Digit Tiling of Euclidean Space
Andrew Vince

ABSTRACT. This is an expository paper on digit tiling of Euclidean space, a
special kind of self-affine tiling by translates of a single tile. In particular, the
following topics are discussed: the construction of digit tiles and the construc-
tion of the boundary, the Hausdorff dimension of the boundary, the relation
between digit tiles and positional number systems, the self-replicating prop-
erties of digit tiling, and lattice and crystallographic digit tiling. In the last
sections digit tiling is placed into the broader context of both periodic and
nonperiodic self-affine tiling of Euclidean space by a finite set of proto-tiles. In
particular, the following topics are discussed: general results on hierarchical
tiling, results specific to self-affine and self-similar tiling, the construction of
self-affine and self-similar tilings using graph iterated function systems, and
some illustrative examples.

1. Introduction

Self-similar tilings of R? have attracted the interest of mathematicians in recent
years for a variety of reasons that are discussed in this paper. One primary reason,
especially relevant in the context of this volume, is that many of these tilings
are “quasiperiodic” and serve as models for real quasicrystals. The discovery of
quasicrystals in 1984 [SBGC] was the impetus for, not just intensified research on
tilings, but for much of the recent work on the mathematics of long-range aperiodic
order. In this paper there is a shift of emphasis between the first and second parts.
Sections 1-7 deal mainly with periodic tilings; sections 8-10 mainly with nonperiodic
tilings. It is worth noting that self-similar tilings are a relatively recent addition to
the large body of work on the geometry and symmetry of tilings, a topic surveyed,
beginning with the mosaics in the Alhambra at Granada in Spain, in the book [GS]
by Griinbaum and Shephard.

Two compact sets in R? are said to be non-overlapping if their interiors are
disjoint. A tiling of R? is a decomposition of R? into non-overlapping compact sets,
each the closure of its interior and each with boundary having Lebesgue measure
0.

This paper is organized as follows. The definitions of self-affine and self-similar
tile and, in particular, digit tile are given in §2. Digit tiles possess a self-similar
property like that of the “Gosper flowsnake” shown in Figure 1. The union of the
seven tiles is similar to each small tile. The construction of digit tiles in §2 is by
way of iterated function systems, a standard method for constructing fractals. The
boundary of a digit tile is usually fractal.
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FI1GURE 1. Gosper flowsnake tiling.

The construction of a digit tile 7' := T'(A, D) depends only on an expanding
matrix A and a finite set D of lattice points in R?. The terminology “digit tile”
comes from this data, which is analogous to the usual base and digits used to rep-
resent the integers. This connection to positional number systems (radix systems)
is discussed in §3. In particular, the tiling in Figure 1 is related to a certain radix
system with applications to image processing.

Sections 2 and 3 concern the digit tiles themselves; §4 concerns tilings by trans-
lates of a single digit tile. Every digit tile admits a tiling of R? with a strong global
property called self-replication. When this self-replicating tiling is a lattice tiling
there are applications to the construction of wavelet bases. The main theorem
of §4 gives ten conditions, all equivalent to the self-replicating lattice tiling prop-
erty. One of the conditions is measure theoretic; some concern the behavior of the
boundary; some concern unique radix representation of lattice points; and some are
algorithmic, allowing for efficient testing procedures. One such condition involves
the A-adic numbers, a generalization of the p-adics, p prime.

The boundary of a digit tile is the subject of §5 and §6. In the book Classics
on Fractals [E], Edgar asked what the Hausdorff dimension of the boundary of
the Lévy Dragon might be. In general Edgar asked what could be said about the
dimension of the boundary of a self-similar tile. In §5 an easily computable formula
is provided for the Hausdorff dimension of the boundary of a self-similar digit tile.

Section 6 concerns the construction of the boundary of a digit tile. The re-
current set method for constructing a fractal curve, due to Dekking [Del, De2],
is related to L-systems, the “L” for Lindenmayer who used the method to model
biological growth [Lin]. Given an alphabet and a rewriting rule, the idea is to
iterate the rule to produce progressively longer strings of symbols. Each symbol is
then interpreted geometrically, producing a figure in the plane. The main theorem
in §6 gives a bijection between the parameters used to construct a digit tile in R2
by an iterated function system and the parameters used to construct a curve by the
recurrent set method. The bijection is such that the curve constructed by the re-
current set method is the boundary of the tile constructed by the iterated function
system. Figure 1 in this paper was constructed by the recurrent set method.

It is an open question as to whether every tile 7' that admits a tiling of R¢
by translates of 7" also admits a periodic tiling by translates of 7'. Related to this
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question is the Lattice Tiling Question of Grochenig and Haas [GH]: every digit
tile admits a tiling of R by translates; does every digit tile admit a (not necessarily
self-replicating) lattice tiling? This question and its solution by Lagarias and Wang
[LW4] are discussed in §7. It is also open whether every tile T' that admits a tiling
of R? (not necessarily by translates) also admits a periodic tiling by copies of T
In other words, does there exist an aperiodic proto-tile? Gummelt’s solution of the
analogous problem for coverings of R? [Gu], where tiles are allowed to overlap, has
received considerable attention recently because of its implications for the structure
of quasicrystals. This is also discussed briefly in §7.

Sections 1 - 7 are restricted to digit tiling. The remaining three sections con-
cern generalizations. The intent is to place digit tiling into a broader context. The
following topics are briefly discussed: (§8) crystallographic digit tiling; (§9) hierar-
chical tiling; and (§10) self-affine and self-similar tiling by copies of tiles taken from
a finite set of proto-tiles.

Crystallographic digit tiling, due to Gelbrich [Gel], is a generalization from
tilings by the image of single tile under the action of a lattice group to tilings by a
single tile under the action of a crystallographic group.

Sections 9 and 10 extend the subject from tiling by copies of a single tile
to tilings by copies of tiles taken from a finite set of proto-tiles. These include
the nonperiodic Penrose tilings [P1] and the Pisot tilings of Thurston [Th]. We
introduce the notion of a hierarchy. Associated with a given hierarchy P are hier-
archical tilings, called P-tilings. General properties of hierarchies and their tilings
are discussed in §9. Included are results about codes of P-tilings, number of tilings,
nonperiodicity, and quasiperiodicity. Two special types of hierarchies are self-affine
and self-similar hierarchies. Miscellaneous properties of their tilings are surveyed in
§10. A constructive approach to self-affine and self-similar tiling, by way of graph
iterated function systems, is also discussed.

Many of the tilings in §10 are quasiperiodic and serve as models for real qua-
sicrystals. Except for brief comments in §7 and on X-ray diffraction in §10.2, the
physics of quasicrystals is not discussed. For an introductory account of quasicrys-
tals we refer the reader to M. Senechal’s book [Se] and M. Baake’s paper [Ba]. For
current research trends refer to the papers in [M] and in this volume.

This paper is basically expository. Proofs of theorems that are readily found
elsewhere are omitted. The subject of self-similar sets is vast. The paper is not
intended to be comprehensive, and we apologize for any favorite topics or results
that are omitted.

2. Digit Tiles

The systematic study of self-similarity properties goes back at least to 1964.
Golomb [Go] defined a set T in the plane to be rep-N if T' can be tiled by N
congruent similar sets. Three rep-4 figures are shown in Figure 2. These examples
are somewhat misleading because the boundary of a rep-N figure is often fractal.

Fractal tiles were constructed early on, for example, by Mandelbrot [Ma] and
in the replicating superfigures of Giles [Gil]. But perhaps the best known method
of constructing fractals at this time is by iterated function systems [Hu] . Many
of the illustrations of fractals in the popular literature use this method; see, for
example, the nice expositions by Barnsley [Bar] and Falconer [F1]. An iterated
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FIGURE 2. Rep-4 figures.

function system (IFS) is a finite set {f1, f2,..., fx} of contractions:
fi : R* - R
A function f : R — R? is a contraction if there is a number ¢ with 0 < ¢ < 1 such
that |f() — f(y)| < clz —y| for all x,y € R?. Let C(R?) denote the collection of
all nonempty compact subsets of R?. The Hausdorff metric h on C(R?) is defined
as follows:
h(A,B) =inf{e| A C B, and B C A},
where A = {x € R? : |z — y| < € for some y € A}. With respect to this metric
the function
F: C(RY) — C(R")

N
NMZUMD

is a contraction on the complete metric space C(R?) and thus, by the contraction
mapping theorem, has a unique fixed point or attractor T' that satisfies

N
r={J £(D), (2.1)

There is an alternative representation for the attractor given by

T = lim F"™(Ty), (2.2)
n— 00

where F(™ denotes the n iterate of F' and Ty is an arbitrary compact subset of
R?. The limit is with respect to the Hausdorff metric. The set

T, = F"(Ty) (2.3)
is an n'" approximation to T and is easy to express in algorithmic form. It is
usually such an algorithm (or a randomized version) that is used to produce the
fractal graphics that appear in many books and papers on the subject.

Consider the special case of an IFS where the contractions f; are affine with
the same linear part A~! and with translational parts D = {d1,ds,...,dn}:

fi(x) = A7 x + dy). (2.4)

Let A be an expanding matrix, where expanding means that the modulus of each
eigenvalue is greater than 1. With respect to an appropriate metric related to
the Euclidean metric [Li], A~ is a contraction. The inverse is used merely as a
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convenience for stating certain results. The functional equation (2.1), for example,
is equivalent to

N
A(T) = U (T + d;). (2.5)
i=1
Let m denote d-dimensional Lebesgue measure and 0 the boundary. If

1. the attractor T is the closure of its interior and m(97) = 0 and
2. the union in Eq. (2.5) is non-overlapping,

then T is called a self-affine tile. If, in addition, A is a similarity, then T is called a
self-similar tile. A linear map is a similarity with expansion factor ¢ if || Az|| = c||z||
for some ¢ > 1 and for all + € R?. The term self-affine refers to the geometric
interpretation of Eq. (2.5): the large tile A(T) is the non-overlapping union of
translates of the small tile 7. The Gosper flowsnake in Figure 1 is a self-similar
tile. Figure 3 shows the first 12 approximations to the self-similar “twin dragon,”
where the IFS is given in Example 2.1 and T in Eq. (2.3) is a unit square.

T ()
f(1) - G (G-

Sk
Ay dg

By 9y 5
b By I

FIGURE 3. Approximations to the twin dragon.
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The attractor of the IFS (2.4) usually does not satisfy conditions (1) and (2)
in the definition of self-affine tile. One case for which it does is a digit tile. Such
tiles have been the subject of research by, among others, Bandt [B2], Dekking
[Del, De2|, Gelbrich [BGe, Ge2], Grochenig and Haas [GH], Grochenig and
Madych [GM], Kenyon [Ke2], Lagarias and Wang [LW2, LW3, LW4], Solomyak
[Sol, So2], Strichartz [Str] and Vince [V1, V2, V3, V4]. By a lattice in R? is
meant the set of all integer linear combinations of d linearly independent vectors.
If A is a linear map and L is a lattice, we say that L is A-invariant if A(L) C L.
If, for some expanding matrix A, there exists a lattice L, invariant under A, then
a set D of coset representatives of the quotient L/A(L) is called a digit set. It is
assumed that 0 € D. By standard results in algebra, for D to be a digit set it is
necessary that

ID| = | det A|.

If A is expanding and D = {d,...,dn} is a digit set, then the attractor of the
affine IFS in Eq. (2.4) is called a digit tile. Note that a digit tile is completely
determined by the pair (A4, D) and will be denoted T'(A, D). Theorem 2.5 below
states that a digit tile is indeed a self-affine tile. Figures 1 and 3 are self-similar
digit tiles, based on the hexagonal and integer lattices, respectively. Both of these
tiles are homeomorphic to a disk. Topologically more complicated self-similar digit
tiles (Examples 2.2, 2.3, 2.4) appear in Figure 4. The last example in this figure
shows the large tile as the non-overlapping union of the nine small tiles.

FiGURE 4. Gasket, rocket and shooter.

ExXAMPLE 2.2. Gasket.

2 0
= (6 2)
D = {(070)7(170)7(071)7(_17_1)}

ExaMPLE 2.3. Rocket.

v= (03

{(070)7 (17 ]-)7 (27 2)7 (_]-7 0)7 (_270)7 (_]-7 1)7 (07 _]-)7 (07 _2)7 (]-7 _1)}

!
Il
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EXAMPLE 2.4. Shooter.

30
4 = <0 3)
D = {(0,0),(1,0),(2,0),(0,1),(0,2),(2,2),(4,4),(2,1),(1,2)}

What we call a digit set D, Lagarias and Wang [LW 3] call a standard digit set.
They call D nonstandard if |D| = | det A| but D is not a set of coset representatives
of L/A(L) for any lattice L. For example, in 1-dimension D = {0, 1,8,9} is non-
standard for matrix A = (4). The attractor of the corresponding IFS is [0, 1]U[2, 3].
For most nonstandard digit sets D, however, the attractor 7' has Lebesgue mea-
sure 0; in particular, the interior of T' is empty. For example, if | det A| is prime,
then this is always the case [LW3]. In general, it seems a nontrivial problem to
determine whether a nonstandard digit tile has positive Lebesgue measure. For
(standard) digit tiles this is not an issue; a proof of the follow result can be found
in [GH, LW2, V1].

THEOREM 2.5. A digit tile T is a self-affine tile. Namely T is compact; T is the
closure of its interior; m(0T) = 0; and the union in Eq. (2.5) is non-overlapping.

For ease of exposition and with essentially no loss of generality, we will often
make the following three assumptions concerning digit tiles. A pair (4, D), consist-
ing of an expanding matrix A and a digit set D, will be called basic if the following
three statements hold. In this case the tile T'(A, D) is also called basic.

1. A is an integer matrix and D is a set of coset representatives of Z?%/A(Z?).
2. (A, D) is pure.
3. (4, D) is primitive.

By assumption (1) the invariant lattice is the integer lattice. By pure is meant
that 0 is contained in the interior of T'(A, D). By primitive is meant that D is
contained in no proper A-invariant sublattice of Z% Example 2.6 is a pair (A, D)
in R? that is not primitive, and Figure 5 shows the first three approximations to
the corresponding digit tile T'(A, D), which is a square. Note that the sublattice of
7.2 consisting of all lattice points with even coordinate sum is a proper A-invariant
sublattice.

EXAMPLE 2.6. Non-primitive digit tile.

30
1= (53)
D

= {(07 0)7 (27 0)7 (17 _1)7 (_17 1)7 (17 1)7 (37 1)7 (07 2)7 (27 2)7 (173)}

That little loss of generality is incurred by restricting to basic digit tiles is the
statement of the following result [LW2, V1].

THEOREM 2.7. Let A :RY — R? be a linear expanding map, L an A-invariant
lattice, and D a digit set. There exists a basic pair (A’, D") such that A" is similar
to some power of A and T(A',D') = ¢(T(A, D)), where ¢ is an invertible affine
map. Moreover, if L = 72, then “similar to” can be replaced by “equal to”, and if
(A, D) is already primitive, then ¢ is just a translation.
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FIGURE 5. Non-primitive digit tile.

It is usually the case that a digit tile is not homeomorphic to a ball. Bandt and
Gelbrich call two digit tiles T and T" isomorphic if there is an affine bijection ¢ from
T to T’ that preserves pieces at all levels. For a precise definition of “preserving
the pieces” see [BGe].

THEOREM 2.8. (Bandt and Gelbrich [BGe], Gelbrich [Ge2])

1. For any N > 2 there are finitely many isomorphism classes of digit tiles in
R? with N pieces and homeomorphic to a disk.

2. There are finitely many isomorphism classes of digit tiles in R® with 2 pieces
and homeomorphic to a d-ball.

The authors have determined, for example, that there are three types of disk-
like digit tiles in R? with two pieces and seven types with three pieces. In [GH]
Grochenig and Haas give, in the 2-dimensional case, a sufficient condition on the
pair (A4, D) for T(A, D) to be connected. In any dimension, Hacon, Salanha and
Veerman [HSV] prove that any digit tile with two pieces is connected.

3. Radix Representation

To justify the terminology “digit” tile, consider an expanding matrix A as a
base for an A-invariant lattice L (so A(L) C L), and a digit set D C L as a set of
digits for L. Use the Minkowski sum notation X +Y ={z +y|z € X, y € Y} and
A(D) ={A(d)|d € D}, and let

n—1 [e%s}
D,=> AD) and Dy =|]JDn. (3.1)
=0 =1

Then D, is the subset of the lattice that can be expressed using at most n digits,
and D is the set of lattice points that can be expressed using any finite sequence
of digits. Let the initial approximation to the tile T' = T'(A, D) be a single point:
To = {0}. In this case Eq. (2.2) becomes

T:=T(A,D) = nlggo;A* (D), (3.2),

where the limit is with respect to the Hausdorff metric. Then T'(4, D), according
to Eq. (3.2), is the set of points in R? that can be expressed using digits only to
the “right” of the of the decimal point. In particular, consider the 1-dimensional
case where A = (10), L = Z, and D = {0,1,...,9}. Then D, is the set of integers
that can be represented in the ordinary base 10 system using at most n digits; Do
is the set of non-negative integers; and T is the closed interval [0, 1]. For the above
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reasons we refer to the pair (A, D) as a radiz system (positional number system)
for lattice L.

The representation of numbers using positional number systems has an ex-
tensive literature prior to the advent of fractals. Knuth’s classic [Kn] contains
early references dating back to Cauchy, who noted that negative digits make it
unnecessary for a person to memorize the multiplication table past 5 x 5. Gilbert
[Gil, Gi2, Gi3] considered radix representation for the Gaussian integers Z[i] =
{a+bi|a,b € Z} and for integers in other algebraic number fields. For example,
every Gaussian integer has a unique base f = —1 + ¢ representation of the form
S o diBt, where d; € D = {0,1}. This is analogous to a binary system for the
Gaussian integers. Of course, this is just the radix system (A4, D) for the lattice
Z* = 7[i], where A is the linear map given by Az = .

Two obvious questions concerning radix representation are as follows.

QUESTION 3.1. Given an expanding integer matrix A and digit set D, when is
it the case that every lattice point x has a unique representation of the form
n—1
x = Z A'(e;), e; € D. (3.3)
i=0
QUESTION 3.2. Given an expanding integer matrix A, does there exist a digit

set D such that every lattice point x can be uniquely represented in the radix form
(3.3).

Question 3.1 will be addressed as part of Theorem 4.2 in §4. The answer to
Question 3.2 is “no, but almost.” We mention two particular results. Here I is the
identity matrix.

THEOREM 3.3. (Vince [V1]) If det(I — A) = £1, then there is no digit set D
such that every lattice point x has a unique representation of the form (3.3).

Examples of such matrices include

1 -1 2 a 0 —a
11 ) 0 2 )’ 1 a /)°
Recall that for any matrix A there exist orthogonal matrices U and V' such that
UT AV is diagonal [GvL]. The diagonal entries are called the singular values of A.

Let C' denote the canonical fundamental domain of the the origin with respect to
the cubic lattice (the closure of C' is a unit cube centered at the origin).

THEOREM 3.4. (Vince [V1]) Let A be a d-dimensional matriz and L an A-
invariant lattice. If the singular values of A are greater than 3v/d and D = A(C)NL,
then every lattice point x has a unique representation of the form (3.3). In the 1
and 2-dimensional cases, the bound 3v/d can be improved to 2.

The following previously known result follows directly from the two theorems
above.

COROLLARY 3.5. For any Gaussian integer 8 € Z[i], except 0, £1, +i, 2 and
1 £ ¢, there is a digit set D such that every Gaussian integer has a unique radix
representation of the form E;:ol e; B', e; € D. No such digit set exists for f = 2
and g =1=1.
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It follows from Eq. (3.2) that

T = lim A™™(D,);
n—ro0
so it should not be surprising that properties of the set Dy, on a large scale are
directly related to properties of the digit tile 7" on a small scale. The following
theorem is an example. A set S € R? is uniformly discrete if there is a bound r > 0
such that distinct z,y € S satisfy |z — y| > r. Note that, in this theorem, it is not
assumed that D is a digit set.

THEOREM 3.6. (Lagarias and Wang [LW2]) Assume that A is a real expanding
matriz with | det Al = m € Z and D a subset of RY with |D| =m and 0 € D. Then
the following statements are equivalent.

1. T:=T(A, D) is the closure of its interior and m(0T) = 0.
2. All m™ elements of Dy, are distinct and D is a uniformly discrete set.

We now consider in more detail a radix system, called the generalized balanced
ternary, which has applications to image processing. Consider a monic polynomial
flx) = 2% +as_127 1 + -+ ap € Z[z]. In the quotient ring Ay = Z[z]/(f) let
a = z+(f). Then A has the structure of a Z-module with basis (1, a, a?, ..., a%"1).
In other words Ay is a lattice which can be realized (in many ways) in R? by
embedding the d basis elements as d linearly independent vectors in R?.

If f(z) is irreducible over Z then, as rings, Ay = Z[z]/(f) = Z[a] where « is
any root of f(x) in an appropriate extension field of the rationals. For example, if
f(z) = 2® + 1 then the lattice A is the ring of Gaussian integers Z[i] with basis
(1,i) and can be realized as the square lattice in the complex plane.

Consider the special case f(z) = 1+z+22+ - +2% Let w =2+ (f). In
the ring Ag = Z[2]/(f) we have 1 + w + -+ - + w? = 0 and w®*! = 1. For the sake
of symmetry we take as a generating set for the lattice Ag the set (1,w,w?,...,w?)
although it is linearly dependent. Embed the lattice Aq in d-dimensional Euclidean
space by defining an inner product on pairs of basis elements (1,w,w?,...,w?) by

o 1 ifi=j
? 7Yy —
(“’w)_{ —Lifi#

In dimension d = 1 this is the integer lattice; for d = 2 it is the hexagonal
lattice; and for d = 3 it is the lattice that consists of the centers of the tiling of
space by truncated octahedra. In general it is the dual of the classical d-dimensional
root lattice Ag; so the weight lattice A% = Agq [CS]. Now let # = 2 —w and define
a linear expanding map

AB : Ad — Ad
by

Although not well-defined, a matrix for Ag with respect to the generating set
(1,w,w?,...,w?)is
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2 0 O 0 -1
-1 2 0 0 0
0 -1 2 0 0
Ag = . .
0 0 O 2 0
0 0 O -1 2.

Let
Dg = {eo + 1w + €2w® + - - + eqw? : € € {0,1}},

where not all ¢; = 0. Note that |Dg| = 2?1 — 1. It can be shown that D is a
digit set for Ag with respect to the lattice Aq. Hence (Ag, Dg) is a radix system for
lattice Aq, called the generalized balanced ternary (GBT). Moreover, if follows from
a variant of Theorem 4.9 that every lattice point in Ag has a unique representation
in the GBT.
In dimension 1
A =(3) D ={-1,0,1}.

This is a base 3 system classically called the balanced ternary. Every integer (posi-
tive or negative) can be uniquely expressed base three using the three digits (trits).
For d = 2 the digit set Dg is the subset of the hexagonal lattice consisting of the
origin and all 6" roots of unity. The corresponding tile T'(43, Dg) is shown in Fig-
ure 1. The GBT radix system has been suggested for spatial addressing of images
as a viable alternative to a rectangular grid - for both geometric reasons (the round
shape of the pixels) and algebraic reasons (the efficient algorithmic properties of
the radix system [GL, KVW, vR]).

4. Self-Replicating Tiling

Let A be an expanding integer matrix, D a digit set, and assume that the pair
(A, D) is basic. Section 2 concerns the self-affine tile T'(A, D). The term “tile” was
used, rather than “set”, because, given any self-affine tile 7', there always exists
a tiling of R? by translates of T. To see this, iterate functional equation (2.5) to
obtain

AMT) = | (T +a).
deD,

Since (A, D) is pure, 0 lies in the interior of A"(T"). Since A is an expansion, any
ball centered at the origin lies in A™(T") for some n. In the notation of (3.1), the
sets D1 C Dy C ... are nested because 0 € D and hence

Too ={T+d | d€ Dy} (4.1)

is a tiling of RZ.

In fact, T is a special type of tiling by digit tiles, called a self-replicating
tiling. A tiling 7 of R? by copies of a single tile is called self-replicating if, for some
linear expansion A, the expanded tile A(T) is, for each T € T, tiled by elements of
T. Note that the self-replicating property is a global property of the tiling, not
a property of the tile. This self-replicating property was investigated by Thurston
[Th] for more general tilings to be discussed in §10. The tiling by twin dragons in
Figure 6 is self-replicating; the image of each dragon under the mapping A is the
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union of two horizontally adjacent dragons. The following proposition is an easy
consequence of Eq. (2.5).

FIGURE 6. Lattice tiling by twin dragons.

ProOPOSITION 4.1. Given any basic digit tile 7', the corresponding tiling T is
self-replicating.

According to Proposition 4.1, for any basic digit tile T there is a self-replicating
tiling by translates of T'. The proposition does not imply, however, that this tiling
is by translation by the integer lattice, as is the case in Figure 6. A tiling 7 is a
lattice tiling of RY if T is a tiling by translation by a lattice, i.e., T = {T+x | v € L}
for some lattice L. Consider Example 4.1; the corresponding tiling 75, shown in
Figure 7 is not a lattice tiling.

FIGURE 7. Not a lattice tiling.
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EXAMPLE 4.1.
3 0
2= (03)
D = {(_17_3)7(_17_1)7(_171)7(07_2)7(070)7(072)7(17_2)7(170)7(172)}

The following theorem [V4] is central and gives ten equivalent conditions for
the existence of a self-replicating lattice tiling. All terms not yet defined will be
discussed after the statement of the theorem.

THEOREM 4.2. Let T = T(A, D) be a basic digit tile. Let T,, = F(")(T}) be the
approximating tiles, where Ty is the unit d-cube centered at the origin with edges
parallel to the azes. The following statements are equivalent. Limits are with respect
to the Hausdorff metric.

1. T :={T + x|z € Z% is a tiling of R%.

2. T :={T +x|x € Z% is a self-replicating tiling of R%.
3. m(T)=1.
4

. The characteristic function xr(x) is a scaling function of a multiresolution
analysis.

limy,_, o 0T, = OT'.

lim,,_, o 0T}, is not space filling.

Dy, = 7%

Every lattice point has a unique finite address.

Every lattice point in the ball B(A, D) has a finite address.
10. A(A4,D) < |det A].

© »®» N o

Condition (3) states that the Lebesgue measure of T is 1. This is clearly
necessary if statement (1) is to hold. The converse appears in [GH]. It is known that
m(T) is always an integer [LW 3], but is not always 1. For the tile of Example 4.1
the measure is 2. Figure 8, showing the first few approximations to this tile, may
provide insight into why the tile is “stretched.”

FIGURE 8. Digit tile with Lebesgue measure 2.

The equivalence of conditions (1) and (4) is due to Grochenig and Madych
[GM]. An important application of digit tiling is to wavelets, the construction of



14 ANDREW VINCE

orthonormal wavelet bases in R?. The multiresolution analysis machinery produces
an orthonormal wavelet bases of L?(R%). We refer the reader to [GM, Str] and
any number of introductory texts, for example [Ch], rather than elaborating on
wavelets in this paper.

Conditions (5) and (6) concern the boundary of the approximating tiles; proof
of their equivalence to the other conditions appears in [V4]. Condition (5) states
that the boundaries of the approximating tiles approach the boundary of the limit
tile in the Hausdorff topology. It is easy to see that this is not the case for the tile in
Figure 8. Condition (6) states that, if the conditions of Theorem 4.2 fail, then the
behavior of the boundary is indeed pathological; the limit of the boundaries of the
approximates is space filling - contains some open set. In the case of Example 4.1,
the limit is the whole tile T'.

Conditions (7) and (8) relate to Question 3.1 in §3. They state that every
lattice point x has a unique base A representation with digits D. In other words
@ = YV Ai(e;), e; € D. The proof of the equivalence of conditions (7), (8)
and (9) to the other conditions in [V1] relies on the concept of A-adic integer,
analogous to the classical p-adic integer, p a prime (see [Se] for background on the
p-adic integers). The set of A-adic integers is the completion of Z¢ with respect to
the metric induced by the norm

o] = ——
A= Taes AP

where v is the greatest integer such that » € A”(Z%). Analogous to the p-adic case,
there is a canonical representation of each A-adic number in the form

x:ZAi(ei), e; €D,
=0

Define the address of such an A-adic as
...€3€e2€e1€p.

It can be shown that, given a digit set D for A, each point in Z? has an address
that eventually repeats, in the same sense as an ordinary repeating decimal. A
lattice point is said to have a finite address if e,, = 0 for all n sufficiently large. In
fact, there is an easy algorithm to obtain the address of any lattice point x.

Algorithm (zo = z)

T, mod A(Z%)

Tni1 = ANz, —en)

€n

Moreover there is a computable bound on the number of iterations of this algorithm
sufficient to determine whether or not the lattice point has a finite address.

ExamPLE 4.3. In 1-dimension the 3-adic address, i.e., A = (3), of the integer
2 with respect to digit set {—1,0,4} is (=1)(4)(—1):
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rg =2 ep = —1
T =1 e1 =4
To = —1 es = —1
T3 =0 es = 0.

Note that condition (8) together with formula (3.2) imply that every point in
R?, except those on the overlap of two tiles in 7, can be uniquely expressed in the
form

€n...CLEY.E_1€_p "+ 1= Z A(e;), e; € D.

The representation of points on the overlap of two tiles is not unique; for example
for A =(10) and D ={0,1,...,9}, we have .999--- = 1.

Conditions (9) and (10) are algorithmic. They provide efficient methods to
check that all conditions in Theorem 4.2 hold. The number A(A4, D) in condition
(10) is the largest eigenvalue of certain easily computable matrix. A definition
and discussion of this matrix appears in §5. Condition (9) states that there is ball
B(A, D) centered at the origin, whose radius r(A, D) depends only on (A4, D), such
that, if every lattice point in B(A, D) has a finite address, then all lattice points
do. In the case that A is a similarity with expansion factor ¢, an explicit value of
the radius is easy to express:

max{|d| : d € D}
c—1 ’

r(A,D) =

Applying the formula for r(A, D) to Example 4.4, the only lattice point in B(A, D) is
the origin, which obviously has a finite address. By condition (9) in Theorem 4.2,
the corresponding lattice tiling is a self-replicating lattice tiling; it is shown in
Figure 9.

EXAMPLE 4.4.

2 1
EE
D = {(070)7(170)7(071)7(_170)7(07_1)}
1
r(A,D) = = .8090. ..
AD) = =—

It should be remarked that either condition (7) or (8) automatically implies
that (A4, D) is basic [V1]. In Example 4.5 there are 21 points in B(A, D) to check
using condition (9), including the point (—1,0). The algorithm gives the repeating
address (1,0),(0,0),(1,0),(0,0), ... for the point (—1,0), not a finite address. The
problem in this case is that (A, D) is not basic; it is not pure. As pointed out in
§2, there is a related basic pair (A’, D’) such that T'(A, D) and T'(A’, D) are the
same up to translation. Then T'(A’, D") does satisfy the conditions of Theorem 4.2.
The corresponding tiling is the twin dragon tiling in Figure 6, which is indeed a
self-replicating lattice tiling.
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FIGURE 9. Self-replicating tiling.

EXAMPLE 4.5.

1 -1
= (1)
D {(0,0), (1,0)}

1
AD) = —— =1+4++V2=24142...
r(4,D) i1

5. Dimension of the Boundary

For some well studied tiles, like the Twin Dragon in Figure 3, the Hausdorff
dimension of the boundary is known and has been computed by various means.
More recently Duvall and Keesling [DK] determined the Hausdorff dimension of
the boundary of a particular tile, the Lévy Dragon. In [Kees] Keesling showed that
the Hausdorff dimension of the boundary of any self-similar tile in R? is less than
d, but that this dimension could be arbitrarily close to d. This section outlines a
method due to Duvall, Keesling and Vince [DKV] for determining the Hausdorff
dimension of the boundary of any self-similar digit tile. After our results were
obtained we came across unpublished preprints by Veerman [Ve] and by Strichartz
and Wang [SW] which contain similar results obtained by different methods. The
only condition that is needed on the digit tile T' for our formula in Theorem 5.1
is that one of the equivalent conditions given in Theorem 4.2 holds for 7. This
is not unexpected in light of conditions (5) and (6) of that theorem. The method
given below either determines precisely the Hausdorff dimension of the boundary
of T or it determines that condition (10) of Theorem 4.2 fails. The problem of
determining an exact formula for a self-affine (not necessarily self-similar) digit tile
remains open.

Recall the definition of Hausdorff dimension; an introductory treatment can be
found, for example, in [F1]. An e-cover of a set X C R? is a collection of sets of
diameter at most € such that X is contained in their union. Let |U| denote the
diameter of the set U, and let s be a non-negative number. For any € > 0 define
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(oo}
H?(X) =inf {D_|U° : {Ui} is an e-cover of X}.
i=1
As € decreases, the collection of possible covers is reduced; hence H?(X) decreases.
Define the s-dimensional Hausdorff measure of X by

H%(X) = lim H%(X).

e—0

It is easy to show that there is a critical value of s at which this limit jumps from
0o to 0. Define the Hausdorff dimension by

dimyg(X) = inf{s : H*(X) =0} = sup{s : H*(X) = oo}.

To state the main result, the contact matrix, first defined by Grochenig and
Haas [GH], is introduced. Given an expanding integer matrix A and digit set D
for the integer lattice in R?, a set N = N(A, D) of integer lattice points, called
the neighborhood for (A, D), is used to index the rows and columns of the contact
matrix.

The neighborhood N(A, D) is defined as follows. Let {ej,...,e;} denote the
canonical basis of R? and let Ng = {0} U {%e1,...,+es}. Then N(A, D) is the
unique smallest finite set N C Z? such that Ngo C N and D+ N C A(N) + D. The
neighborhood can easily be computed using the following algorithm, and it is easy
to show that the algorithm terminates after a finite number of steps. Because D
is a set of coset representatives of Z4/A(Z?), for any lattice point y the equation
Ax + d = y has a unique solution pair (z,d), where # € Z% and d € D.

Algorithm

N = Ny
Repeat until the two sets are equal:
N+ NU{reZ4 Az +d =y forsomed € D and y € D+ N}.

For each x € N and d € D, let x4 denote the unique lattice point such that
d+x € Axy+ D. By the definition of N we have 4 € N. Let C’ be the k x k matrix
whose rows and columns are indexed by the elements in N and whose entries are
as follows. For z,y € N

Coy = {d € Dfzq =y}|.
By convention let the first index of C' correspond to the element 0 € N. Note that
coo = |D| and ¢oy = 0 for y # 0. Thus the first row of C' consists of all zeros
except for one entry. Let C' denote the (k— 1) x (k— 1) matrix obtained from C’ by
removing the first row and column. Call C the contact matriz for the pair (A4, D).
(In [GH] it is actually C" that is referred to as the contact matrix.)

According to the Perron-Frobenius Theorem for non-negative matrices, C' has
a real eigenvalue A such that, for any other eigenvalue p, we have A > |u|. In other
words, the spectral radius of C' is an eigenvalue.

THEOREM 5.1. (Duwval, Keesling and Vince [DKV]) Let T = T(A,D) be a
self-similar digit tile where A has expansion factor ¢ and the contact matriz has
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largest eigenvalue A := A(A, D). Under any of the conditions in Theorem 4.2 we
have
log A

di T) = .
iy (0T) log c

Examples. Twin dragon. The dimension of the boundary of the Twin Dragon
(Example 2.1 and Figure 3) has been calculated by various means. Using our

method the neighborhood is the following set of lattice points:

N= {(070)7 (07 1)7 (170)7 (17 _1)7 (07 _1)7 (_170)7 (_17 1)}

Ordering the elements of N \ {0} as above (clockwise around a hexagon) the con-
tact matrix C', computed using the definition, is the following integer matrix with
cyclical structure.

1100 00
001 0 0O
000 2 00
¢= 000110
0 000 01
2000 00

The characteristic polynomial is easy to compute because of the near diagonal
structure of the matrix:

det(C—A) =M (1=XN? =4 =(A+1(\ =22 +2)(\* = \* = 2).

So the largest eigenvalue of C' is the real root of A* — A\? — 2. Hence the Hausdorff
dimension of the twin dragon is

1
08\ 1593627
log v/2

Gasket. For the Gasket (Example 2.2 and Figure 4), the neighborhood N is
again in a hexagonal pattern:

dimH 8T =

N= {(070)7 (170)7 (17 1)7 (07 1)7 (_170)7 (_17 _1)7 (07 _1)}

The contact matrix is a cyclic matrix with three ones in each row:

1100 01
1110 00
011100
¢= 001110
000111
1 00 011

Hence the Perron-Frobenius eigenvector, the unique eigenvector with positive en-
tries, is the all ones vector. The corresponding eigenvalue is A = 3.

1
dimpy 9K = 1283 _ 1 5849625 ..
log 2
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Figure 10. Lander.

Lander. The lander is the digit tile T(A,D) where A = < g g ) and

D = {(07 0)7 (]-7 1)7 (]-7 _1)7 (270)7 (_]-7 _2)7 (37 _2)7 (_172)7 (37 2)7 (173)} The di-
mension of the boundary of the Lander in Figure 10 is somewhat greater than
for the other examples.

dimpy 0T ~ 1.913624

Sketch of the proof of Theorem 5.1. Let T be the unit cube centered at the ori-
gin with edges parallel to the axes and let T}, = F(")(T}) denote the n*" approxima-
tion to the tile T := T'(A, D) as given in Eq. (2.3). Then T, is the non-overlapping
union of copies of cubes of edge length 1/c¢™. For each lattice point, consider the
unit cube centered at that point. Hence the neighborhood N := N(A, D) can also
be regarded as the non-overlapping union of cubes. Let [V, denote the neighbor-
hood N contracted by a factor of 1/¢™. Then it can be shown by induction that the
sum of the elements in the n'"® power C™ of the contact matrix C' is approximately
equal to the number a,, of small cubes ¢ in T}, such that the neighborhood, centered
at ¢, lies both inside and outside of T},. In other words, «, counts the number of
small cubes in T}, “close” to T,,. When we use the term “approximately” here we
mean that there are upper and lower bounds of one quantity by a constant multiple
of the other quantity, where the constants do not depend on 7.

What simplifies the calculation of the Hausdorff dimension of 97T is that, for
the boundary of a self-similar digit tile, the Hausdorff dimension coincides with the
box-counting dimension. This is a consequence of a result of Falconer [F2] on sub-
self-similar sets. Consider the collection of cubes in the e-coordinate mesh of R%.
For a given set X € R? let 5.(X) denote the number of such cubes that intersect
X. The boz-counting dimension is defined by

dsz(X) = lim M

e—0 —loge
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Letting € = 1/c™, it can be proved, in the case of our digit tile T', that the number
of small cubes that intersect 0T is approximately equal to the number of small
cubes a, in T, that are “close” to 9T;,. Therefore

log a, . log|C™
dimy (OT) = dimp(0T) = lim ‘2827 _ pipy 1081C"1
n—oo nloge n—oo mlogc
where |C| denotes the sum of all the entries in a matrix C. What completes the
theorem is the fact that the largest eigenvalue of any nonnegative matrix C is given

by the formula A(A4, D) = lim,,_, |C™|*/". O

6. Construction of the Boundary

The main result of this section is an explicit correspondence between two known
methods for constructing digit tiles in the plane. The IFS method produces the tile
itself; the recurrent set method, due to Dekking [Del, De2], produces the boundary
of the tile. The proof of the theorem in this section appears in [V4]. Another
connection between the IFS and recurrent set method appears in Bedford [Bel,
Be2] in the context of constructing Markov partition boundaries for hyperbolic
toral endomorphisms. Kenyon [Ke3] uses the recurrent set method in a setting
discussed in §10.

The IFS “data” from which a digit tile 7' = T'(A4, D) is constructed is simply
the expanding matrix A and the digit set D. The pair (4, D) will be referred to as
tile data if

1. A is an expanding 2 X 2 integer matrix and
2. D is a set of coset representatives of Z2/A(Z?).

We use an integer matrix to keep the exposition simple. As explained in §2, all
results are easily extended to the case of a tile based on a general lattice.

The “data” for the recurrent set method is a free group endomorphism ([Lo]
is an introductory text on combinatorial group theory). Let G := G (a,b) be the
free group on two generators a and b. Thus G consists of all words in the letters
{a,b,a=t, b1}, including the empty word e. The operation is concatenation, and
the only relations are aa ™! = e = a'a and bb™! = e = bb~!. Consider an
endomorphism o : G — G. Note that ¢ is determined by its action on a and b.
Define a matrix

A = Mgq Map
- =
Mg My )
where mgp is the number of occurrences of a in o(f), counting a~ ' as occurring
—1 time. Here o and [ are each either a or b. This process is called abelianization.

1

EXAMPLE 6.1. Twin dragon.

ola) = ab
o) = a7 'b

1 -1
= ()
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EXAMPLE 6.2. Gasket.
ola) = a ‘b tabaa
o) = ba ‘ba

2 0
v (53)

Denote by f : G — R? the homomorphism determined by f(a) = (1,0) and
f(b) =(0,1). Let w = ajz...a, be any word in which each «; is an element of
{a,b,a=1,b71}, and consider the sequence of points z; € R, i = 0,1,...,n, given
by o = (0,0) and z; = f(a1as...qa;) = fla1) + f(az) + -+ f(ai), i > 1. Join
the points zg,x1,...,x, sequentially by line segments to obtain a polygonal path
p(w) and let

K, = Kn(0) = A;"p(o" (abab1)). (6.1)

Basically the path is obtained by traveling one unit left or right for an occurrence
of a or a1, resp., in the string and one unit up or down for an occurrence of b or
b=, resp.; then the path is contracted by A=". It is known [Del] that, if 4, is
expanding, then the sequence {K,} converges with respect to the Hausdorff metric
to a closed curve

K :=K(o) = lim K,.
n—o0

Some line segments may be traversed by K,, more than one time. We impose the
convention that each traversal of a line segment in one direction cancels a traversal
of that line segment in the opposite direction. Thus K, can consist of several closed
curves, and hence K, and also K, may be disconnected. It can happen that the
winding number of K, about a point is more than 1. In this case there is no well
defined region enclosed by K,. The following result makes this situation easy to
detect [V4].

LEMMA 6.3. If the winding number of K| about every point of R2 N\ K, is either
0 or 1, then the same is true of K,, n > 1.

The endomorphism ¢ : G — G will be referred to as boundary data if

1. A, is expanding, and

2. the winding number of K about every point of R? \ K| is either 0 or 1.
From Eq. (6.1) the path A(K (o)) has sides that are parallel to the axes and joins
integer lattice points. Let D, be the set of lattice points that are the lower left
corners of unit squares that lie inside A(K;(0)).

THEOREM 6.4. (Vince [V4]) The mapping © : 0 — (As, Dy) induces a bijec-
tion from the collection of all boundary data to the collection of all tile data such
that

0T (A, D,) = Ky(0).

Moreover, if any of the conditions in Theorem 4.2 hold, then

0T (A,,D,) = K(0).
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F1GURE 11. Approximations to the boundary of the twin dragon.

FIGURE 12. Boundary of the gasket.

The bijection is algorithmic and was used to draw Figure 11, which gives the
first approximations to the boundary of the twin dragon corresponding to the ap-
proximations in Figure 3 drawn by the IFS method. The endomorphism is that of
Example 6.1. Figure 12 shows the boundary of the topologically more complicated
gasket originally pictured in Figure 4. The endomorphism is that of Example 6.2.

7. Lattice Tiling Problem and Aperiodic Proto-tile Problem

One part of Hilbert’s 18" problem asks whether there exists a polyhedron,
copies of which tile space, but which is not the fundamental region of a group
of isometries. In other words, the symmetry group of the tiling is not transitive
on tiles. Examples were discovered early on, a polyhedron in 3 dimensions by
Reinhardt [Re] in 1928 and a convex pentagon in 2 dimensions by Kershner [Ker]
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in 1968. All known examples, however, are periodic. A tiling of R? is periodic if its
symmetry group contains translations in d linearly independent directions.

A strong version of Hilbert’s question is whether there exists a single tile which
admits only nonperiodic tilings. A nonperiodic tiling is one that admits no transla-
tions. The Penrose tiles comprise a set of two tiles, copies of which tile the plane in
uncountably many ways, but no such tiling is periodic. A set of proto-tiles, copies
of which tile R? but only nonperiodically, is called aperiodic. The Schmitt-Conway-
Danzer (SCD) tile [Da, Sch], for example, is a single, convex, aperiodic tile in R?
(under the restriction that mirror image copies of the proto-tile are not allowed and
screw symmetry does not count as a periodic symmetry). The SCD tile provides a
solution to the above question, but the following questions remain open.

QUESTION 7.1. Does there exists a single aperiodic proto-tile in R??

QUESTION 7.2. Does there exist an aperiodic proto-tile that tiles R? by trans-
lation?

The answer to Question 7.2 in dimension 1 is no [LW1]. Venkov [Ven] answered
Question 7.2 in 1954 in any dimension for the case of a convex proto-tile, a result
independently rediscovered by McMullen [McM]. Their result: if a convex T tiles
R? by translation, then there is a lattice tiling of R? by copies of T'. The same result
is true in dimension 2 for polyominoes! [BN, KV, WvL]. However, the Venkov-
McMullen result is not true for non-convex tiles in general. The 1-dimensional tile
[0,1] U [2, 3] allows a a tiling, but no lattice tiling of R. Szabé [Sz] constructs a
3-dimensional, centrally symmetric, star polyhedron whose translates tile R, but
admits no lattice tiling of R3. A lattice tiling is periodic, but a periodic tiling is not
necessarily a lattice tiling. So Question 7.2 remains unresolved in the non-convex,
non-polyomino case.

A natural place to seek an example that might affirmatively answer Question 7.2
is among the digit tiles. Any digit tile 7" admits a tiling by translation as given by
Eq. (4.1) in §4. However this tiling is sometimes not periodic, as in Example 4.1 and
Figure 7. The tile in Figure 7, however, does admit a lattice tiling - by translation
by the lattice generated by vectors (1,0) and (0,2). Grochenig and Haas [GH]
conjectured that every digit tile admits a lattice tiling. What makes the conjecture
difficult is the existence of tiles, as in Example 4.1, that do not satisfy the conditions
of Theorem 4.2. The lattice tiling conjecture was recently verified by Lagarias and
Wang; so it is not possible to find an aperiodic digit tile. Note that the tiling
guaranteed by their theorem is not necessarily self-replicating in the sense of §4.

THEOREM 7.3. (Lagarias and Wang [LW4]) Every digit tile T admits a lattice
tiling of R% for some lattice L C Z.°.

For remarks on Question 7.1 see Penrose’s paper [P2]. Although there is no
known single aperiodic proto-tile in R?, the analogous problem for coverings of
R? is solved. Moreover, the result has received considerable attention recently
because of its implications for the structure of real quasicrystals. Consider the
marked regular decagon on the left in Figure 13. This proto-tile is used to cover
the plane with overlap allowed, but only according to the following overlap rule:
two decagons may overlap only if shaded regions overlap and the overlap area is
greater than or equal to the area of the overlap hexagon in the center illustration in

LA polyomino is a rookwise connected tile formed by joining unit squares at their edges.
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FiGURE 13. Overlapping marked decagons.

Figure 13. The figure shows the two possible sizes of the overlap. Gummelt [Gu]
proved that every covering by marked decagons that satisfies the overlap rule is
nonperiodic. Moverover, by dissecting each decagon into Penrose acute and obtuse
triangles (Figure 15), such decagon coverings can be put into correspondence with
the Penrose tilings.

Jeong and Steinhardt [JS] subsequently proved that both the Penrose matching
rules for Penrose tilings and the overlap rule for decagon coverings can be replaced
by a condition on the density of certain clusters. More precisely, the Penrose
tilings are the tilings by Penrose rhombs for which the density of certain clusters of
tiles (clusters whose union is essentially the Gummelt decagon) is maximum. This
result led Jeong and Steinhardt to hypothesize that quasicrystals are formed from
a single type of atomic cluster that can share atoms with neighboring clusters and
that quasicrystals maximize cluster density. Evidence for such a model recently
came from electron microscopy [St]. Electron micrographs of Al73NigCos show
striking similarities to the decagon coverings in Gummelt’s paper.

8. Crystallographic digit tiling

A crystallographic group T is a discrete, cocompact group of isometries of Eu-
clidean space. Discrete means that any ball contains at most finitely many points
in the T-orbit of any point. Cocompact means that the quotient space R? /I is
compact. A lattice group, the group of translations by the points of a lattice, is
a special case of a crystallographic group. A fundamental theorem of Bieberbach
states that it ' is a d-dimensional crystallographic group, then I' contains a trans-
lation subgroup, a subgroup generated by translations in d independent directions.

Under any of the conditions of Theorem 4.2 a self-replicating digit tiling is a
lattice tiling. This means that

T={yT)|~eL}
where L is a lattice group. But a lattice group L is only one of 17 crystallographic
groups in the plane and only one of 230 crystallographic groups in 3-space. This
section briefly describes a generalization, due to Gelbrich [Gel], from lattice tiling
to crystallographic tiling. A crystallographic tiling is of the form

T={yT)|~yel},
where I is a crystallographic group.?
The basic construction of digit tiles given in §2 is based on a lattice L. The
linear expansion A maps L into itself; so ALA™! is the subgroup of translations by

2The term “crystallographic” is often used interchangeably with the term “periodic.” A
crystallographic tiling is periodic by Bieberbach’s theorem, but a periodic tiling is not necessarily
crystallographic. The symmetry group of a periodic tiling may not act transitively on the tiles.
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points of the sublattice A(L). A set of coset representatives of L/ALA™! consists
of translations by a digit set D. To generalize, let I' be any crystallographic group;
let A : R? — R? be a linear expanding map such that ATA™" C T' and let
D = {dy,...,dn} be a set of right coset representatives of I'/ATUA~!. Then the
contractions
filx) = A7 o di(x)

provide an iterated function system with a unique attractor, say 7 := T'(T', A, D).
The analogue of Theorem 2.5 holds: T'(T', A, D) is a compact set that is the closure
of its interior. Call T'(T', A, D) a crystallographic digit tile.

FIGURE 14. Crystallographic digit tilings: sea horse and coral reef.

Using the same reasoning as for ordinary digit tiles, every crystallographic
digit tile in R? admits a tiling of R? that is self-replicating in the sense of §4.
Some crystallographic tilings, courtesy of Gelbrich and Giesche [GeG], are shown
in Figure 14 and are reminiscent of fractalized Escher prints. Analogous to (4.1) it
can be shown that every self-replicating crystallographic tiling is of the form

T ={y(T)]y€To},
where T'g is a subset (not necessarily a subgroup) of T.
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The analogous result to Theorem 7.3, that every crystallographic digit tile
admits a crystallographic tiling seems likely, but is open as far as we know. The
issue is, given a crystallographic tile T', whether there exists a tiling {y(T) : v € I'o}
where [y is a crystallographic group. Generalizing the results of §4, §5 and §6 to
crystallographic tiles would also be of interest.

9. Hierarchical tiling

All tilings in §1 - §8 are by copies of a single tile. We now turn to tilings by
copies of tiles taken from a finite set of proto-tiles. Many of the concepts that occur
in the remainder of this paper are valid in a general context; so we introduce the
notions of hierarchy and hierarchical tiling and frame the theory in this setting.
Hierarchy is the basic notion; the tilings will be produced automatically from the
hierarchy.

9.1. Hierarchy. Let P = (Fp, P1, P»,...) be a sequence of finite proto-tile
sets. Define inradius (P,) to be the largest r such that each proto-tile in P,
contains a ball of radius r. Call P a hierarchy if the following three conditions are
satisfied.

1. lim,,—, o inradius(P,) = oco.

2. Each tile in P,4; has a unique subdivision into the non-overlapping union

of isometric copies of tiles in P,.

The subdivision rule in condition (2) must be unique in the sense that each tile in
P, ;1 can be subdivided into the non-overlapping union of isometric copies of tiles in
P, in a unique way. (If there is ambiguity, for example if a proto-tile has nontrivial
symmetry, then it is common to color some points in the tiles so that colors must
match. In the IFS approach discussed in §10 this coloring is unnecessary.) Let S
be an non-overlapping set of tiles in R? taken from P,. Using the subdivision rule
there is a unique set Sy of tiles from P, ; obtained by subdividing each tile in
S according to the subdivision rule. Repeat to obtain from S the k" subdivision
Skys k < n, by tiles in P, .

3. For any given m, each tile in P,, appears in the (n —m)! subdivision of
each tile in P, for all n sufficiently large.

The square hierarchy example in Figure 15 shows the first three proto-tile sets
and the first and second subdivisions. (Each proto-tile set consists of a single tile.)
The second hierarchy in Figure 13 is by acute and obtuse Penrose triangles. Each
proto-tile set consists of two tiles. The second subdivision is shown. (It can also
be considered as the fourth subdivisions in the finer hierarchy shown in [GS, p.
540].) To insure uniqueness of the subdivision rule, the vertices of the triangles
should be appropriately colored, as is usually done for the Penrose tiles. In both of
these examples the proto-tile sets Py, P, ... have the same cardinality. Moreover,
corresponding tiles in P,, and P,,41 are similar, the ratio being 2 in the case of the
squares and the golden ratio 7 in the case of the Penrose tiles. (These are examples
of what are commonly called local inflation rules). In general, this does not have
to be the case for a hierarchy.

9.2. Hierarchical tiling. A tiling by copies of tiles taken from a proto-tile
set P will be called a P-tiling. A patch of a tiling is a subset of tiles whose union
is a topological ball. The definition of hierarchy concerns the proto-tile sets, not
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FIGURE 15. Square and Penrose hierarchies.

tilings by these proto-tiles. Now define a tiling 7 to be hierarchical if there exists
a hierarchy Py, Py, P, ... and a sequence 7o, 71, T2, - .. of tilings with 7o = T such
that

1. T, is a P,-tiling for all n.

2. T, is the subdivision of 7,41 for each n.

3. Bach patch in 7 appears in the n'® subdivision of some tile in P,, for n
sufficiently large, n depending only on the size of the patch.

The last condition is to eliminate from consideration tilings such as the following.
Combine the square tiling of the left half-plane and the square tiling of the right
half-plane offset slightly along a vertical “fault” where the two half-planes meet.

If T is a tiling with hierarchy P, then T will be referred to as a P-tiling. We also
use the terminology P admits the tiling 7. Note that if P = (Py, P1, P>,...) is a
hierarchy then so is any infinite subsequence P’ = (P, P;1, Pi2 . . . ) with the obvious
subdivision rule coming from the subdivision rule for P. Moreover, if Py = Py,
then a tiling 7 is a P-tiling if and only if 7 is a P’-tiling. Such hierarchies P and
P’ will be considered equivalent.

If, for every P-tiling T, the sequence Ty, T1, Tz, . . . is uniquely determined, then
we say that P forces uniqueness. The hierarchy of squares in Figure 15 does not
force uniqueness; for the tiling 7 of the plane by squares, there are infinitely many
ways to choose the sequence of tilings 7,71, 72,.... The Penrose hierarchy does
force uniqueness on any Penrose tiling of the plane by thick and thin triangles. In
other words, the subdivision rule for the Penrose hierarchy is locally invertible; the
subdivision rule for the square hierarchy is not. If the hierarchy for a tiling forces
uniqueness, then the tiling is commonly said to satisfy the unique composition
property or the local inflation/deflation property.
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A tiling T is of finite type if, for any positive number r, there are at most
finitely many patches, up to congruence, within a ball of radius r. A tiling 7 has
the local isomorphism property if, for any patch Q of T, there is a number R such
that any ball of radius R contains, up to congruence, a copy of Q. Two tilings T;
and 7Ty are said to be locally isomorphic if every patch of 71 can be found in T3
and vice versa. Local isomorphism is an equivalence relation.> Nonperiodic tilings
that are both of finite type and satisfy the local isomorphism property have been
referred to as quasiperiodic. Since the term quasiperiodic has multiple definitions
in the literature we will not use it.*

THEOREM 9.1. Let P be a hierarchy.

1. Every P-tiling is of finite type.

2. Every P-tiling has the local isomorphism property, and any two P-tilings are
locally isomorphic.

3. If P forces uniqueness, then every P-tiling is nonperiodic.

Proor. Let P = (Py, P1, P»,...) be the hierarchy and (7o, 71, 72, - . . ) the cor-
responding sequence of tilings with 7o = 7. By condition (3) in the definition
of hierarchical tiling, any ball of radius r in a P-tiling 7 is contained in the k*?
subdivision p;) of some tile p € Py, where k depends only on r. Since there are at
most finitely many configurations within the k' subdivision of the tiles of Py, the
finite type property is verified.

To verify the local isomorphism property, let Q be a patch in 7. Again, Q
appears in the k*" subdivision P(x) of some proto-tile p € Py. But by condition (3)
in the definition of hierarchy, the proto-tile p, in turn, appears in the subdivision
of each tile in P, for n sufficiently large. Finally, since the tiles are compact, there
is a number R, depending only on n, such that any ball of radius R contains some
tile in 7,. Therefore any ball of radius R contains Q. The same reasoning shows
that any two P-tilings are locally isomorphic.

Agsume that P forces uniqueness, and assume, by way of contradiction, that
T admits a translational symmetry. This induces a translational symmetry of 7i;
otherwise uniqueness of 77 is violated. Repeating this argument implies that, for
each n, there is a translational symmetry of 7,. But this is impossible because
inradius (P,,) = oo by condition (1) in the definition of hierarchy. O

Note that, for the set P of Penrose tiles, the standard matching rules guarantee
that every P-tiling is a P-tiling. Since the Penrose hierarchy forces uniqueness, it
follows from Theorem 9.1 that no P-tiling is periodic. In this case we call P an
aperiodic set; no tiling by copies of tiles in P is periodic.

So far it has not been assumed that a given hierarchy P = (P, Py, ...) admits
even a single tiling. The existence of P-tilings is now addressed. If p, € P, and
Pn+1 € P41 then, in accordance with the subdivision rule, p,, can possibly appear

3Concerning terminology in the literature, two tiling in the same local isomorphism class
are sometimes called locally indistinguishable, and a tiling with the local isomorphism property is
sometimes called repetitive. Another equivalence relation among tilings, mutual local derivability,
will not come into play in this paper. We use the terms “finite type” and “local isomorphism”
with respect to congruence. Analogous versions with respect to translations are also often used.

4This paper does not discuss the well known projection method for constructing “quasiperi-
odic” point sets. It is interesting to note, however, that there exists such sets for which the window
system can be interpreted as a self-similar tile with fractal boundary; see [LGJJ].



DIGIT TILING OF EUCLIDEAN SPACE 29

several times in p,4; (or not at all). Let S(p,,pn+1) be a set of symbols denoting
the positions of p, in the subdivision of p,41. If p, does not appear in p,41,
then S(py,pn+1) is empty. Consider any sequence C' = (co,c1,...) where each
¢n € S(pn,pnt1) for some p, € Py, ppt1 € Ppy1 and, if ¢—1 € S(¢n-1,¢,) and
¢n € S(pn,Pn+1) then ¢, = p,. Construct a tiling from C' as follows. Start with
Qo := po; Qo is embedded in the subdivision Q; of tile p; in position co; p1, in
turn, is embedded in the subdivision Qj of ps in position ¢;. Continue in this way
to obtain a nested sequence Qp — Qy < Qo < ... of patches. The union Un Qn
is a partial tiling. We use the term “partial” because the union may not be all
R?. Call two such sequences C' and C' equivalent if there is an integer k such that
the sequences C and C' agree after the first k& terms. Because of the uniqueness
of subdivision, equivalent sequences yield the same partial tiling up to congruence.
Call an equivalence class of sequences a code for the tiling it produces. So there is
a well-defined mapping from the set of codes onto the set of partial P-tilings. (The
mapping may not be one-to-one; the square tiling of the plane, for instance, has
infinitely many codes.)

If, in condition (3) in the definition of hierarchy, it is required that each tile in
P, appears in the interior (not intersecting the boundary) of each tile in P, then
we call the hierarchy interior. The following result is surely known; in particular it
has long been known for the Penrose hierarchy [GS].

THEOREM 9.2. 1. If a hierarchy P is interior, then P admits (full) tilings.

2. If P forces uniqueness, then there is a bijection between the set of codes and
the set of partial tilings (up to isometry). In particular P admits uncountably
many partial tilings (uncountably many full tilings if P is interior).

ProoF. Concerning (1), the property of being interior insures that for some
code the union |J,, @, described above covers all R?, hence producing a full tiling.

Concerning (2), given a P-tiling T, any code C(T) = (co,c1,...) for T is
obtained as follows. Choose an arbitrary tile Ty € T, where Tj has proto-tile type
po, Then Ty is contained at position ¢p in a unique tile 77 of proto-tile type p; at
the next level. In general T, of type p, is contained at position ¢, in a unique
tile of type ppi1. Moreover if C' and C' are both codes for 7 then they must be
equivalent because, any two initial tiles in 7 are contained in the same single tile
at a sufficiently high level.

Because of condition (1) in the definition of hierarchy, there are at least two
choices for the next embedding at infinitely many stages. So there are uncountably
many codes, hence uncountably many tilings. O

The code for the Penrose tiling by acute and obtuse triangles can be denoted
by binary digits 0 or 1 in such a way that each partial tiling is given by a unique
binary sequence which contains no subsequence 11. (This code is with respect to the
finer hierarchy mentioned in reference to Figure 13.) Every such binary sequence,
except (000...), (10001000...) and (00100010001 ...) yields a tiling of R?. The
exceptions yield partial tilings which can easily be extended to full tilings. Hence by
Theorem 9.2 there is a bijection between the set of codes and set of Penrose tilings.
The Penrose tiling with code (000...), called the cartwheel, has been singled out in
the literature. For example it is shown in [GS] that, except for seven exceptions,
every tile in the cartwheel tiling lies in a patch of tiles whose symmetry group is
the dihedral group Ds. A special case of Theorem 10.1 in the next section implies
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the surprising property that the cartwheel is the unique Penrose tiling 7 for which
an expansion by the golden ratio sends each tile in 7 to the union of tiles in 7T .

10. Self-affine and Self-similar tiling

The basic concept in §9 is a hierarchy P. From a given hierarchy, tilings
are produced according to Theorem 9.2, infinitely many in the case that P forces
uniqueness. This section concerns two special types of hierarchies, self-affine and
self-similar, and their associated tilings. After defining self-affine and self-similar
hierarchy (§10.1), a few important results concerning the associated tilings are pre-
sented (§10.2). An alternative approach based on graph iterated function systems
is given in §10.3. Examples appear in §10.4.

10.1. Definitions. Let A : R? — R? be a linear expanding map. Let P =
{T1,T5,...,Tn} be a finite set of proto-tiles, and let

P, ={A"(p)|p € P} (10.1)

The subdivision rule for the first level of a hierarchy P = (P, Pyi,...) is given
explicitly as follows for each ¢ = 1,2..., N:

AT) = a5(1y), (10.2)

where the union is non-overlapping with indices j = 1,2,..., N and “multiplicities”
k=1,2,...,k(i,7), and each gf”j is an isometry. The functional equation (10.2)
states that each large tile A(T};) is the non-overlapping union of copies of the small
tiles T%,...,Tn. In this union, each tile of type T} can appear one or more times
(k(i,7) > 1) or not at all (k(z,5) = 0).

To define the subdivision rule on P, for n > 1, make the following assumption:

Ao gfj o A~ is an isometry for all i, j, k. (10.3)

Assumption (10.3) allows Eq. (10.2) to be iterated to obtain a subdivision rule

at every level. The matrix M = (k(4,j)) of multiplicities from (10.2) is called

the substitution matriz for the subdivision. Thus k(7, 5) is the number of times T}

appears in T;. Condition (3) in the definition of hierarchy in §9.1 is equivalent to

some power of M being strictly positive, i.e., M is what is called a primitive matriz.

If this is the case P satisfies all three conditions in the definition of hierarchy.
Agsumption (10.3) holds if either

1. g is a translation for each i, j, k, or

2. A is a similarity.
In case (1) the hierarchy P will be called self-affine and in case (2) self-similar. If
both (1) and (2) hold we call the hierarchy translationally self-similar. Let P, be
as in Eq. 10.1 and let P',, = {A""(p) | p € P}, where A’ = ¢ o A for some isometry
¢. Note that P = (P, Py,...) and P’ = (P}, P{,...) are the same hierarchy. In
particular, in the self-similar case it can be assumed that A(z) = cx where ¢ > 1.
In either case, the remarks in §9.2 imply that replacing A by ¢ o A®, where ¢ is an
isometry and s any positive integer results in an equivalent hierarchy as defined in
§9.2.

A P-tiling will be called self-affine if P is a self-affine hierarchy and self-similar
if P is a self-similar hierarchy. It is unfortunate that the term “self-similar” has
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slightly different definitions in various publications on the subject. The definition
of self-similar in [So2], for example, assumes that both conditions (1) and (2) hold,
translationally self-similar in our terminology. A self-similar tiling in [Ke3, Sol,
Th] has an additional property we will call special. A self-affine or self-similar tiling
T is special if the image A'(T) is, for any T" € T, the union of tiles in 7. Here
A’ can be any linear map of the form ¢ o A, which, as discussed in the paragraph
above, results in a hierarchy equivalent to the original hierarchy. This definition of
special is a direct generalization from §4 of the term self-replicating; in that case
s=1.

10.2. Some results. In this section several miscellaneous results on self-affine
and self-similar tilings are presented. Let P be either a self-affine or a self-similar
hierarchy and denote by p the set of all P-tilings. The subdivision operator
o : Qp — Qp is defined as follows. Using the notation A(7T) = {A(T) | T € T}
define

o(T) = ATy,

the first subdivision of the inflated tiling A(7). According to the next result, the
special self-affine and self-similar tilings are the ones with a repeating code.

THEOREM 10.1. The following statements are equivalent for a self-affine or
self-similar tiling T .
1. T is a fized point of the subdivision operator o for some positive integer s.
2. There is a repeating code for T of the form
C(T)=(c1,¢2,---,Cs,C1,C2y vy Csynv.)-
3. The tiling T is special.

PRrROOF. (1) <= (2) First, ¢°(7) = T if and only if the two tilings have a
same code (up to equivalence), say (c1,ca,...). Butif C(T) = (¢1,¢2,...), then, by
the definition of the subdivision operator, C'(o°(T)) = (¢}, ¢4, ..., ¢ c1,¢0,...) for
some symbols ¢, ¢, . . ., c,. Hence, by the definition of equivalent codes, o5(T) = T
if and only if ¢i4s = ¢ for k sufficiently large. This is the case if and only if ¢(7T')
repeats with period s.

(1) <= (3) The tiling T is a fixed point of the subdivision operator ¢° if and

only if A%(T)(s) = ¢(T) for some isometry ¢. This is the case if and only if, for
each tile T € T, we have A%(T) = Uf‘zl ¢(T;) for some tiles T; € T. This equation
is equivalent to (¢ o A%)(T) = Ufil T;; in other words, 7 is special. O

COROLLARY 10.2. Every self-affine or self-similar hierarchy admits a special
tiling.

PROOF. Property (3) in the definition of the hierarchy, i.e. that the substi-
tution matrix is primitive, implies that the hierarchy admits a tiling whose code
repeats. The result then follows from Theorem 10.1. |

The following result concerns the unique composition property defined in §9.2.
The third part of Theorem 9.1 states, in particular, that a self-affine tiling with
the unique composition property (local inflation/deflation) must be nonperiodic. A
proof of the converse in the 1-dimensional case appeared in [Mo]. The converse is
true in general.
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THEOREM 10.3. (Solomyak [So2]) If a self-affine tiling is nonperiodic then it
has the unique composition property.

The next result concerns tile frequencies. Recall, for example, that the fre-
quencies of the two Penrose tiles in any Penrose tiling exist and the ratio of the
two frequencies is the golden ratio [GS]. The existence of uniform frequencies of
patches in cubes was established by Lunnon and Pleasants for substitution tilings
by tiles that are polytopes [LuP]. In general, let Q be a patch in a tiling 7 . Let
Lo(X) denote the number of translates of Q in a region X C R?. The frequency
freq(Q) of the patch is defined as the following limit, if it exists,

Lo(Xn
lim ﬂj
n—oo Vol(Xy,)
where X, is a region with d-dimension measure Vol(X,,) that tends to infinity in

such a way that the boundary of X, does not wriggle too much. A precise definition
and the following statement appear in [So1l].

THEOREM 10.4. (Solomyak) If T is a self-affine tilling, then the frequencies of
patches exist.

For a nonempty patch Q in a translationally self-similar tiling 7, define the
locator set

Lo(T) = {z € R? | there exists Q' C T with Q = Q' — z}.

Voronoi tilings based on these locator sets can be constructed. Priebe [Pri] proves
an interesting finiteness property concerning the number of these derived Voronoi
tilings of T.

There is a growing body of work on the dynamical systems arising from the
action by translation on a certain space of tilings. Solomyak [Sol] gives a com-
prehensive survey of results on the dynamics of self-affine tilings, including a proof
of unique ergodicity. We refer the interested reader to the cited paper and the
references therein.

Perhaps the best known property of translationally self-similar tilings concerns
possible expansion constants. For a self-similar tiling of the plane R2 = C the
map A can be represented as multiplication by an expansion constant X\ € C. The
next theorem was announced by Thurston with a proof of necessity. Kenyon gave
a constructive proof of sufficiency and a generalization to self-affine tilings in R?
[Kel].

THEOREM 10.5. (Thurston [Th], Kenyon [Ke3]) A translationally self-similar
tiling of the plane with expansion constant A exists if and only A is a complex
Perron number, that is, an algebraic integer whose Galois conjugates, except X, are
less than || in modulus.

Concerning Theorem 10.5, it is not hard to show that, for a translationally self-
similar tiling, |A\|> = A\ is a real Perron number. In fact, this is essentially what
is done in the proof of Proposition 10.1 later in this paper. The proof that |\|? is
a Perron number is based on the fact that the area of each proto-tile increases by
a factor of |A|? under the inflation by X and this inflated area is an integer linear
combination of the areas of the original proto-tiles. To show the stronger result
that A itself is a Perron number, Thurston considers certain distinguished points
(capitals or control points) for each proto-tile, and a certain finite set of differences
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between control points in the tiling. Then A inflates this set of differences so that
the inflated differences are an integer linear combination of the original differences.

We conclude this section with a very brief comment on the diffraction spectrum
of a self-similar tiling. One of the common definitions of quasicrystal is that of an
atomic structure whose X-ray diffraction shows Bragg peaks - sharp spots in the
diffraction pattern. For a discrete set Y of points in R? (an atomic arrangement
say), consider the distribution f(z) =} cy dy, where 0, is the Dirac delta. The
X-ray diffraction of Y can be described using the Fourier transform 7 of a related
distribution v, called the autocorrelation. See [Ba] or [Se], for example, for defini-
tions and background. Under mild conditions 4 can be decomposed into a discrete
part (Bragg spectrum) and continuous part (diffuse spectrum). Concerning tilings,
by choosing a distinguished point for each type of tile, the spectrum of a P-tiling can
be discussed. In several examples of self-similar tilings it was noticed that, for the
existence of nontrivial Bragg spectrum, it is necessary that the Perron-Frobenius
eigenvalue (the largest eigenvalue) of the substitution matrix be a Pisot number
[BT]. A Pisot number is an algebraic integer # > 1 such that all its other Galois
conjugates lie inside the unit circle. In the generality below, the result is due to
Gahler and Klitzing [GK].

THEOREM 10.6. (Gdéhler and Klitzing) If ¢ > 1 is the expansion factor of a
self-similar tiling with nontrivial Bragg spectrum, then ¢ must be a Pisot number.

That ¢ is a Pisot number is equivalent to the Perron-Frobenius eigenvalue of
the substitution matrix being a Pisot number. Gahler and Klitzing go on to give
a nice description of the Bragg spectrum of a self-similar tiling, which leads to
distinguishing three types of such tilings: quasiperiodic, limit-periodic and limit-
quasiperiodic.

10.3. Graph iterated function systems. This section concerns a construc-
tive approach to self-affine and self-similar tilings based on graph iterated function
systems. Whereas the attractor to an IFS is a single compact set, the attractor of a
graph IFS is a finite collection of compact sets. This generalization can be found in
[MW] as well as in the literature on image compression. Bandt [B1, B3] applies
the method to tilings.

Using the same notation as in §2 let C := C(R?) denote the space of nonempty
compact subsets of R?, complete with respect to the Hausdorff metric, and let CV
be the N-fold Cartesian product of copies of C. A graph iterated function system
(GIFS) is a directed graph G, possibly with loops and multiple edges in which
the vertices of G are labeled by {1,2,..., N} and each edge e is labeled with a
contraction f. : R? — R?. It is also assumed that G is strongly connected, i.e., that
there is a directed path from any vertex to any other. Let E;; denote the set of
edges from vertex ¢ to vertex j. Define the function

F:cN=cV
as follows. If X = (X, Xs,...,Xx) € CV, then
F(X) = (Fi(X), F2(X), ..., Fn (X)),

where
N

FEX) = U fx).

j=1 e€E;j
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It can be shown that F is a contraction on CV, and consequently has a unique fixed
point T = (T3, T5,...,Tw).
Now consider the special case where each contraction is of the form

fe(x) =A™ © Je,

where A is an expanding linear map and g, is an isometry. The definition of fixed
point implies

N
ATy =] U (@), i=12,...,N, (10.4)
Jj=1 e€E;;
which is precisely Eq. (10.2). So, if each g, is a translation or A is a similarity,
then call the GIFS self-affine or self-similar, respectively. In this case the sequence

P = {T,A(T), A(T),...} (10.5)

is a self-affine or self-similar hierarchy whose substitution rules are determined by
(10.4) provided

1. T; is the closure of its interior for each ¢, and
2. the unions in Eq. (10.4) are non-overlapping.

FiGURE 16. Graph iterated function system for the Penrose tiles.

From [Kees] it is known that m(9T;) = 0. In the definition of GIFS, the condition
that G be strongly connected is equivalent to condition (3) in the definition of
hierarchy in §9.1. So, assuming conditions (1) and (2) given just above, the P-tilings
are self-affine or self-similar tilings and, conversely, every self-affine or self-similar
tiling can be obtained by such a GIFS construction.

Figure 16 shows the self similar GIFS whose fixed point is the pair of Penrose
tiles shown in Figure 15. The two loops directed from the left node correspond to
the two similarities taking the acute Penrose triangle to two smaller similar copies in
its first subdivision. The edge directed from the first to the second node corresponds
to the similarity taking the obtuse Penrose triangle to a smaller similar copy in the
first subdivision of the acute Penrose triangle. Likewise, the two edges directed from
the right node correspond to similarities taking each of the two Penrose triangles
to smaller similar copies in the first subdivision of the obtuse triangle.

Assuming condition (1) holds, it is not difficult to give a necessary and sufficient
condition for condition (2). Note that, in the GIFS terminology, the N x N matrix
M = (|Ey]) is the substitution matrix as defined in §10.1.

PRrOPOSITION 10.1. Assume that condition (1) holds for a self-affine or self-
similar GIFS. Then condition (2) holds if and only if | det A| is the Perron-Frobenius
eigenvalue (the largest real eigenvalue) of the substitution matrix M.
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PROOF. Let x; denote the Lebesgue measure of tile 7;. The unions in Eq. 10.4
are non-overlapping if and only if

N
|detA|xi:Z|Eij|a:j, i:1,2,...,N.
J=1

This means that | det A| is an eigenvalue of M. But for a non-negative matrix, the
only eigenvalue with a positive eigenvector is the Perron-Frobenius eigenvalue. O

Given a directed edge path p = ejes - - -e, and a contraction f : R? — R? we
introduce the notation

fp="Jfes0ofes 00 fe,.

The following proposition follows directly from Eq. (2.3) and allows for an algorithm
to produce approximations of each of the proto-tiles T, T3, ..., Ty in the self-affine
or self-similar hierarchy.

ProposiTION 10.2. Let T = (T4,T5,...,Tn) be the fixed point of a GIFS G,

and let EZ-(n) denote the set of all finite, directed edge paths of length n in the graph
G with initial vertex ¢. Then T} is the limit with respect to the Hausdorff metric

of the sets {f,(0) | p € Efn)} as n — oo.

According to the proposition above, the graph G can be regarded as a finite
state machine. If the initial state is vertex ¢, then the tile 7T; is the language
accepted by the machine. (In fact, this is the point of view taken by Thurston [Th]
in the Pisot tiling example in §10.4.) Recall that a finite state machine M over
the alphabet F' is a finite set S (the states of the machine), amap t: FF'x S — S
(the state transition map), together with a distinguished element I € S (the initial
state), and a distinguished set OK C S (the accepting states). A finite state
machine can be represented as a directed graph in which each state is represented
by a node and each transition (f,s) — s’ is represented by an arc from s to s’
labeled f. A word w in the alphabet F' is accepted by M if, when you start at I and
go along the direction given by w, you end up in OK. An infinite word is accepted
if each finite prefix is accepted. The GIF'S graph G is made into finite state machine
by declaring the vertices of G accepting states and adding “fail states” so that the
transition map is defined for on all F' x S.

In a code (co, c1, . - . ) for a self-affine or self-similar tiling, the position ¢, of a tile
A™(Ty) in tile A"T1(T;) is completely determined by f. where e is the appropriate
edge from vertex i to vertex j in the graph G. Therefore, a code for such a tiling
corresponds to (the equivalence class of) an infinite directed path in G with a given
terminal vertex. (Two edge paths with the same terminal vertex are equivalent
if they coincide except possibly for the last finite number m of edges.) If the
hierarchy forces uniqueness, then there is a bijection between such equivalences
classes of directed paths and the (partial) tilings. In fact, the tilings can be given
explicitly. In the self-affine case each contraction can be written in the form

felx) = A" e + d., (10.6)
where d, € R?. In the self-similar case each contraction is of the form

fe(x) = cge(), (10.7)
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where ¢ < 1 and g, is an isometry. If p is an infinite, directed edge path in the graph
G with fixed terminal vertex, let p(n) denote the finite, directed edge path with the
same terminal vertex consisting of the last n edges in p. By carefully applying the
definitions we obtain the following tilings.

ProposiTION 10.3. Let T = (13,T%,...,Txn) be the proto-tiles of a self-affine
or self-similar hierarchy corresponding to the graph iterated function system G.

1. If T is a self-affine tiling (contractions of the form 10.6) with code given by
path p = ---egzejep, then

7= (W~ do) + T
§=0

where the union is over all n and all edge paths ¢ = e, ---efe{ with the
same initial vertex as p(n), and ¢ is the terminal vertex of g¢.

2. If T is a self-similar tiling (contractions of the form 10.7) with code given
by path p, then

T =J1)0) 2 90) (T},
where the union is over all n and all edge paths ¢ that have the same length
and initial vertex as p(n), and 7 is the terminal vertex of g.

10.4. Examples. Four types of examples of self-similar hierarchies are men-
tioned in this section. Recall that a self-similar hierarchy is completely determined
by the first subdivision rule, that is, by Eq. (10.4) of the GIFS graph G.

Polygonal hierarchies. Numerous sporadic self-similar hierarchies using a single
polygonal tile have been constructed [GS]. A simple example is the L-shaped
triomino hierarchy with subdivision rule as given by the third diagram in Figure
2. This particular hierarchy forces uniqueness; so by the results of §9 there are
uncountably many L-shaped triomino tilings, all nonperiodic, of finite type and
locally isomorphic. This is called the chair tiling, and it has obvious analogues in
higher dimensions.

FIGURE 17. Subdivision rule for the pinwheel tiling.

The best known polygonal self-similar hierarchy is the Penrose hierarchy in
Figure 13 - already discussed in §9. Another important hierarchy is the the pin-
wheel hierarchy [R1] based on 1,2,+/5 right triangles, the subdivision rule shown
in Figure 17. This hierarchy has the property that, up to congruence, there is one
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proto-tile, but in any of the uncountably many, nonperiodic pinwheel tilings, the
tile appears in (countably) infinitely many orientations.

Hierarchies using a free group endomorphism. For certain special cases, Kenyon
[Ke3] has extended the recurrent set method of §6.°> Using essentially the same
notation as in §6, let G := G(aq,...,an) denote the free group on N generators;
let 0 : G — G be an endomorphism. Using the notation [a b] = aba=™'b~! for the
commutator, assume that each o([a; a;]) is the product of conjugates of various
[ai, aj,]. Kenyon finds a family of endomorphisms that satisfy this assumption.
Take, for example, the case N = 3 and let

ola) = b
o) = ¢
olc) = cla b "

where ¢, > 0, s > 1. Then there is a complex root A of 2% — ga? +rz + s = 0 such
that, if f: G — C is the homomorphism determined by f(a) =1, f(b) = A, f(¢) =
A? and p denotes the corresponding polygonal path, then

A"p(e™ ([a b]))

A p(e ™ ([b o))
Co = A "p(a™([a )

converge in the Hausdorff metric to closed curves A, B, C, respectively. Let Ty, Ty, T,
denote the enclosed compact tiles. Then ATy, is Tj; AT} is the non-overlapping union
of s translates of T, and r translates of Tj; and AT, is the non-overlapping union of
q translates of T}, and s translates of T,,. This gives a subdivision rule for a transla-
tionally self-similar hierarchy. Some associated tilings are illustrated in [Ke3, Sol].
Figure 18 is an example with six types of tiles, courtesy of R. Kenyon, whose ex-
pansion is a complex root of z* + x + 1. It is also a Pisot tiling as defined in the
next paragraph.

& =
33
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Pisot tilings. Thurston [Th] considers radix representation of a real number
on the line or complex number in the plane in the form z = Z?:io a; 3%, where
B is a fixed real (complex) number and the a; are chosen from a finite set D of
algebraic integers in Q(/), and D contains 0. In general, D is not a digit set in the
sense of §2. It is not difficult to choose D so that every number z has such a radix
representation, but the representation is usually not unique.

The first step in constructing a self-similar hierarchy is to choose an ordering
of D:dy <dy <---<dpy. A proper representation of a number z is the one which
is greatest in the corresponding lexicographic order. A representation of z is weakly
proper if every finite initial segment of z can be extended to a proper representation.
As a one dimensional example consider base 7 = 1"'2—\/5 and D = {0,1} with 0 < 1.
Then .101010... is weakly proper, but not proper because 1 = .101010.... In this
example the weakly proper representations are exactly those that contain no two
consecutive 1’s.

Thurston shows that if 5 is a complex (or real) Pisot number, an algebraic
integer such that all its Galois conjugates except  and [ lie inside the unit circle,

5 Also related is the work of Garcia-Escudero and Kramer [G-EK] concerning an interpreta-
tion of certain 2-dimensional tilings using automorphisms of free groups.
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F1GURE 18. Pisot tiling.

then there exists a finite state machine M (3, D), as defined in §10.3, which will rec-
ognize whether a sequence of elements from D gives a weakly proper representation
for some number z. (In the one dimensional case, the finite state machine can be
explicitly constructed from the carry sequence, which is the sequence of digits in the
weakly proper representation of 1. If 3 is a Pisot number then the carry sequence
is eventually periodic. In the example above .101010. .. is the carry sequence.)

A self-similar hierarchy can be constructed from the finite state machine. Turn
the finite state machine into a graph iterated function system as follows. Given
a pair (f,D), where 3 is a Pisot number, first remove all the FAIL states (the
states that are not OK) from the associated finite state machine M (S, D). Then
relabel the edges as follows. On each edge e replace its label d. by the contraction
fe(z) = B7Y(z +d.). This graph G, with say N nodes, determines a GIFS. The
attractor of this GIFS is (I1,T%,...,Tn), where T} can be described as follows.
According to Proposition 10.2, the tile 7} consists of all points z = > .2, a7,
where a; € D for all i, and where the word ajasas ... is accepted by the finite state
machine M (S, D) with vertex j as the initial state. In other words, T} consists of
all real (complex) numbers with decimal expansion only to the right of the decimal
point and with weakly proper representation corresponding to a directed path in G
starting at vertex j. Let Ej; denote the set of edges from vertex j to vertex ¢. Since
multiplication by £ is just a right shift of the decimal point we have the subdivision
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rule for each j:

N
ﬁ(TJ):U U Ti+de~
=1 e€Ej;
The union is non-overlapping because of the uniqueness of weakly proper represen-
tation.
The Pisot tiling of R. Kenyon in Figure 18 has six types of tiles and uses radix
B where 3 is a complex root of z* + x 4+ 1 with modulus greater than 1.

Dual hierarchies. Given a self-affine or self-similar hierarchy P in terms of a
GIFS graph G, the construction of a dual hierarchy P* is outlined by Thurston
[Th] and expanded on and generalized by Gelbrich [Ge3] and by Praggastis [Pral].
It also appears in a paper on the construction of sofic partitions of hyperbolic toral
automorphisms by Kenyon and Vershik [KeVe]. We sketch the basic idea of the
construction given in [Ge3].

Given a GIFS graph G define a dual graph G* as follows. If G has vertex set
{1,2,...,N}, let G* have vertex set {1*,2* ..., N*}. Each edge in G labeled with
a contraction f: R — R? is replaced by an oppositely directed edge in G* labeled
by its dual f*, which is defined in the next paragraph.

A toral automorphism A : R — RM is a linear map leaving some lattice L
invariant and such that |det A| = 1. If each eigenvalue of A has modulus # 1,
then RM = E, & E, such that A, = /I| g, is a contraction and A, = A B, 1S
an expansion. It is known that, for a map A : R? — R? that is the expansion
for certain self-similar or self-affine hierarchies, there exists a toral automorphism
A:RM — RM that is a lifting of A. This means that there is an embedding

iR RM

such that i(RY) = E, and Aoi = io A. Let A* = A~'|g. be the inverse of the
lifting restricted to the complementary space.

More generally, for such a self-affine hierarchy (and sometimes for a self-similar
hierarchy) an affine contraction f : R — R? with linear part A can also be lifted
to an affine map f : RM — RM given by f(x) = A(x — b) where A leaves E, and
E; invariant and maps L bijectively onto itself. Let f* : E; — E; be defined by

F* () = A" (&) + projpb.

Now the dual graph G*, and thus the dual hierarchy P*, is defined.

Some examples of this dual construction appear in [Sol, Th]. Figure 19,
courtesy of R. Kenyon, shows the 2-dimensional dual of a 1-dimensional Pisot tiling
that uses the real root of 23 —z? —1 as base and {0, 1} as digit set. The subdivision
rule for the three types of tiles is of the form: 71 = f1(T); Tn = fo(T3); Ts =
fl (T1 @] T3)

Gelbrich [Ge3] computes the dual of the Penrose hierarchy and gives illustra-
tions of some associated tilings. These tilings appeared previously in [BGu] and
have the following appealing property. For the Penrose tiles (kite and dart, thick
and thin rhombs, or acute and obtuse triangles), somewhat artificial matching rules
guarantee that the tilings are self-similar and, consequently, that the proto-tile set
is aperiodic. For the dual proto-tile set, the matching rules are a direct consequence
of the fractal shape of the boundaries of the two proto-tiles. Every tiling by copies
of the dual proto-tiles must be a self-similar tiling.
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FIGURE 19. Dual of a Pisot tiling.

It is not always the case that (1) the dual tiles have non-empty interior and (2)
the union in (10.4) for the dual is non-overlapping. But these two conditions turn
out to be equivalent [Ged].

11. Concluding Remark

A main question at this point is how, in general, to construct the self-affine and
self-similar hierarchies - and hence tilings. Any such hierarchy is the attractor of a
GIFS. So from the GIF'S point of view the issue is how to choose the parameters (the
linear map A and translations d. in 10.6 or the expansion factor ¢ and isometries
ge in 10.7) so that the tiles in the attractor of the GIFS have nonempty interior
(condition 1 in §10.3). In the case of a single proto-tile this was done in §2 by
choosing the set of translations d. as a digit set D. In the absence of periodicity,
however, there is no obvious analogue of the quotient D = L/A(L) of a lattice by
the sublattice. There are known sufficient conditions to insure nonempty interior,
including the “open set condition” [F1] and an equivalent algebraic condition due
to Bandt and Graf [BGr], but these are usually not readily applicable in practice.
A reasonable approach to the problem appears open at this time.
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