ted tile formed by joining unit squares at their edges.
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Figure 13. Overlapping marked de
agons.Figure 13. The �gure shows the two possible sizes of the overlap. Gummelt [Gu℄proved that every 
overing by marked de
agons that satis�es the overlap rule isnonperiodi
. Moverover, by disse
ting ea
h de
agon into Penrose a
ute and obtusetriangles (Figure 15), su
h de
agon 
overings 
an be put into 
orresponden
e withthe Penrose tilings.Jeong and Steinhardt [JS℄ subsequently proved that both the Penrose mat
hingrules for Penrose tilings and the overlap rule for de
agon 
overings 
an be repla
edby a 
ondition on the density of 
ertain 
lusters. More pre
isely, the Penrosetilings are the tilings by Penrose rhombs for whi
h the density of 
ertain 
lusters oftiles (
lusters whose union is essentially the Gummelt de
agon) is maximum. Thisresult led Jeong and Steinhardt to hypothesize that quasi
rystals are formed froma single type of atomi
 
luster that 
an share atoms with neighboring 
lusters andthat quasi
rystals maximize 
luster density. Eviden
e for su
h a model re
ently
ame from ele
tron mi
ros
opy [St℄. Ele
tron mi
rographs of Al72Ni20Co8 showstriking similarities to the de
agon 
overings in Gummelt's paper.8. Crystallographi
 digit tilingA 
rystallographi
 group � is a dis
rete, 
o
ompa
t group of isometries of Eu-
lidean spa
e. Dis
rete means that any ball 
ontains at most �nitely many pointsin the �-orbit of any point. Co
ompa
t means that the quotient spa
e Rd=� is
ompa
t. A latti
e group, the group of translations by the points of a latti
e, isa spe
ial 
ase of a 
rystallographi
 group. A fundamental theorem of Bieberba
hstates that it � is a d-dimensional 
rystallographi
 group, then � 
ontains a trans-lation subgroup, a subgroup generated by translations in d independent dire
tions.Under any of the 
onditions of Theorem 4.2 a self-repli
ating digit tiling is alatti
e tiling. This means that T = f
(T ) j 
 2 Lg;where L is a latti
e group. But a latti
e group L is only one of 17 
rystallographi
groups in the plane and only one of 230 
rystallographi
 groups in 3-spa
e. Thisse
tion brie
y des
ribes a generalization, due to Gelbri
h [Ge1℄, from latti
e tilingto 
rystallographi
 tiling. A 
rystallographi
 tiling is of the formT = f
(T ) j 
 2 �g;where � is a 
rystallographi
 group.2The basi
 
onstru
tion of digit tiles given in x2 is based on a latti
e L. Thelinear expansion A maps L into itself; so ALA�1 is the subgroup of translations by2The term \
rystallographi
" is often used inter
hangeably with the term \periodi
." A
rystallographi
 tiling is periodi
 by Bieberba
h's theorem, but a periodi
 tiling is not ne
essarily
rystallographi
. The symmetry group of a periodi
 tiling may not a
t transitively on the tiles.
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e A(L). A set of 
oset representatives of L=ALA�1 
onsistsof translations by a digit set D. To generalize, let � be any 
rystallographi
 group;let A : Rd ! Rd be a linear expanding map su
h that A�A�1 � � and letD = fd1; : : : ; dNg be a set of right 
oset representatives of �=A�A�1. Then the
ontra
tions fi(x) = A�1 Æ di(x)provide an iterated fun
tion system with a unique attra
tor, say T := T (�; A;D).The analogue of Theorem 2.5 holds: T (�; A;D) is a 
ompa
t set that is the 
losureof its interior. Call T (�; A;D) a 
rystallographi
 digit tile.

Figure 14. Crystallographi
 digit tilings: sea horse and 
oral reef.Using the same reasoning as for ordinary digit tiles, every 
rystallographi
digit tile in Rd admits a tiling of Rd that is self-repli
ating in the sense of x4.Some 
rystallographi
 tilings, 
ourtesy of Gelbri
h and Gies
he [GeG℄, are shownin Figure 14 and are reminis
ent of fra
talized Es
her prints. Analogous to (4.1) it
an be shown that every self-repli
ating 
rystallographi
 tiling is of the formT = f
(T ) j 
 2 �0g;where �0 is a subset (not ne
essarily a subgroup) of �.



26 ANDREW VINCEThe analogous result to Theorem 7.3, that every 
rystallographi
 digit tileadmits a 
rystallographi
 tiling seems likely, but is open as far as we know. Theissue is, given a 
rystallographi
 tile T , whether there exists a tiling f
(T ) : 
 2 �0gwhere �0 is a 
rystallographi
 group. Generalizing the results of x4, x5 and x6 to
rystallographi
 tiles would also be of interest.9. Hierar
hi
al tilingAll tilings in x1 - x8 are by 
opies of a single tile. We now turn to tilings by
opies of tiles taken from a �nite set of proto-tiles. Many of the 
on
epts that o

urin the remainder of this paper are valid in a general 
ontext; so we introdu
e thenotions of hierar
hy and hierar
hi
al tiling and frame the theory in this setting.Hierar
hy is the basi
 notion; the tilings will be produ
ed automati
ally from thehierar
hy.9.1. Hierar
hy. Let P = (P0; P1; P2; : : : ) be a sequen
e of �nite proto-tilesets. De�ne inradius (Pn) to be the largest r su
h that ea
h proto-tile in Pn
ontains a ball of radius r. Call P a hierar
hy if the following three 
onditions aresatis�ed.1. limn!1 inradius (Pn) =1.2. Ea
h tile in Pn+1 has a unique subdivision into the non-overlapping unionof isometri
 
opies of tiles in Pn.The subdivision rule in 
ondition (2) must be unique in the sense that ea
h tile inPn+1 
an be subdivided into the non-overlapping union of isometri
 
opies of tiles inPn in a unique way. (If there is ambiguity, for example if a proto-tile has nontrivialsymmetry, then it is 
ommon to 
olor some points in the tiles so that 
olors mustmat
h. In the IFS approa
h dis
ussed in x10 this 
oloring is unne
essary.) Let Sbe an non-overlapping set of tiles in Rd taken from Pn. Using the subdivision rulethere is a unique set S(1) of tiles from Pn�1 obtained by subdividing ea
h tile inS a

ording to the subdivision rule. Repeat to obtain from S the kth subdivisionS(k); k � n, by tiles in Pn�k.3. For any given m, ea
h tile in Pm appears in the (n � m)th subdivision ofea
h tile in Pn for all n suÆ
iently large.The square hierar
hy example in Figure 15 shows the �rst three proto-tile setsand the �rst and se
ond subdivisions. (Ea
h proto-tile set 
onsists of a single tile.)The se
ond hierar
hy in Figure 13 is by a
ute and obtuse Penrose triangles. Ea
hproto-tile set 
onsists of two tiles. The se
ond subdivision is shown. (It 
an alsobe 
onsidered as the fourth subdivisions in the �ner hierar
hy shown in [GS, p.540℄.) To insure uniqueness of the subdivision rule, the verti
es of the trianglesshould be appropriately 
olored, as is usually done for the Penrose tiles. In both ofthese examples the proto-tile sets P0; P1; : : : have the same 
ardinality. Moreover,
orresponding tiles in Pn and Pn+1 are similar, the ratio being 2 in the 
ase of thesquares and the golden ratio � in the 
ase of the Penrose tiles. (These are examplesof what are 
ommonly 
alled lo
al in
ation rules). In general, this does not haveto be the 
ase for a hierar
hy.9.2. Hierar
hi
al tiling. A tiling by 
opies of tiles taken from a proto-tileset P will be 
alled a P-tiling. A pat
h of a tiling is a subset of tiles whose unionis a topologi
al ball. The de�nition of hierar
hy 
on
erns the proto-tile sets, not
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Figure 15. Square and Penrose hierar
hies.tilings by these proto-tiles. Now de�ne a tiling T to be hierar
hi
al if there existsa hierar
hy P0; P1; P2; : : : and a sequen
e T0; T1; T2; : : : of tilings with T0 = T su
hthat1. Tn is a Pn-tiling for all n.2. Tn is the subdivision of Tn+1 for ea
h n.3. Ea
h pat
h in T appears in the nth subdivision of some tile in Pn, for nsuÆ
iently large, n depending only on the size of the pat
h.The last 
ondition is to eliminate from 
onsideration tilings su
h as the following.Combine the square tiling of the left half-plane and the square tiling of the righthalf-plane o�set slightly along a verti
al \fault" where the two half-planes meet.If T is a tiling with hierar
hy P , then T will be referred to as a P-tiling. We alsouse the terminology P admits the tiling T . Note that if P = (P0; P1; P2; : : : ) is ahierar
hy then so is any in�nite subsequen
e P 0 = (Pi0; Pi1; Pi2 : : : ) with the obvioussubdivision rule 
oming from the subdivision rule for P . Moreover, if P0 = Pi0,then a tiling T is a P-tiling if and only if T is a P 0-tiling. Su
h hierar
hies P andP 0 will be 
onsidered equivalent.If, for every P-tiling T , the sequen
e T0; T1; T2; : : : is uniquely determined, thenwe say that P for
es uniqueness. The hierar
hy of squares in Figure 15 does notfor
e uniqueness; for the tiling T of the plane by squares, there are in�nitely manyways to 
hoose the sequen
e of tilings T0; T1; T2; : : : . The Penrose hierar
hy doesfor
e uniqueness on any Penrose tiling of the plane by thi
k and thin triangles. Inother words, the subdivision rule for the Penrose hierar
hy is lo
ally invertible; thesubdivision rule for the square hierar
hy is not. If the hierar
hy for a tiling for
esuniqueness, then the tiling is 
ommonly said to satisfy the unique 
ompositionproperty or the lo
al in
ation/de
ation property.



28 ANDREW VINCEA tiling T is of �nite type if, for any positive number r, there are at most�nitely many pat
hes, up to 
ongruen
e, within a ball of radius r. A tiling T hasthe lo
al isomorphism property if, for any pat
h Q of T , there is a number R su
hthat any ball of radius R 
ontains, up to 
ongruen
e, a 
opy of Q. Two tilings T1and T2 are said to be lo
ally isomorphi
 if every pat
h of T1 
an be found in T2and vi
e versa. Lo
al isomorphism is an equivalen
e relation.3 Nonperiodi
 tilingsthat are both of �nite type and satisfy the lo
al isomorphism property have beenreferred to as quasiperiodi
. Sin
e the term quasiperiodi
 has multiple de�nitionsin the literature we will not use it.4Theorem 9.1. Let P be a hierar
hy.1. Every P-tiling is of �nite type.2. Every P-tiling has the lo
al isomorphism property, and any two P-tilings arelo
ally isomorphi
.3. If P for
es uniqueness, then every P-tiling is nonperiodi
.Proof. Let P = (P0; P1; P2; : : : ) be the hierar
hy and (T0; T1; T2; : : : ) the 
or-responding sequen
e of tilings with T0 = T . By 
ondition (3) in the de�nitionof hierar
hi
al tiling, any ball of radius r in a P-tiling T is 
ontained in the kthsubdivision p(k) of some tile p 2 Pk, where k depends only on r. Sin
e there are atmost �nitely many 
on�gurations within the kth subdivision of the tiles of Pk, the�nite type property is veri�ed.To verify the lo
al isomorphism property, let Q be a pat
h in T . Again, Qappears in the kth subdivision p(k) of some proto-tile p 2 Pk. But by 
ondition (3)in the de�nition of hierar
hy, the proto-tile p, in turn, appears in the subdivisionof ea
h tile in Pn for n suÆ
iently large. Finally, sin
e the tiles are 
ompa
t, thereis a number R, depending only on n, su
h that any ball of radius R 
ontains sometile in Tn. Therefore any ball of radius R 
ontains Q. The same reasoning showsthat any two P-tilings are lo
ally isomorphi
.Assume that P for
es uniqueness, and assume, by way of 
ontradi
tion, thatT admits a translational symmetry. This indu
es a translational symmetry of T1;otherwise uniqueness of T1 is violated. Repeating this argument implies that, forea
h n, there is a translational symmetry of Tn. But this is impossible be
auseinradius (Pn)!1 by 
ondition (1) in the de�nition of hierar
hy.Note that, for the set P of Penrose tiles, the standard mat
hing rules guaranteethat every P -tiling is a P-tiling. Sin
e the Penrose hierar
hy for
es uniqueness, itfollows from Theorem 9.1 that no P -tiling is periodi
. In this 
ase we 
all P anaperiodi
 set; no tiling by 
opies of tiles in P is periodi
.So far it has not been assumed that a given hierar
hy P = (P0; P1; : : : ) admitseven a single tiling. The existen
e of P-tilings is now addressed. If pn 2 Pn andpn+1 2 Pn+1 then, in a

ordan
e with the subdivision rule, pn 
an possibly appear3Con
erning terminology in the literature, two tiling in the same lo
al isomorphism 
lassare sometimes 
alled lo
ally indistinguishable, and a tiling with the lo
al isomorphism property issometimes 
alled repetitive. Another equivalen
e relation among tilings, mutual lo
al derivability,will not 
ome into play in this paper. We use the terms \�nite type" and \lo
al isomorphism"with respe
t to 
ongruen
e. Analogous versions with respe
t to translations are also often used.4This paper does not dis
uss the well known proje
tion method for 
onstru
ting \quasiperi-odi
" point sets. It is interesting to note, however, that there exists su
h sets for whi
h the windowsystem 
an be interpreted as a self-similar tile with fra
tal boundary; see [LGJJ℄.



DIGIT TILING OF EUCLIDEAN SPACE 29several times in pn+1 (or not at all). Let S(pn; pn+1) be a set of symbols denotingthe positions of pn in the subdivision of pn+1. If pn does not appear in pn+1,then S(pn; pn+1) is empty. Consider any sequen
e C = (
0; 
1; : : : ) where ea
h
n 2 S(pn; pn+1) for some pn 2 Pn; pn+1 2 Pn+1 and, if 
n�1 2 S(qn�1; qn) and
n 2 S(pn; pn+1) then qn = pn. Constru
t a tiling from C as follows. Start withQ0 := p0; Q0 is embedded in the subdivision Q1 of tile p1 in position 
0; p1, inturn, is embedded in the subdivision Q2 of p2 in position 
1. Continue in this wayto obtain a nested sequen
e Q0 ,! Q1 ,! Q2 ,! : : : of pat
hes. The union SnQnis a partial tiling. We use the term \partial" be
ause the union may not be allRd . Call two su
h sequen
es C and C 0 equivalent if there is an integer k su
h thatthe sequen
es C and C 0 agree after the �rst k terms. Be
ause of the uniquenessof subdivision, equivalent sequen
es yield the same partial tiling up to 
ongruen
e.Call an equivalen
e 
lass of sequen
es a 
ode for the tiling it produ
es. So there isa well-de�ned mapping from the set of 
odes onto the set of partial P-tilings. (Themapping may not be one-to-one; the square tiling of the plane, for instan
e, hasin�nitely many 
odes.)If, in 
ondition (3) in the de�nition of hierar
hy, it is required that ea
h tile inPm appears in the interior (not interse
ting the boundary) of ea
h tile in Pn, thenwe 
all the hierar
hy interior. The following result is surely known; in parti
ular ithas long been known for the Penrose hierar
hy [GS℄.Theorem 9.2. 1. If a hierar
hy P is interior, then P admits (full) tilings.2. If P for
es uniqueness, then there is a bije
tion between the set of 
odes andthe set of partial tilings (up to isometry). In parti
ular P admits un
ountablymany partial tilings (un
ountably many full tilings if P is interior).Proof. Con
erning (1), the property of being interior insures that for some
ode the union SnQn des
ribed above 
overs all Rd , hen
e produ
ing a full tiling.Con
erning (2), given a P-tiling T , any 
ode C(T ) = (
0; 
1; : : : ) for T isobtained as follows. Choose an arbitrary tile T0 2 T , where T0 has proto-tile typep0, Then T0 is 
ontained at position 
0 in a unique tile T1 of proto-tile type p1 atthe next level. In general Tn of type pn is 
ontained at position 
n in a uniquetile of type pn+1. Moreover if C and C 0 are both 
odes for T then they must beequivalent be
ause, any two initial tiles in T are 
ontained in the same single tileat a suÆ
iently high level.Be
ause of 
ondition (1) in the de�nition of hierar
hy, there are at least two
hoi
es for the next embedding at in�nitely many stages. So there are un
ountablymany 
odes, hen
e un
ountably many tilings.The 
ode for the Penrose tiling by a
ute and obtuse triangles 
an be denotedby binary digits 0 or 1 in su
h a way that ea
h partial tiling is given by a uniquebinary sequen
e whi
h 
ontains no subsequen
e 11. (This 
ode is with respe
t to the�ner hierar
hy mentioned in referen
e to Figure 13.) Every su
h binary sequen
e,ex
ept (000 : : : ), (10001000 : : : ) and (00100010001 : : :) yields a tiling of R2 . Theex
eptions yield partial tilings whi
h 
an easily be extended to full tilings. Hen
e byTheorem 9.2 there is a bije
tion between the set of 
odes and set of Penrose tilings.The Penrose tiling with 
ode (000 : : : ), 
alled the 
artwheel, has been singled out inthe literature. For example it is shown in [GS℄ that, ex
ept for seven ex
eptions,every tile in the 
artwheel tiling lies in a pat
h of tiles whose symmetry group isthe dihedral group D5. A spe
ial 
ase of Theorem 10.1 in the next se
tion implies



30 ANDREW VINCEthe surprising property that the 
artwheel is the unique Penrose tiling T for whi
han expansion by the golden ratio sends ea
h tile in T to the union of tiles in T .10. Self-aÆne and Self-similar tilingThe basi
 
on
ept in x9 is a hierar
hy P . From a given hierar
hy, tilingsare produ
ed a

ording to Theorem 9.2, in�nitely many in the 
ase that P for
esuniqueness. This se
tion 
on
erns two spe
ial types of hierar
hies, self-aÆne andself-similar, and their asso
iated tilings. After de�ning self-aÆne and self-similarhierar
hy (x10.1), a few important results 
on
erning the asso
iated tilings are pre-sented (x10.2). An alternative approa
h based on graph iterated fun
tion systemsis given in x10.3. Examples appear in x10.4.10.1. De�nitions. Let A : Rd ! Rd be a linear expanding map. Let P =fT1; T2; : : : ; TNg be a �nite set of proto-tiles, and letPn = fAn(p) j p 2 Pg: (10:1)The subdivision rule for the �rst level of a hierar
hy P = (P0; P1; : : : ) is givenexpli
itly as follows for ea
h i = 1; 2 : : : ; N :A(Ti) =[ gkij(Tj); (10:2)where the union is non-overlapping with indi
es j = 1; 2; : : : ; N and \multipli
ities"k = 1; 2; : : : ; k(i; j), and ea
h gkij is an isometry. The fun
tional equation (10.2)states that ea
h large tile A(Ti) is the non-overlapping union of 
opies of the smalltiles T1; : : : ; TN . In this union, ea
h tile of type Tj 
an appear one or more times(k(i; j) � 1) or not at all (k(i; j) = 0).To de�ne the subdivision rule on Pn for n > 1; make the following assumption:A Æ gkij ÆA�1 is an isometry for all i; j; k: (10:3)Assumption (10.3) allows Eq. (10.2) to be iterated to obtain a subdivision ruleat every level. The matrix M = (k(i; j)) of multipli
ities from (10.2) is 
alledthe substitution matrix for the subdivision. Thus k(i; j) is the number of times Tjappears in Ti. Condition (3) in the de�nition of hierar
hy in x9.1 is equivalent tosome power ofM being stri
tly positive, i.e.,M is what is 
alled a primitive matrix.If this is the 
ase P satis�es all three 
onditions in the de�nition of hierar
hy.Assumption (10.3) holds if either1. gkij is a translation for ea
h i; j; k, or2. A is a similarity.In 
ase (1) the hierar
hy P will be 
alled self-aÆne and in 
ase (2) self-similar. Ifboth (1) and (2) hold we 
all the hierar
hy translationally self-similar. Let Pn beas in Eq. 10.1 and let P 0n = fA0n(p) j p 2 Pg, where A0 = � ÆA for some isometry�. Note that P = (P0; P1; : : : ) and P 0 = (P 00; P 01; : : : ) are the same hierar
hy. Inparti
ular, in the self-similar 
ase it 
an be assumed that A(x) = 
x where 
 > 1.In either 
ase, the remarks in x9.2 imply that repla
ing A by � ÆAs, where � is anisometry and s any positive integer results in an equivalent hierar
hy as de�ned inx9.2.A P-tiling will be 
alled self-aÆne if P is a self-aÆne hierar
hy and self-similarif P is a self-similar hierar
hy. It is unfortunate that the term \self-similar" has



DIGIT TILING OF EUCLIDEAN SPACE 31slightly di�erent de�nitions in various publi
ations on the subje
t. The de�nitionof self-similar in [So2℄, for example, assumes that both 
onditions (1) and (2) hold,translationally self-similar in our terminology. A self-similar tiling in [Ke3, So1,Th℄ has an additional property we will 
all spe
ial. A self-aÆne or self-similar tilingT is spe
ial if the image A0(T ) is, for any T 2 T , the union of tiles in T . HereA0 
an be any linear map of the form � ÆAs, whi
h, as dis
ussed in the paragraphabove, results in a hierar
hy equivalent to the original hierar
hy. This de�nition ofspe
ial is a dire
t generalization from x4 of the term self-repli
ating; in that 
ases = 1.10.2. Some results. In this se
tion several mis
ellaneous results on self-aÆneand self-similar tilings are presented. Let P be either a self-aÆne or a self-similarhierar
hy and denote by 
P the set of all P-tilings. The subdivision operator� : 
P ! 
P is de�ned as follows. Using the notation A(T ) = fA(T ) j T 2 T gde�ne �(T ) = A(T )(1);the �rst subdivision of the in
ated tiling A(T ). A

ording to the next result, thespe
ial self-aÆne and self-similar tilings are the ones with a repeating 
ode.Theorem 10.1. The following statements are equivalent for a self-aÆne orself-similar tiling T .1. T is a �xed point of the subdivision operator �s for some positive integer s.2. There is a repeating 
ode for T of the formC(T ) = (
1; 
2; : : : ; 
s; 
1; 
2; : : : ; 
s; : : : ).3. The tiling T is spe
ial.Proof. (1) () (2) First, �s(T ) = T if and only if the two tilings have asame 
ode (up to equivalen
e), say (
1; 
2; : : : ). But if C(T ) = (
1; 
2; : : : ), then, bythe de�nition of the subdivision operator, C(�s(T )) = (
01; 
02; : : : ; 
0s; 
1; 
2; : : : ) forsome symbols 
01; 
02; : : : ; 
0s. Hen
e, by the de�nition of equivalent 
odes, �s(T ) = Tif and only if 
k+s = 
k for k suÆ
iently large. This is the 
ase if and only if 
(T )repeats with period s.(1) () (3) The tiling T is a �xed point of the subdivision operator �s if andonly if As(T )(s) = �(T ) for some isometry �. This is the 
ase if and only if, forea
h tile T 2 T , we have As(T ) = SKi=1 �(Ti) for some tiles Ti 2 T . This equationis equivalent to (��1 ÆAs)(T ) = SKi=1 Ti; in other words, T is spe
ial.Corollary 10.2. Every self-aÆne or self-similar hierar
hy admits a spe
ialtiling.Proof. Property (3) in the de�nition of the hierar
hy, i.e. that the substi-tution matrix is primitive, implies that the hierar
hy admits a tiling whose 
oderepeats. The result then follows from Theorem 10.1.The following result 
on
erns the unique 
omposition property de�ned in x9.2.The third part of Theorem 9.1 states, in parti
ular, that a self-aÆne tiling withthe unique 
omposition property (lo
al in
ation/de
ation) must be nonperiodi
. Aproof of the 
onverse in the 1-dimensional 
ase appeared in [Mo℄. The 
onverse istrue in general.



32 ANDREW VINCETheorem 10.3. (Solomyak [So2℄) If a self-aÆne tiling is nonperiodi
 then ithas the unique 
omposition property.The next result 
on
erns tile frequen
ies. Re
all, for example, that the fre-quen
ies of the two Penrose tiles in any Penrose tiling exist and the ratio of thetwo frequen
ies is the golden ratio [GS℄. The existen
e of uniform frequen
ies ofpat
hes in 
ubes was established by Lunnon and Pleasants for substitution tilingsby tiles that are polytopes [LuP℄. In general, let Q be a pat
h in a tiling T . LetLQ(X) denote the number of translates of Q in a region X � Rd . The frequen
yfreq(Q) of the pat
h is de�ned as the following limit, if it exists,limn!1 LQ(Xn)V ol(Xn) ;where Xn is a region with d-dimension measure Vol(Xn) that tends to in�nity insu
h a way that the boundary of Xn does not wriggle too mu
h. A pre
ise de�nitionand the following statement appear in [So1℄.Theorem 10.4. (Solomyak) If T is a self-aÆne tilling, then the frequen
ies ofpat
hes exist.For a nonempty pat
h Q in a translationally self-similar tiling T , de�ne thelo
ator set LQ(T ) = fx 2 Rd j there exists Q0 � T with Q = Q0 � xg:Voronoi tilings based on these lo
ator sets 
an be 
onstru
ted. Priebe [Pri℄ provesan interesting �niteness property 
on
erning the number of these derived Voronoitilings of T .There is a growing body of work on the dynami
al systems arising from thea
tion by translation on a 
ertain spa
e of tilings. Solomyak [So1℄ gives a 
om-prehensive survey of results on the dynami
s of self-aÆne tilings, in
luding a proofof unique ergodi
ity. We refer the interested reader to the 
ited paper and thereferen
es therein.Perhaps the best known property of translationally self-similar tilings 
on
ernspossible expansion 
onstants. For a self-similar tiling of the plane R2 �= C themap A 
an be represented as multipli
ation by an expansion 
onstant � 2 C . Thenext theorem was announ
ed by Thurston with a proof of ne
essity. Kenyon gavea 
onstru
tive proof of suÆ
ien
y and a generalization to self-aÆne tilings in Rd[Ke1℄.Theorem 10.5. (Thurston [Th℄, Kenyon [Ke3℄) A translationally self-similartiling of the plane with expansion 
onstant � exists if and only � is a 
omplexPerron number, that is, an algebrai
 integer whose Galois 
onjugates, ex
ept �, areless than j�j in modulus.Con
erning Theorem 10.5, it is not hard to show that, for a translationally self-similar tiling, j�j2 = �� is a real Perron number. In fa
t, this is essentially whatis done in the proof of Proposition 10.1 later in this paper. The proof that j�j2 isa Perron number is based on the fa
t that the area of ea
h proto-tile in
reases bya fa
tor of j�j2 under the in
ation by � and this in
ated area is an integer linear
ombination of the areas of the original proto-tiles. To show the stronger resultthat � itself is a Perron number, Thurston 
onsiders 
ertain distinguished points(
apitals or 
ontrol points) for ea
h proto-tile, and a 
ertain �nite set of di�eren
es
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ontrol points in the tiling. Then � in
ates this set of di�eren
es so thatthe in
ated di�eren
es are an integer linear 
ombination of the original di�eren
es.We 
on
lude this se
tion with a very brief 
omment on the di�ra
tion spe
trumof a self-similar tiling. One of the 
ommon de�nitions of quasi
rystal is that of anatomi
 stru
ture whose X-ray di�ra
tion shows Bragg peaks - sharp spots in thedi�ra
tion pattern. For a dis
rete set Y of points in Rd (an atomi
 arrangementsay), 
onsider the distribution f(x) = Py2Y Æy, where Æx is the Dira
 delta. TheX-ray di�ra
tion of Y 
an be des
ribed using the Fourier transform b
 of a relateddistribution 
, 
alled the auto
orrelation. See [Ba℄ or [Se℄, for example, for de�ni-tions and ba
kground. Under mild 
onditions b
 
an be de
omposed into a dis
retepart (Bragg spe
trum) and 
ontinuous part (di�use spe
trum). Con
erning tilings,by 
hoosing a distinguished point for ea
h type of tile, the spe
trum of a P-tiling 
anbe dis
ussed. In several examples of self-similar tilings it was noti
ed that, for theexisten
e of nontrivial Bragg spe
trum, it is ne
essary that the Perron-Frobeniuseigenvalue (the largest eigenvalue) of the substitution matrix be a Pisot number[BT℄. A Pisot number is an algebrai
 integer � > 1 su
h that all its other Galois
onjugates lie inside the unit 
ir
le. In the generality below, the result is due toG�ahler and Klitzing [GK℄.Theorem 10.6. (G�ahler and Klitzing) If 
 > 1 is the expansion fa
tor of aself-similar tiling with nontrivial Bragg spe
trum, then 
 must be a Pisot number.That 
 is a Pisot number is equivalent to the Perron-Frobenius eigenvalue ofthe substitution matrix being a Pisot number. G�ahler and Klitzing go on to givea ni
e des
ription of the Bragg spe
trum of a self-similar tiling, whi
h leads todistinguishing three types of su
h tilings: quasiperiodi
, limit-periodi
 and limit-quasiperiodi
.10.3. Graph iterated fun
tion systems. This se
tion 
on
erns a 
onstru
-tive approa
h to self-aÆne and self-similar tilings based on graph iterated fun
tionsystems. Whereas the attra
tor to an IFS is a single 
ompa
t set, the attra
tor of agraph IFS is a �nite 
olle
tion of 
ompa
t sets. This generalization 
an be found in[MW℄ as well as in the literature on image 
ompression. Bandt [B1, B3℄ appliesthe method to tilings.Using the same notation as in x2 let C := C(Rd ) denote the spa
e of nonempty
ompa
t subsets of Rd , 
omplete with respe
t to the Hausdor� metri
, and let CNbe the N -fold Cartesian produ
t of 
opies of C. A graph iterated fun
tion system(GIFS) is a dire
ted graph G, possibly with loops and multiple edges in whi
hthe verti
es of G are labeled by f1; 2; : : : ; Ng and ea
h edge e is labeled with a
ontra
tion fe : Rd ! Rd . It is also assumed that G is strongly 
onne
ted, i.e., thatthere is a dire
ted path from any vertex to any other. Let Eij denote the set ofedges from vertex i to vertex j. De�ne the fun
tionF : CN ! CNas follows. If X = (X1; X2; : : : ; XN ) 2 CN , thenF (X) = (F1(X); F2(X); : : : ; FN (X));where Fi(X) = N[j=1 [e2Eij fe(Xj):
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an be shown that F is a 
ontra
tion on CN , and 
onsequently has a unique �xedpoint T = (T1; T2; : : : ; TN).Now 
onsider the spe
ial 
ase where ea
h 
ontra
tion is of the formfe(x) = A�1 Æ ge;where A is an expanding linear map and ge is an isometry. The de�nition of �xedpoint implies A(Ti) = N[j=1 [e2Eij ge(Tj); i = 1; 2; : : : ; N; (10:4)whi
h is pre
isely Eq. (10.2). So, if ea
h ge is a translation or A is a similarity,then 
all the GIFS self-aÆne or self-similar, respe
tively. In this 
ase the sequen
eP = fT; A(T); A2(T); : : : g (10:5)is a self-aÆne or self-similar hierar
hy whose substitution rules are determined by(10.4) provided1. Ti is the 
losure of its interior for ea
h i, and2. the unions in Eq. (10.4) are non-overlapping.
�
�
�
�

�
�
�
�

Figure 16. Graph iterated fun
tion system for the Penrose tiles.From [Kees℄ it is known that m(�Ti) = 0. In the de�nition of GIFS, the 
onditionthat G be strongly 
onne
ted is equivalent to 
ondition (3) in the de�nition ofhierar
hy in x9.1. So, assuming 
onditions (1) and (2) given just above, the P-tilingsare self-aÆne or self-similar tilings and, 
onversely, every self-aÆne or self-similartiling 
an be obtained by su
h a GIFS 
onstru
tion.Figure 16 shows the self similar GIFS whose �xed point is the pair of Penrosetiles shown in Figure 15. The two loops dire
ted from the left node 
orrespond tothe two similarities taking the a
ute Penrose triangle to two smaller similar 
opies inits �rst subdivision. The edge dire
ted from the �rst to the se
ond node 
orrespondsto the similarity taking the obtuse Penrose triangle to a smaller similar 
opy in the�rst subdivision of the a
ute Penrose triangle. Likewise, the two edges dire
ted fromthe right node 
orrespond to similarities taking ea
h of the two Penrose trianglesto smaller similar 
opies in the �rst subdivision of the obtuse triangle.Assuming 
ondition (1) holds, it is not diÆ
ult to give a ne
essary and suÆ
ient
ondition for 
ondition (2). Note that, in the GIFS terminology, the N �N matrixM = (jEij j) is the substitution matrix as de�ned in x10.1.Proposition 10.1. Assume that 
ondition (1) holds for a self-aÆne or self-similar GIFS. Then 
ondition (2) holds if and only if j detAj is the Perron-Frobeniuseigenvalue (the largest real eigenvalue) of the substitution matrix M .



DIGIT TILING OF EUCLIDEAN SPACE 35Proof. Let xi denote the Lebesgue measure of tile Ti. The unions in Eq. 10.4are non-overlapping if and only ifj detAjxi = NXj=1 jEij jxj ; i = 1; 2; : : : ; N:This means that j detAj is an eigenvalue of M . But for a non-negative matrix, theonly eigenvalue with a positive eigenve
tor is the Perron-Frobenius eigenvalue.Given a dire
ted edge path p = e1e2 � � � en and a 
ontra
tion f : Rd ! Rd weintrodu
e the notation fp = fe1 Æ fe2 Æ � � � Æ fen :The following proposition follows dire
tly from Eq. (2.3) and allows for an algorithmto produ
e approximations of ea
h of the proto-tiles T1; T2; : : : ; TN in the self-aÆneor self-similar hierar
hy.Proposition 10.2. Let T = (T1; T2; : : : ; TN ) be the �xed point of a GIFS G,and let E(n)i denote the set of all �nite, dire
ted edge paths of length n in the graphG with initial vertex i. Then Ti is the limit with respe
t to the Hausdor� metri
of the sets ffp(0) j p 2 E(n)i g as n!1.A

ording to the proposition above, the graph G 
an be regarded as a �nitestate ma
hine. If the initial state is vertex i, then the tile Ti is the languagea

epted by the ma
hine. (In fa
t, this is the point of view taken by Thurston [Th℄in the Pisot tiling example in x10.4.) Re
all that a �nite state ma
hine M overthe alphabet F is a �nite set S (the states of the ma
hine), a map t : F � S ! S(the state transition map), together with a distinguished element I 2 S (the initialstate), and a distinguished set OK � S (the a

epting states). A �nite statema
hine 
an be represented as a dire
ted graph in whi
h ea
h state is representedby a node and ea
h transition (f; s) 7! s0 is represented by an ar
 from s to s0labeled f . A word w in the alphabet F is a

epted byM if, when you start at I andgo along the dire
tion given by w, you end up in OK. An in�nite word is a

eptedif ea
h �nite pre�x is a

epted. The GIFS graph G is made into �nite state ma
hineby de
laring the verti
es of G a

epting states and adding \fail states" so that thetransition map is de�ned for on all F � S.In a 
ode (
0; 
1; : : : ) for a self-aÆne or self-similar tiling, the position 
n of a tileAn(Tj) in tile An+1(Ti) is 
ompletely determined by fe where e is the appropriateedge from vertex i to vertex j in the graph G. Therefore, a 
ode for su
h a tiling
orresponds to (the equivalen
e 
lass of) an in�nite dire
ted path in G with a giventerminal vertex. (Two edge paths with the same terminal vertex are equivalentif they 
oin
ide ex
ept possibly for the last �nite number m of edges.) If thehierar
hy for
es uniqueness, then there is a bije
tion between su
h equivalen
es
lasses of dire
ted paths and the (partial) tilings. In fa
t, the tilings 
an be givenexpli
itly. In the self-aÆne 
ase ea
h 
ontra
tion 
an be written in the formfe(x) = A�1x+ de; (10:6)where de 2 Rd . In the self-similar 
ase ea
h 
ontra
tion is of the formfe(x) = 
 ge(x); (10:7)
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 < 1 and ge is an isometry. If p is an in�nite, dire
ted edge path in the graphG with �xed terminal vertex, let p(n) denote the �nite, dire
ted edge path with thesame terminal vertex 
onsisting of the last n edges in p. By 
arefully applying thede�nitions we obtain the following tilings.Proposition 10.3. Let T = (T1; T2; : : : ; TN ) be the proto-tiles of a self-aÆneor self-similar hierar
hy 
orresponding to the graph iterated fun
tion system G.1. If T is a self-aÆne tiling (
ontra
tions of the form 10.6) with 
ode given bypath p = � � � e2e1e0, thenT =[ f nXj=0 (Aj(de0j � dej ) + Ti)g;where the union is over all n and all edge paths q = e0n � � � e01e00 with thesame initial vertex as p(n), and i is the terminal vertex of q.2. If T is a self-similar tiling (
ontra
tions of the form 10.7) with 
ode givenby path p, then T =[ f(g�1p(n) Æ gq) (Ti)g;where the union is over all n and all edge paths q that have the same lengthand initial vertex as p(n), and i is the terminal vertex of q.10.4. Examples. Four types of examples of self-similar hierar
hies are men-tioned in this se
tion. Re
all that a self-similar hierar
hy is 
ompletely determinedby the �rst subdivision rule, that is, by Eq. (10.4) of the GIFS graph G.Polygonal hierar
hies. Numerous sporadi
 self-similar hierar
hies using a singlepolygonal tile have been 
onstru
ted [GS℄. A simple example is the L-shapedtriomino hierar
hy with subdivision rule as given by the third diagram in Figure2. This parti
ular hierar
hy for
es uniqueness; so by the results of x9 there areun
ountably many L-shaped triomino tilings, all nonperiodi
, of �nite type andlo
ally isomorphi
. This is 
alled the 
hair tiling, and it has obvious analogues inhigher dimensions.

Figure 17. Subdivision rule for the pinwheel tiling.The best known polygonal self-similar hierar
hy is the Penrose hierar
hy inFigure 13 - already dis
ussed in x9. Another important hierar
hy is the the pin-wheel hierar
hy [R1℄ based on 1; 2;p5 right triangles, the subdivision rule shownin Figure 17. This hierar
hy has the property that, up to 
ongruen
e, there is one
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ountably many, nonperiodi
 pinwheel tilings, thetile appears in (
ountably) in�nitely many orientations.Hierar
hies using a free group endomorphism. For 
ertain spe
ial 
ases, Kenyon[Ke3℄ has extended the re
urrent set method of x6.5 Using essentially the samenotation as in x6, let G := Gha1; : : : ; aN i denote the free group on N generators;let � : G ! G be an endomorphism. Using the notation [a b℄ = aba�1b�1 for the
ommutator, assume that ea
h �([ai aj ℄) is the produ
t of 
onjugates of various[air ajr ℄. Kenyon �nds a family of endomorphisms that satisfy this assumption.Take, for example, the 
ase N = 3 and let�(a) = b�(b) = 
�(
) = 
qa�sb�rwhere q; r � 0; s � 1. Then there is a 
omplex root � of x3� qx2+ rx+ s = 0 su
hthat, if f : G ! C is the homomorphism determined by f(a) = 1; f(b) = �; f(
) =�2 and p denotes the 
orresponding polygonal path, thenAn = ��np(�(n)([a b℄))Bn = ��np(�(n)([b 
℄))Cn = ��np(�(n)([a 
℄))
onverge in the Hausdor� metri
 to 
losed 
urvesA;B;C, respe
tively. Let Ta; Tb; T
denote the en
losed 
ompa
t tiles. Then �Ta is Tb; �Tb is the non-overlapping unionof s translates of T
 and r translates of Tb; and �T
 is the non-overlapping union ofq translates of Tb and s translates of Ta. This gives a subdivision rule for a transla-tionally self-similar hierar
hy. Some asso
iated tilings are illustrated in [Ke3, So1℄.Figure 18 is an example with six types of tiles, 
ourtesy of R. Kenyon, whose ex-pansion is a 
omplex root of x4 + x + 1. It is also a Pisot tiling as de�ned in thenext paragraph.Pisot tilings. Thurston [Th℄ 
onsiders radix representation of a real numberon the line or 
omplex number in the plane in the form z = Pni=i0 ai��i, where� is a �xed real (
omplex) number and the ai are 
hosen from a �nite set D ofalgebrai
 integers in Q(�), and D 
ontains 0. In general, D is not a digit set in thesense of x2. It is not diÆ
ult to 
hoose D so that every number z has su
h a radixrepresentation, but the representation is usually not unique.The �rst step in 
onstru
ting a self-similar hierar
hy is to 
hoose an orderingof D : d1 < d2 < � � � < dN . A proper representation of a number z is the one whi
his greatest in the 
orresponding lexi
ographi
 order. A representation of z is weaklyproper if every �nite initial segment of z 
an be extended to a proper representation.As a one dimensional example 
onsider base � = 1+p52 and D = f0; 1g with 0 < 1.Then :101010 : : : is weakly proper, but not proper be
ause 1 = :101010 : : : . In thisexample the weakly proper representations are exa
tly those that 
ontain no two
onse
utive 1's.Thurston shows that if � is a 
omplex (or real) Pisot number, an algebrai
integer su
h that all its Galois 
onjugates ex
ept � and � lie inside the unit 
ir
le,5Also related is the work of Gar
ia-Es
udero and Kramer [G-EK℄ 
on
erning an interpreta-tion of 
ertain 2-dimensional tilings using automorphisms of free groups.



38 ANDREW VINCE

Figure 18. Pisot tiling.then there exists a �nite state ma
hineM(�;D), as de�ned in x10.3, whi
h will re
-ognize whether a sequen
e of elements from D gives a weakly proper representationfor some number z. (In the one dimensional 
ase, the �nite state ma
hine 
an beexpli
itly 
onstru
ted from the 
arry sequen
e, whi
h is the sequen
e of digits in theweakly proper representation of 1. If � is a Pisot number then the 
arry sequen
eis eventually periodi
. In the example above :101010 : : : is the 
arry sequen
e.)A self-similar hierar
hy 
an be 
onstru
ted from the �nite state ma
hine. Turnthe �nite state ma
hine into a graph iterated fun
tion system as follows. Givena pair (�;D), where � is a Pisot number, �rst remove all the FAIL states (thestates that are not OK) from the asso
iated �nite state ma
hine M(�;D). Thenrelabel the edges as follows. On ea
h edge e repla
e its label de by the 
ontra
tionfe(z) = ��1(z + de). This graph G, with say N nodes, determines a GIFS. Theattra
tor of this GIFS is (T1; T2; : : : ; TN ), where Tj 
an be des
ribed as follows.A

ording to Proposition 10.2, the tile Tj 
onsists of all points z = P1i=1 ai��i,where ai 2 D for all i, and where the word a1a2a3 : : : is a

epted by the �nite statema
hine M(�;D) with vertex j as the initial state. In other words, Tj 
onsists ofall real (
omplex) numbers with de
imal expansion only to the right of the de
imalpoint and with weakly proper representation 
orresponding to a dire
ted path in Gstarting at vertex j. Let Eji denote the set of edges from vertex j to vertex i. Sin
emultipli
ation by � is just a right shift of the de
imal point we have the subdivision
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h j: �(Tj) = N[i=1 [e2Eji Ti + de:The union is non-overlapping be
ause of the uniqueness of weakly proper represen-tation.The Pisot tiling of R. Kenyon in Figure 18 has six types of tiles and uses radix� where � is a 
omplex root of x4 + x+ 1 with modulus greater than 1.Dual hierar
hies. Given a self-aÆne or self-similar hierar
hy P in terms of aGIFS graph G, the 
onstru
tion of a dual hierar
hy P� is outlined by Thurston[Th℄ and expanded on and generalized by Gelbri
h [Ge3℄ and by Praggastis [Pra℄.It also appears in a paper on the 
onstru
tion of so�
 partitions of hyperboli
 toralautomorphisms by Kenyon and Vershik [KeVe℄. We sket
h the basi
 idea of the
onstru
tion given in [Ge3℄.Given a GIFS graph G de�ne a dual graph G� as follows. If G has vertex setf1; 2; : : : ; Ng, let G� have vertex set f1�; 2�; : : : ; N�g. Ea
h edge in G labeled witha 
ontra
tion f : Rd ! Rd is repla
ed by an oppositely dire
ted edge in G� labeledby its dual f�, whi
h is de�ned in the next paragraph.A toral automorphism ~A : RM ! RM is a linear map leaving some latti
e Linvariant and su
h that j det ~Aj = 1. If ea
h eigenvalue of ~A has modulus 6= 1,then RM = Es � Eu su
h that ~As = ~AjEs is a 
ontra
tion and ~Au = ~AjEu isan expansion. It is known that, for a map A : Rd ! Rd that is the expansionfor 
ertain self-similar or self-aÆne hierar
hies, there exists a toral automorphism~A : RM ! RM that is a lifting of A. This means that there is an embeddingi : Rd ,! RMsu
h that i(Rd) = Eu and ~A Æ i = i Æ A. Let A� = ~A�1jEs be the inverse of thelifting restri
ted to the 
omplementary spa
e.More generally, for su
h a self-aÆne hierar
hy (and sometimes for a self-similarhierar
hy) an aÆne 
ontra
tion f : Rd ! Rd with linear part A 
an also be liftedto an aÆne map ~f : RM ! RM given by ~f(x) = ~A(x � b) where ~A leaves Eu andEs invariant and maps L bije
tively onto itself. Let f� : Es ! Es be de�ned byf�(x) = A�(x) + projEsb:Now the dual graph G�, and thus the dual hierar
hy P�, is de�ned.Some examples of this dual 
onstru
tion appear in [So1, Th℄. Figure 19,
ourtesy of R. Kenyon, shows the 2-dimensional dual of a 1-dimensional Pisot tilingthat uses the real root of x3�x2�1 as base and f0; 1g as digit set. The subdivisionrule for the three types of tiles is of the form: T1 = f1(T2); T2 = f2(T3); T3 =f1(T1 [ T3).Gelbri
h [Ge3℄ 
omputes the dual of the Penrose hierar
hy and gives illustra-tions of some asso
iated tilings. These tilings appeared previously in [BGu℄ andhave the following appealing property. For the Penrose tiles (kite and dart, thi
kand thin rhombs, or a
ute and obtuse triangles), somewhat arti�
ial mat
hing rulesguarantee that the tilings are self-similar and, 
onsequently, that the proto-tile setis aperiodi
. For the dual proto-tile set, the mat
hing rules are a dire
t 
onsequen
eof the fra
tal shape of the boundaries of the two proto-tiles. Every tiling by 
opiesof the dual proto-tiles must be a self-similar tiling.
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Figure 19. Dual of a Pisot tiling.It is not always the 
ase that (1) the dual tiles have non-empty interior and (2)the union in (10.4) for the dual is non-overlapping. But these two 
onditions turnout to be equivalent [Ge4℄.11. Con
luding RemarkA main question at this point is how, in general, to 
onstru
t the self-aÆne andself-similar hierar
hies - and hen
e tilings. Any su
h hierar
hy is the attra
tor of aGIFS. So from the GIFS point of view the issue is how to 
hoose the parameters (thelinear map A and translations de in 10.6 or the expansion fa
tor 
 and isometriesge in 10.7) so that the tiles in the attra
tor of the GIFS have nonempty interior(
ondition 1 in x10.3). In the 
ase of a single proto-tile this was done in x2 by
hoosing the set of translations de as a digit set D. In the absen
e of periodi
ity,however, there is no obvious analogue of the quotient D = L=A(L) of a latti
e bythe sublatti
e. There are known suÆ
ient 
onditions to insure nonempty interior,in
luding the \open set 
ondition" [F1℄ and an equivalent algebrai
 
ondition dueto Bandt and Graf [BGr℄, but these are usually not readily appli
able in pra
ti
e.A reasonable approa
h to the problem appears open at this time.
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