
Digit Tiling of Eulidean SpaeAndrew VineAbstrat. This is an expository paper on digit tiling of Eulidean spae, aspeial kind of self-aÆne tiling by translates of a single tile. In partiular, thefollowing topis are disussed: the onstrution of digit tiles and the onstru-tion of the boundary, the Hausdor� dimension of the boundary, the relationbetween digit tiles and positional number systems, the self-repliating prop-erties of digit tiling, and lattie and rystallographi digit tiling. In the lastsetions digit tiling is plaed into the broader ontext of both periodi andnonperiodi self-aÆne tiling of Eulidean spae by a �nite set of proto-tiles. Inpartiular, the following topis are disussed: general results on hierarhialtiling, results spei� to self-aÆne and self-similar tiling, the onstrution ofself-aÆne and self-similar tilings using graph iterated funtion systems, andsome illustrative examples. 1. IntrodutionSelf-similar tilings of Rd have attrated the interest of mathematiians in reentyears for a variety of reasons that are disussed in this paper. One primary reason,espeially relevant in the ontext of this volume, is that many of these tilingsare \quasiperiodi" and serve as models for real quasirystals. The disovery ofquasirystals in 1984 [SBGC℄ was the impetus for, not just intensi�ed researh ontilings, but for muh of the reent work on the mathematis of long-range aperiodiorder. In this paper there is a shift of emphasis between the �rst and seond parts.Setions 1-7 deal mainly with periodi tilings; setions 8-10 mainly with nonperioditilings. It is worth noting that self-similar tilings are a relatively reent addition tothe large body of work on the geometry and symmetry of tilings, a topi surveyed,beginning with the mosais in the Alhambra at Granada in Spain, in the book [GS℄by Gr�unbaum and Shephard.Two ompat sets in Rd are said to be non-overlapping if their interiors aredisjoint. A tiling of Rd is a deomposition of Rd into non-overlapping ompat sets,eah the losure of its interior and eah with boundary having Lebesgue measure0. This paper is organized as follows. The de�nitions of self-aÆne and self-similartile and, in partiular, digit tile are given in x2. Digit tiles possess a self-similarproperty like that of the \Gosper owsnake" shown in Figure 1. The union of theseven tiles is similar to eah small tile. The onstrution of digit tiles in x2 is byway of iterated funtion systems, a standard method for onstruting fratals. Theboundary of a digit tile is usually fratal.1
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Figure 1. Gosper owsnake tiling.The onstrution of a digit tile T := T (A;D) depends only on an expandingmatrix A and a �nite set D of lattie points in Rd . The terminology \digit tile"omes from this data, whih is analogous to the usual base and digits used to rep-resent the integers. This onnetion to positional number systems (radix systems)is disussed in x3. In partiular, the tiling in Figure 1 is related to a ertain radixsystem with appliations to image proessing.Setions 2 and 3 onern the digit tiles themselves; x4 onerns tilings by trans-lates of a single digit tile. Every digit tile admits a tiling of Rd with a strong globalproperty alled self-repliation. When this self-repliating tiling is a lattie tilingthere are appliations to the onstrution of wavelet bases. The main theoremof x4 gives ten onditions, all equivalent to the self-repliating lattie tiling prop-erty. One of the onditions is measure theoreti; some onern the behavior of theboundary; some onern unique radix representation of lattie points; and some arealgorithmi, allowing for eÆient testing proedures. One suh ondition involvesthe A-adi numbers, a generalization of the p-adis, p prime.The boundary of a digit tile is the subjet of x5 and x6. In the book Classison Fratals [E℄, Edgar asked what the Hausdor� dimension of the boundary ofthe L�evy Dragon might be. In general Edgar asked what ould be said about thedimension of the boundary of a self-similar tile. In x5 an easily omputable formulais provided for the Hausdor� dimension of the boundary of a self-similar digit tile.Setion 6 onerns the onstrution of the boundary of a digit tile. The re-urrent set method for onstruting a fratal urve, due to Dekking [De1, De2℄,is related to L-systems, the \L" for Lindenmayer who used the method to modelbiologial growth [Lin℄. Given an alphabet and a rewriting rule, the idea is toiterate the rule to produe progressively longer strings of symbols. Eah symbol isthen interpreted geometrially, produing a �gure in the plane. The main theoremin x6 gives a bijetion between the parameters used to onstrut a digit tile in R2by an iterated funtion system and the parameters used to onstrut a urve by thereurrent set method. The bijetion is suh that the urve onstruted by the re-urrent set method is the boundary of the tile onstruted by the iterated funtionsystem. Figure 1 in this paper was onstruted by the reurrent set method.It is an open question as to whether every tile T that admits a tiling of Rdby translates of T also admits a periodi tiling by translates of T . Related to this



DIGIT TILING OF EUCLIDEAN SPACE 3question is the Lattie Tiling Question of Gr�ohenig and Haas [GH℄: every digittile admits a tiling of Rd by translates; does every digit tile admit a (not neessarilyself-repliating) lattie tiling? This question and its solution by Lagarias and Wang[LW4℄ are disussed in x7. It is also open whether every tile T that admits a tilingof R2 (not neessarily by translates) also admits a periodi tiling by opies of T .In other words, does there exist an aperiodi proto-tile? Gummelt's solution of theanalogous problem for overings of R2 [Gu℄, where tiles are allowed to overlap, hasreeived onsiderable attention reently beause of its impliations for the strutureof quasirystals. This is also disussed briey in x7.Setions 1 - 7 are restrited to digit tiling. The remaining three setions on-ern generalizations. The intent is to plae digit tiling into a broader ontext. Thefollowing topis are briey disussed: (x8) rystallographi digit tiling; (x9) hierar-hial tiling; and (x10) self-aÆne and self-similar tiling by opies of tiles taken froma �nite set of proto-tiles.Crystallographi digit tiling, due to Gelbrih [Ge1℄, is a generalization fromtilings by the image of single tile under the ation of a lattie group to tilings by asingle tile under the ation of a rystallographi group.Setions 9 and 10 extend the subjet from tiling by opies of a single tileto tilings by opies of tiles taken from a �nite set of proto-tiles. These inludethe nonperiodi Penrose tilings [P1℄ and the Pisot tilings of Thurston [Th℄. Weintrodue the notion of a hierarhy. Assoiated with a given hierarhy P are hier-arhial tilings, alled P-tilings. General properties of hierarhies and their tilingsare disussed in x9. Inluded are results about odes of P-tilings, number of tilings,nonperiodiity, and quasiperiodiity. Two speial types of hierarhies are self-aÆneand self-similar hierarhies. Misellaneous properties of their tilings are surveyed inx10. A onstrutive approah to self-aÆne and self-similar tiling, by way of graphiterated funtion systems, is also disussed.Many of the tilings in x10 are quasiperiodi and serve as models for real qua-sirystals. Exept for brief omments in x7 and on X-ray di�ration in x10.2, thephysis of quasirystals is not disussed. For an introdutory aount of quasirys-tals we refer the reader to M. Senehal's book [Se℄ and M. Baake's paper [Ba℄. Forurrent researh trends refer to the papers in [M℄ and in this volume.This paper is basially expository. Proofs of theorems that are readily foundelsewhere are omitted. The subjet of self-similar sets is vast. The paper is notintended to be omprehensive, and we apologize for any favorite topis or resultsthat are omitted. 2. Digit TilesThe systemati study of self-similarity properties goes bak at least to 1964.Golomb [Go℄ de�ned a set T in the plane to be rep-N if T an be tiled by Nongruent similar sets. Three rep-4 �gures are shown in Figure 2. These examplesare somewhat misleading beause the boundary of a rep-N �gure is often fratal.Fratal tiles were onstruted early on, for example, by Mandelbrot [Ma℄ andin the repliating super�gures of Giles [Gil℄. But perhaps the best known methodof onstruting fratals at this time is by iterated funtion systems [Hu℄ . Manyof the illustrations of fratals in the popular literature use this method; see, forexample, the nie expositions by Barnsley [Bar℄ and Faloner [F1℄. An iterated



4 ANDREW VINCE
Figure 2. Rep-4 �gures.funtion system (IFS) is a �nite set ff1; f2; : : : ; fNg of ontrations:fi : Rd ! Rd :A funtion f : Rd ! Rd is a ontration if there is a number  with 0 <  < 1 suhthat jf(x) � f(y)j � jx � yj for all x; y 2 Rd . Let C(Rd) denote the olletion ofall nonempty ompat subsets of Rd . The Hausdor� metri h on C(Rd) is de�nedas follows: h(A;B) = inff� jA � B� and B � A�g;where A� = fx 2 Rd : jx � yj � � for some y 2 Ag. With respet to this metrithe funtion F : C(Rd)! C(Rd )F (X) = N[i=1 fi(X)is a ontration on the omplete metri spae C(Rd ) and thus, by the ontrationmapping theorem, has a unique �xed point or attrator T that satis�esT = N[i=1 fi(T ): (2:1)There is an alternative representation for the attrator given byT = limn!1F (n)(T0); (2:2)where F (n) denotes the nth iterate of F and T0 is an arbitrary ompat subset ofRd . The limit is with respet to the Hausdor� metri. The setTn = F (n)(T0) (2:3)is an nth approximation to T and is easy to express in algorithmi form. It isusually suh an algorithm (or a randomized version) that is used to produe thefratal graphis that appear in many books and papers on the subjet.Consider the speial ase of an IFS where the ontrations fi are aÆne withthe same linear part A�1 and with translational parts D = fd1; d2; : : : ; dNg:fi(x) = A�1(x + di): (2:4)Let A be an expanding matrix, where expanding means that the modulus of eaheigenvalue is greater than 1. With respet to an appropriate metri related tothe Eulidean metri [Li℄, A�1 is a ontration. The inverse is used merely as a



DIGIT TILING OF EUCLIDEAN SPACE 5onveniene for stating ertain results. The funtional equation (2.1), for example,is equivalent to A(T ) = N[i=1 (T + di): (2:5)Let m denote d-dimensional Lebesgue measure and � the boundary. If1. the attrator T is the losure of its interior and m(�T ) = 0 and2. the union in Eq. (2.5) is non-overlapping,then T is alled a self-aÆne tile. If, in addition, A is a similarity, then T is alled aself-similar tile. A linear map is a similarity with expansion fator  if kAxk = kxkfor some  > 1 and for all x 2 Rd . The term self-aÆne refers to the geometriinterpretation of Eq. (2.5): the large tile A(T ) is the non-overlapping union oftranslates of the small tile T . The Gosper owsnake in Figure 1 is a self-similartile. Figure 3 shows the �rst 12 approximations to the self-similar \twin dragon,"where the IFS is given in Example 2.1 and T0 in Eq. (2.3) is a unit square.Example 2.1. Twin dragon.f1� xy � = � 1 �11 1 ��1�� xy �+� 00 ��f2� xy � = � 1 �11 1 ��1�� xy �+� 10 ��

Figure 3. Approximations to the twin dragon.



6 ANDREW VINCEThe attrator of the IFS (2.4) usually does not satisfy onditions (1) and (2)in the de�nition of self-aÆne tile. One ase for whih it does is a digit tile. Suhtiles have been the subjet of researh by, among others, Bandt [B2℄, Dekking[De1, De2℄, Gelbrih [BGe, Ge2℄, Gr�ohenig and Haas [GH℄, Gr�ohenig andMadyh [GM℄, Kenyon [Ke2℄, Lagarias and Wang [LW2, LW3, LW4℄, Solomyak[So1, So2℄, Strihartz [Str℄ and Vine [V1, V2, V3, V4℄. By a lattie in Rd ismeant the set of all integer linear ombinations of d linearly independent vetors.If A is a linear map and L is a lattie, we say that L is A-invariant if A(L) � L.If, for some expanding matrix A, there exists a lattie L, invariant under A, thena set D of oset representatives of the quotient L=A(L) is alled a digit set. It isassumed that 0 2 D. By standard results in algebra, for D to be a digit set it isneessary that jDj = j detA j:If A is expanding and D = fd1; : : : ; dNg is a digit set, then the attrator of theaÆne IFS in Eq. (2.4) is alled a digit tile. Note that a digit tile is ompletelydetermined by the pair (A;D) and will be denoted T (A;D). Theorem 2.5 belowstates that a digit tile is indeed a self-aÆne tile. Figures 1 and 3 are self-similardigit tiles, based on the hexagonal and integer latties, respetively. Both of thesetiles are homeomorphi to a disk. Topologially more ompliated self-similar digittiles (Examples 2.2, 2.3, 2.4) appear in Figure 4. The last example in this �gureshows the large tile as the non-overlapping union of the nine small tiles.

Figure 4. Gasket, roket and shooter.Example 2.2. Gasket.A = � 2 00 2 �D = f(0; 0); (1; 0); (0; 1); (�1;�1)gExample 2.3. Roket.A = � 3 00 3 �D = f(0; 0); (1; 1); (2; 2); (�1; 0); (�2; 0); (�1; 1); (0;�1); (0;�2); (1;�1)g



DIGIT TILING OF EUCLIDEAN SPACE 7Example 2.4. Shooter.A = � 3 00 3 �D = f(0; 0); (1; 0); (2; 0); (0; 1); (0; 2); (2; 2); (4; 4); (2; 1); (1; 2)gWhat we all a digit set D, Lagarias and Wang [LW3℄ all a standard digit set.They all D nonstandard if jDj = j detAj but D is not a set of oset representativesof L=A(L) for any lattie L. For example, in 1-dimension D = f0; 1; 8; 9g is non-standard for matrix A = (4). The attrator of the orresponding IFS is [0; 1℄[ [2; 3℄.For most nonstandard digit sets D, however, the attrator T has Lebesgue mea-sure 0; in partiular, the interior of T is empty. For example, if j detAj is prime,then this is always the ase [LW3℄. In general, it seems a nontrivial problem todetermine whether a nonstandard digit tile has positive Lebesgue measure. For(standard) digit tiles this is not an issue; a proof of the follow result an be foundin [GH, LW2, V1℄.Theorem 2.5. A digit tile T is a self-aÆne tile. Namely T is ompat; T is thelosure of its interior; m(�T ) = 0; and the union in Eq. (2.5) is non-overlapping.For ease of exposition and with essentially no loss of generality, we will oftenmake the following three assumptions onerning digit tiles. A pair (A;D), onsist-ing of an expanding matrix A and a digit set D, will be alled basi if the followingthree statements hold. In this ase the tile T (A;D) is also alled basi.1. A is an integer matrix and D is a set of oset representatives of Zd=A(Zd).2. (A;D) is pure.3. (A;D) is primitive.By assumption (1) the invariant lattie is the integer lattie. By pure is meantthat 0 is ontained in the interior of T (A;D). By primitive is meant that D isontained in no proper A-invariant sublattie of Zd. Example 2.6 is a pair (A;D)in R2 that is not primitive, and Figure 5 shows the �rst three approximations tothe orresponding digit tile T (A;D), whih is a square. Note that the sublattie ofZ2 onsisting of all lattie points with even oordinate sum is a proper A-invariantsublattie.Example 2.6. Non-primitive digit tile.A = � 3 00 3 �D = f(0; 0); (2; 0); (1;�1); (�1; 1); (1; 1); (3; 1); (0; 2); (2; 2); (1; 3)gThat little loss of generality is inurred by restriting to basi digit tiles is thestatement of the following result [LW2, V1℄.Theorem 2.7. Let A : Rd ! Rd be a linear expanding map, L an A-invariantlattie, and D a digit set. There exists a basi pair (A0; D0) suh that A0 is similarto some power of A and T (A0; D0) = �(T (A;D)), where � is an invertible aÆnemap. Moreover, if L = Zd, then \similar to" an be replaed by \equal to", and if(A;D) is already primitive, then � is just a translation.
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Figure 5. Non-primitive digit tile.It is usually the ase that a digit tile is not homeomorphi to a ball. Bandt andGelbrih all two digit tiles T and T 0 isomorphi if there is an aÆne bijetion � fromT to T 0 that preserves piees at all levels. For a preise de�nition of \preservingthe piees" see [BGe℄.Theorem 2.8. (Bandt and Gelbrih [BGe℄, Gelbrih [Ge2℄)1. For any N � 2 there are �nitely many isomorphism lasses of digit tiles inR2 with N piees and homeomorphi to a disk.2. There are �nitely many isomorphism lasses of digit tiles in Rd with 2 pieesand homeomorphi to a d-ball.The authors have determined, for example, that there are three types of disk-like digit tiles in R2 with two piees and seven types with three piees. In [GH℄Gr�ohenig and Haas give, in the 2-dimensional ase, a suÆient ondition on thepair (A;D) for T (A;D) to be onneted. In any dimension, Haon, Salanha andVeerman [HSV℄ prove that any digit tile with two piees is onneted.3. Radix RepresentationTo justify the terminology \digit" tile, onsider an expanding matrix A as abase for an A-invariant lattie L (so A(L) � L), and a digit set D � L as a set ofdigits for L. Use the Minkowski sum notation X + Y = fx+ y jx 2 X; y 2 Y g andA(D) = fA(d) j d 2 Dg, and letDn = n�1Xi=0 Ai(D) and D1 = 1[i=1Dn: (3:1)Then Dn is the subset of the lattie that an be expressed using at most n digits,and D1 is the set of lattie points that an be expressed using any �nite sequeneof digits. Let the initial approximation to the tile T = T (A;D) be a single point:T0 = f0g. In this ase Eq. (2.2) beomesT := T (A;D) = limn!1 nXi=1 A�i(D); (3:2);where the limit is with respet to the Hausdor� metri. Then T (A;D), aordingto Eq. (3.2), is the set of points in Rd that an be expressed using digits only tothe \right" of the of the deimal point. In partiular, onsider the 1-dimensionalase where A = (10); L = Z, and D = f0; 1; : : : ; 9g. Then Dn is the set of integersthat an be represented in the ordinary base 10 system using at most n digits; D1is the set of non-negative integers; and T is the losed interval [0; 1℄. For the above



DIGIT TILING OF EUCLIDEAN SPACE 9reasons we refer to the pair (A;D) as a radix system (positional number system)for lattie L.The representation of numbers using positional number systems has an ex-tensive literature prior to the advent of fratals. Knuth's lassi [Kn℄ ontainsearly referenes dating bak to Cauhy, who noted that negative digits make itunneessary for a person to memorize the multipliation table past 5� 5. Gilbert[Gi1, Gi2, Gi3℄ onsidered radix representation for the Gaussian integers Z[i℄ =fa + b i j a; b 2 Zg and for integers in other algebrai number �elds. For example,every Gaussian integer has a unique base � = �1 + i representation of the formPni=0 di�i, where di 2 D = f0; 1g. This is analogous to a binary system for theGaussian integers. Of ourse, this is just the radix system (A;D) for the lattieZ2 = Z[i℄, where A is the linear map given by Ax = �x.Two obvious questions onerning radix representation are as follows.Question 3.1. Given an expanding integer matrix A and digit set D, when isit the ase that every lattie point x has a unique representation of the formx = n�1Xi=0 Ai(ei); ei 2 D: (3:3)Question 3.2. Given an expanding integer matrix A, does there exist a digitset D suh that every lattie point x an be uniquely represented in the radix form(3.3).Question 3.1 will be addressed as part of Theorem 4.2 in x4. The answer toQuestion 3.2 is \no, but almost." We mention two partiular results. Here I is theidentity matrix.Theorem 3.3. (Vine [V1℄) If det(I � A) = �1, then there is no digit set Dsuh that every lattie point x has a unique representation of the form (3.3).Examples of suh matries inlude� 1 �11 1 � ; � 2 a0 2 � ; � 0 �a1 a � :Reall that for any matrix A there exist orthogonal matries U and V suh thatUTAV is diagonal [GvL℄. The diagonal entries are alled the singular values of A.Let C denote the anonial fundamental domain of the the origin with respet tothe ubi lattie (the losure of C is a unit ube entered at the origin).Theorem 3.4. (Vine [V1℄) Let A be a d-dimensional matrix and L an A-invariant lattie. If the singular values of A are greater than 3pd and D = A(C)\L,then every lattie point x has a unique representation of the form (3.3). In the 1and 2-dimensional ases, the bound 3pd an be improved to 2.The following previously known result follows diretly from the two theoremsabove.Corollary 3.5. For any Gaussian integer � 2 Z[i℄, exept 0; �1; �i; 2 and1 � i, there is a digit set D suh that every Gaussian integer has a unique radixrepresentation of the form Pn�1i=0 ei �i; ei 2 D. No suh digit set exists for � = 2and � = 1� i.



10 ANDREW VINCEIt follows from Eq. (3.2) thatT = limn!1A�n(Dn);so it should not be surprising that properties of the set D1 on a large sale arediretly related to properties of the digit tile T on a small sale. The followingtheorem is an example. A set S 2 Rd is uniformly disrete if there is a bound r > 0suh that distint x; y 2 S satisfy jx� yj � r. Note that, in this theorem, it is notassumed that D is a digit set.Theorem 3.6. (Lagarias and Wang [LW2℄) Assume that A is a real expandingmatrix with j detAj = m 2 Z and D a subset of Rd with jDj = m and 0 2 D. Thenthe following statements are equivalent.1. T := T (A;D) is the losure of its interior and m(�T ) = 0.2. All mn elements of Dn are distint and D1 is a uniformly disrete set.We now onsider in more detail a radix system, alled the generalized balanedternary, whih has appliations to image proessing. Consider a moni polynomialf(x) = xd + ad�1xd�1 + � � � + a0 2 Z[x℄. In the quotient ring �f = Z[x℄=(f) let� = x+(f). Then �f has the struture of aZ-modulewith basis (1; �; �2; : : : ; �d�1).In other words �f is a lattie whih an be realized (in many ways) in Rd byembedding the d basis elements as d linearly independent vetors in Rd .If f(x) is irreduible over Z then, as rings, �f = Z[x℄=(f) �= Z[�℄ where � isany root of f(x) in an appropriate extension �eld of the rationals. For example, iff(x) = x2 + 1 then the lattie �f is the ring of Gaussian integers Z[i℄ with basis(1; i) and an be realized as the square lattie in the omplex plane.Consider the speial ase f(x) = 1 + x + x2 + � � � + xd. Let ! = x + (f). Inthe ring �d = Z[x℄=(f) we have 1 + ! + � � � + !d = 0 and !d+1 = 1. For the sakeof symmetry we take as a generating set for the lattie �d the set (1; !; !2; : : : ; !d)although it is linearly dependent. Embed the lattie �d in d-dimensional Eulideanspae by de�ning an inner produt on pairs of basis elements (1; !; !2; : : : ; !d) by(!i; !j) = � 1 if i = j� 1d if i 6= j:In dimension d = 1 this is the integer lattie; for d = 2 it is the hexagonallattie; and for d = 3 it is the lattie that onsists of the enters of the tiling ofspae by trunated otahedra. In general it is the dual of the lassial d-dimensionalroot lattie Ad; so the weight lattie A�d = �d [CS℄. Now let � = 2�! and de�nea linear expanding map A� : �d ! �dby A�(x) = �x:Although not well-de�ned, a matrix for A� with respet to the generating set(1; !; !2; : : : ; !d) is
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A� = 0BBBBBBB� 2 0 0 : : : 0 �1�1 2 0 : : : 0 00 �1 2 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 2 00 0 0 : : : �1 2:

1CCCCCCCALet D� = f�0 + �1! + �2!2 + � � �+ �d!d : �i 2 f0; 1gg;where not all �i = 0. Note that jD� j = 2d+1 � 1. It an be shown that D� is adigit set for A� with respet to the lattie �d. Hene (A� ; D�) is a radix system forlattie �d, alled the generalized balaned ternary (GBT). Moreover, if follows froma variant of Theorem 4.9 that every lattie point in �d has a unique representationin the GBT.In dimension 1 A� = (3) D = f�1; 0; 1g:This is a base 3 system lassially alled the balaned ternary. Every integer (posi-tive or negative) an be uniquely expressed base three using the three digits (trits).For d = 2 the digit set D� is the subset of the hexagonal lattie onsisting of theorigin and all 6th roots of unity. The orresponding tile T (A�; D�) is shown in Fig-ure 1. The GBT radix system has been suggested for spatial addressing of imagesas a viable alternative to a retangular grid - for both geometri reasons (the roundshape of the pixels) and algebrai reasons (the eÆient algorithmi properties ofthe radix system [GL, KVW, vR℄).4. Self-Repliating TilingLet A be an expanding integer matrix, D a digit set, and assume that the pair(A;D) is basi. Setion 2 onerns the self-aÆne tile T (A;D). The term \tile" wasused, rather than \set", beause, given any self-aÆne tile T , there always existsa tiling of Rd by translates of T . To see this, iterate funtional equation (2.5) toobtain An(T ) = [d2Dn(T + d):Sine (A;D) is pure, 0 lies in the interior of An(T ). Sine A is an expansion, anyball entered at the origin lies in An(T ) for some n. In the notation of (3.1), thesets D1 � D2 � : : : are nested beause 0 2 D and heneT1 := fT + d j d 2 D1g (4:1)is a tiling of Rd .In fat, T1 is a speial type of tiling by digit tiles, alled a self-repliatingtiling. A tiling T of Rd by opies of a single tile is alled self-repliating if, for somelinear expansion A, the expanded tile A(T ) is, for eah T 2 T , tiled by elements ofT . Note that the self-repliating property is a global property of the tiling, nota property of the tile. This self-repliating property was investigated by Thurston[Th℄ for more general tilings to be disussed in x10. The tiling by twin dragons inFigure 6 is self-repliating; the image of eah dragon under the mapping A is the



12 ANDREW VINCEunion of two horizontally adjaent dragons. The following proposition is an easyonsequene of Eq. (2.5).

Figure 6. Lattie tiling by twin dragons.Proposition 4.1. Given any basi digit tile T , the orresponding tiling T1 isself-repliating.Aording to Proposition 4.1, for any basi digit tile T there is a self-repliatingtiling by translates of T . The proposition does not imply, however, that this tilingis by translation by the integer lattie, as is the ase in Figure 6. A tiling T is alattie tiling of Rd if T is a tiling by translation by a lattie, i.e., T = fT+x j x 2 Lgfor some lattie L. Consider Example 4.1; the orresponding tiling T1 shown inFigure 7 is not a lattie tiling.

Figure 7. Not a lattie tiling.



DIGIT TILING OF EUCLIDEAN SPACE 13Example 4.1.A = � 3 00 3 �D = f(�1;�3); (�1;�1); (�1; 1); (0;�2); (0; 0); (0; 2); (1;�2); (1; 0); (1; 2)gThe following theorem [V4℄ is entral and gives ten equivalent onditions forthe existene of a self-repliating lattie tiling. All terms not yet de�ned will bedisussed after the statement of the theorem.Theorem 4.2. Let T = T (A;D) be a basi digit tile. Let Tn = F (n)(T0) be theapproximating tiles, where T0 is the unit d-ube entered at the origin with edgesparallel to the axes. The following statements are equivalent. Limits are with respetto the Hausdor� metri.1. T := fT + x jx 2 Zdg is a tiling of Rd .2. T := fT + x jx 2 Zdg is a self-repliating tiling of Rd .3. m(T ) = 1.4. The harateristi funtion �T (x) is a saling funtion of a multiresolutionanalysis.5. limn!1 �Tn = �T .6. limn!1 �Tn is not spae �lling.7. D1 = Zd.8. Every lattie point has a unique �nite address.9. Every lattie point in the ball B(A;D) has a �nite address.10. �(A;D) < j detAj.Condition (3) states that the Lebesgue measure of T is 1. This is learlyneessary if statement (1) is to hold. The onverse appears in [GH℄. It is known thatm(T ) is always an integer [LW3℄, but is not always 1. For the tile of Example 4.1the measure is 2. Figure 8, showing the �rst few approximations to this tile, mayprovide insight into why the tile is \strethed."
Figure 8. Digit tile with Lebesgue measure 2.The equivalene of onditions (1) and (4) is due to Gr�ohenig and Madyh[GM℄. An important appliation of digit tiling is to wavelets, the onstrution of



14 ANDREW VINCEorthonormal wavelet bases in Rd . The multiresolution analysis mahinery produesan orthonormal wavelet bases of L2(Rd ). We refer the reader to [GM, Str℄ andany number of introdutory texts, for example [Ch℄, rather than elaborating onwavelets in this paper.Conditions (5) and (6) onern the boundary of the approximating tiles; proofof their equivalene to the other onditions appears in [V4℄. Condition (5) statesthat the boundaries of the approximating tiles approah the boundary of the limittile in the Hausdor� topology. It is easy to see that this is not the ase for the tile inFigure 8. Condition (6) states that, if the onditions of Theorem 4.2 fail, then thebehavior of the boundary is indeed pathologial; the limit of the boundaries of theapproximates is spae �lling - ontains some open set. In the ase of Example 4.1,the limit is the whole tile T .Conditions (7) and (8) relate to Question 3.1 in x3. They state that everylattie point x has a unique base A representation with digits D. In other wordsx = Pn�1i=0 Ai(ei); ei 2 D. The proof of the equivalene of onditions (7), (8)and (9) to the other onditions in [V1℄ relies on the onept of A-adi integer,analogous to the lassial p-adi integer, p a prime (see [Se℄ for bakground on thep-adi integers). The set of A-adi integers is the ompletion of Zd with respet tothe metri indued by the norm jxj = 1j detAj� ;where � is the greatest integer suh that x 2 A�(Zd). Analogous to the p-adi ase,there is a anonial representation of eah A-adi number in the formx = 1Xi=0 Ai(ei); ei 2 D:De�ne the address of suh an A-adi as: : : e3e2e1e0:It an be shown that, given a digit set D for A, eah point in Zd has an addressthat eventually repeats, in the same sense as an ordinary repeating deimal. Alattie point is said to have a �nite address if en = 0 for all n suÆiently large. Infat, there is an easy algorithm to obtain the address of any lattie point x.Algorithm (x0 = x) en � xn mod A(Zd)xn+1 = A�1(xn � en)Moreover there is a omputable bound on the number of iterations of this algorithmsuÆient to determine whether or not the lattie point has a �nite address.Example 4.3. In 1-dimension the 3-adi address, i.e., A = (3), of the integer2 with respet to digit set f�1; 0; 4g is (�1)(4)(�1):



DIGIT TILING OF EUCLIDEAN SPACE 15x0 = 2 e0 = �1x1 = 1 e1 = 4x2 = �1 e2 = �1x3 = 0 e3 = 0:Note that ondition (8) together with formula (3.2) imply that every point inRd , exept those on the overlap of two tiles in T , an be uniquely expressed in theform en : : : e1e0:e�1e�2 � � � := nXi=�1Ai(ei); ei 2 D:The representation of points on the overlap of two tiles is not unique; for examplefor A = (10) and D = f0; 1; : : : ; 9g, we have :999 � � � = 1.Conditions (9) and (10) are algorithmi. They provide eÆient methods tohek that all onditions in Theorem 4.2 hold. The number �(A;D) in ondition(10) is the largest eigenvalue of ertain easily omputable matrix. A de�nitionand disussion of this matrix appears in x5. Condition (9) states that there is ballB(A;D) entered at the origin, whose radius r(A;D) depends only on (A;D), suhthat, if every lattie point in B(A;D) has a �nite address, then all lattie pointsdo. In the ase that A is a similarity with expansion fator , an expliit value ofthe radius is easy to express:r(A;D) = maxfjdj : d 2 Dg� 1 :Applying the formula for r(A;D) to Example 4.4, the only lattie point in B(A;D) isthe origin, whih obviously has a �nite address. By ondition (9) in Theorem 4.2,the orresponding lattie tiling is a self-repliating lattie tiling; it is shown inFigure 9.Example 4.4. A = � 2 1�1 2 �D = f(0; 0); (1; 0); (0; 1); (�1; 0); (0;�1)gr(A;D) = 1p5� 1 = :8090 : : :It should be remarked that either ondition (7) or (8) automatially impliesthat (A;D) is basi [V1℄. In Example 4.5 there are 21 points in B(A;D) to hekusing ondition (9), inluding the point (�1; 0). The algorithm gives the repeatingaddress (1; 0); (0; 0); (1; 0); (0; 0); : : : for the point (�1; 0), not a �nite address. Theproblem in this ase is that (A;D) is not basi; it is not pure. As pointed out inx2, there is a related basi pair (A0; D0) suh that T (A;D) and T (A0; D0) are thesame up to translation. Then T (A0; D0) does satisfy the onditions of Theorem 4.2.The orresponding tiling is the twin dragon tiling in Figure 6, whih is indeed aself-repliating lattie tiling.
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Figure 9. Self-repliating tiling.Example 4.5. A = � 1 �11 1 �D = f(0; 0); (1; 0)gr(A;D) = 1p2� 1 = 1 +p2 = 2:4142 : : :5. Dimension of the BoundaryFor some well studied tiles, like the Twin Dragon in Figure 3, the Hausdor�dimension of the boundary is known and has been omputed by various means.More reently Duvall and Keesling [DK℄ determined the Hausdor� dimension ofthe boundary of a partiular tile, the L�evy Dragon. In [Kees℄ Keesling showed thatthe Hausdor� dimension of the boundary of any self-similar tile in Rd is less thand, but that this dimension ould be arbitrarily lose to d. This setion outlines amethod due to Duvall, Keesling and Vine [DKV℄ for determining the Hausdor�dimension of the boundary of any self-similar digit tile. After our results wereobtained we ame aross unpublished preprints by Veerman [Ve℄ and by Strihartzand Wang [SW℄ whih ontain similar results obtained by di�erent methods. Theonly ondition that is needed on the digit tile T for our formula in Theorem 5.1is that one of the equivalent onditions given in Theorem 4.2 holds for T . Thisis not unexpeted in light of onditions (5) and (6) of that theorem. The methodgiven below either determines preisely the Hausdor� dimension of the boundaryof T or it determines that ondition (10) of Theorem 4.2 fails. The problem ofdetermining an exat formula for a self-aÆne (not neessarily self-similar) digit tileremains open.Reall the de�nition of Hausdor� dimension; an introdutory treatment an befound, for example, in [F1℄. An �-over of a set X � Rd is a olletion of sets ofdiameter at most � suh that X is ontained in their union. Let jU j denote thediameter of the set U , and let s be a non-negative number. For any � > 0 de�ne



DIGIT TILING OF EUCLIDEAN SPACE 17Hs� (X) = inf f 1Xi=1 jUijs : fUig is an �-over of Xg:As � dereases, the olletion of possible overs is redued; hene Hs� (X) dereases.De�ne the s-dimensional Hausdor� measure of X byHs(X) = lim�!0Hs� (X):It is easy to show that there is a ritial value of s at whih this limit jumps from1 to 0. De�ne the Hausdor� dimension bydimH(X) = inf fs : Hs(X) = 0g = sup fs : Hs(X) =1g:To state the main result, the ontat matrix, �rst de�ned by Gr�ohenig andHaas [GH℄, is introdued. Given an expanding integer matrix A and digit set Dfor the integer lattie in Rd , a set N = N(A;D) of integer lattie points, alledthe neighborhood for (A;D), is used to index the rows and olumns of the ontatmatrix.The neighborhood N(A;D) is de�ned as follows. Let fe1; : : : ; edg denote theanonial basis of Rd and let N0 = f0g [ f�e1; : : : ;�edg. Then N(A;D) is theunique smallest �nite set N � Zd suh that N0 � N and D+N � A(N) +D. Theneighborhood an easily be omputed using the following algorithm, and it is easyto show that the algorithm terminates after a �nite number of steps. Beause Dis a set of oset representatives of Zd=A(Zd), for any lattie point y the equationAx+ d = y has a unique solution pair (x; d), where x 2 Zd and d 2 D.AlgorithmN = N0Repeat until the two sets are equal:N  N [ fx 2 Zd jAx+ d = y for some d 2 D and y 2 D +Ng:For eah x 2 N and d 2 D, let xd denote the unique lattie point suh thatd+x 2 Axd+D. By the de�nition of N we have xd 2 N . Let C 0 be the k�k matrixwhose rows and olumns are indexed by the elements in N and whose entries areas follows. For x; y 2 N xy = jfd 2 D jxd = ygj:By onvention let the �rst index of C 0 orrespond to the element 0 2 N . Note that00 = jDj and 0y = 0 for y 6= 0. Thus the �rst row of C 0 onsists of all zerosexept for one entry. Let C denote the (k�1)� (k�1) matrix obtained from C 0 byremoving the �rst row and olumn. Call C the ontat matrix for the pair (A;D).(In [GH℄ it is atually C 0 that is referred to as the ontat matrix.)Aording to the Perron-Frobenius Theorem for non-negative matries, C hasa real eigenvalue � suh that, for any other eigenvalue �, we have � � j�j. In otherwords, the spetral radius of C is an eigenvalue.Theorem 5.1. (Duval, Keesling and Vine [DKV℄) Let T = T (A;D) be aself-similar digit tile where A has expansion fator  and the ontat matrix has



18 ANDREW VINCElargest eigenvalue � := �(A;D). Under any of the onditions in Theorem 4.2 wehave dimH(�T ) = log�log  :Examples. Twin dragon. The dimension of the boundary of the Twin Dragon(Example 2.1 and Figure 3) has been alulated by various means. Using ourmethod the neighborhood is the following set of lattie points:N = f(0; 0); (0; 1); (1; 0); (1;�1); (0;�1); (�1; 0); (�1; 1)gOrdering the elements of N r f0g as above (lokwise around a hexagon) the on-tat matrix C, omputed using the de�nition, is the following integer matrix withylial struture. C = 0BBBBBB� 1 1 0 0 0 00 0 1 0 0 00 0 0 2 0 00 0 0 1 1 00 0 0 0 0 12 0 0 0 0 0
1CCCCCCAThe harateristi polynomial is easy to ompute beause of the near diagonalstruture of the matrix:det(C � �I) = �4(1� �)2 � 4 = (�+ 1)(�2 � 2�+ 2)(�3 � �2 � 2):So the largest eigenvalue of C is the real root of �3 � �2 � 2. Hene the Hausdor�dimension of the twin dragon isdimH �T = log�logp2 ' 1:523627Gasket. For the Gasket (Example 2.2 and Figure 4), the neighborhood N isagain in a hexagonal pattern:N = f(0; 0); (1; 0); (1; 1); (0; 1); (�1; 0); (�1;�1); (0;�1)gThe ontat matrix is a yli matrix with three ones in eah row:C = 0BBBBBB� 1 1 0 0 0 11 1 1 0 0 00 1 1 1 0 00 0 1 1 1 00 0 0 1 1 11 0 0 0 1 1
1CCCCCCAHene the Perron-Frobenius eigenvetor, the unique eigenvetor with positive en-tries, is the all ones vetor. The orresponding eigenvalue is � = 3.dimH �K = log 3log 2 = 1:5849625 : : :
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Figure 10. Lander.Lander. The lander is the digit tile T (A;D) where A = � 3 00 3 � andD = f(0; 0); (1; 1); (1;�1); (2; 0); (�1;�2); (3;�2); (�1; 2); (3; 2); (1; 3)g. The di-mension of the boundary of the Lander in Figure 10 is somewhat greater thanfor the other examples. dimH �T ' 1:913624Sketh of the proof of Theorem 5.1. Let T0 be the unit ube entered at the ori-gin with edges parallel to the axes and let Tn = F (n)(T0) denote the nth approxima-tion to the tile T := T (A;D) as given in Eq. (2.3). Then Tn is the non-overlappingunion of opies of ubes of edge length 1=n. For eah lattie point, onsider theunit ube entered at that point. Hene the neighborhood N := N(A;D) an alsobe regarded as the non-overlapping union of ubes. Let Nn denote the neighbor-hood N ontrated by a fator of 1=n. Then it an be shown by indution that thesum of the elements in the nth power Cn of the ontat matrix C is approximatelyequal to the number �n of small ubes q in Tn suh that the neighborhood, enteredat q, lies both inside and outside of Tn. In other words, �n ounts the number ofsmall ubes in Tn \lose" to �Tn. When we use the term \approximately" here wemean that there are upper and lower bounds of one quantity by a onstant multipleof the other quantity, where the onstants do not depend on n.What simpli�es the alulation of the Hausdor� dimension of �T is that, forthe boundary of a self-similar digit tile, the Hausdor� dimension oinides with thebox-ounting dimension. This is a onsequene of a result of Faloner [F2℄ on sub-self-similar sets. Consider the olletion of ubes in the �-oordinate mesh of Rd .For a given set X 2 Rd let ��(X) denote the number of suh ubes that intersetX . The box-ounting dimension is de�ned bydimB(X) = lim�!0 log��(X)� log � :



20 ANDREW VINCELetting � = 1=n, it an be proved, in the ase of our digit tile T , that the numberof small ubes that interset �T is approximately equal to the number of smallubes �n in Tn that are \lose" to �Tn. ThereforedimH(�T ) = dimB(�T ) = limn!1 log�nn log  = limn!1 log jCnjn log  ;where jCj denotes the sum of all the entries in a matrix C. What ompletes thetheorem is the fat that the largest eigenvalue of any nonnegative matrix C is givenby the formula �(A;D) = limn!1 jCnj1=n.6. Constrution of the BoundaryThe main result of this setion is an expliit orrespondene between two knownmethods for onstruting digit tiles in the plane. The IFS method produes the tileitself; the reurrent set method, due to Dekking [De1, De2℄, produes the boundaryof the tile. The proof of the theorem in this setion appears in [V4℄. Anotheronnetion between the IFS and reurrent set method appears in Bedford [Be1,Be2℄ in the ontext of onstruting Markov partition boundaries for hyperbolitoral endomorphisms. Kenyon [Ke3℄ uses the reurrent set method in a settingdisussed in x10.The IFS \data" from whih a digit tile T = T (A;D) is onstruted is simplythe expanding matrix A and the digit set D. The pair (A;D) will be referred to astile data if1. A is an expanding 2� 2 integer matrix and2. D is a set of oset representatives of Z2=A(Z2).We use an integer matrix to keep the exposition simple. As explained in x2, allresults are easily extended to the ase of a tile based on a general lattie.The \data" for the reurrent set method is a free group endomorphism ([Lo℄is an introdutory text on ombinatorial group theory). Let G := G ha; bi be thefree group on two generators a and b. Thus G onsists of all words in the lettersfa; b; a�1; b�1g, inluding the empty word e. The operation is onatenation, andthe only relations are aa�1 = e = a�1a and bb�1 = e = bb�1. Consider anendomorphism � : G ! G. Note that � is determined by its ation on a and b.De�ne a matrix A� = � maa mabmba mbb � ;where m�� is the number of ourrenes of � in �(�), ounting ��1 as ourring�1 time. Here � and � are eah either a or b. This proess is alled abelianization.Example 6.1. Twin dragon.�(a) = ab�(b) = a�1bA� = � 1 �11 1 �



DIGIT TILING OF EUCLIDEAN SPACE 21Example 6.2. Gasket. �(a) = a�1b�1abaa�(b) = ba�1baA� = � 2 00 2 �Denote by f : G ! R2 the homomorphism determined by f(a) = (1; 0) andf(b) = (0; 1). Let w = �1�2 : : : �n be any word in whih eah �i is an element offa; b; a�1; b�1g, and onsider the sequene of points xi 2 R2 ; i = 0; 1; : : : ; n, givenby x0 = (0; 0) and xi = f(�1�2 : : : �i) = f(�1) + f(�2) + � � � + f(�i); i � 1. Jointhe points x0; x1; : : : ; xn sequentially by line segments to obtain a polygonal pathp(w) and let Kn := Kn(�) = A�n� p(�n(aba�1b�1)): (6:1)Basially the path is obtained by traveling one unit left or right for an ourreneof a or a�1, resp., in the string and one unit up or down for an ourrene of b orb�1, resp.; then the path is ontrated by A�n. It is known [De1℄ that, if A� isexpanding, then the sequene fKng onverges with respet to the Hausdor� metrito a losed urve K := K(�) = limn!1Kn:Some line segments may be traversed byKn more than one time. We impose theonvention that eah traversal of a line segment in one diretion anels a traversalof that line segment in the opposite diretion. ThusKn an onsist of several losedurves, and hene Kn, and also K, may be disonneted. It an happen that thewinding number of Kn about a point is more than 1. In this ase there is no wellde�ned region enlosed by Kn. The following result makes this situation easy todetet [V4℄.Lemma 6.3. If the winding number of K1 about every point of R2rK1 is either0 or 1, then the same is true of Kn; n > 1.The endomorphism � : G! G will be referred to as boundary data if1. A� is expanding, and2. the winding number of K1 about every point of R2 rK1 is either 0 or 1.From Eq. (6.1) the path A(K1(�)) has sides that are parallel to the axes and joinsinteger lattie points. Let D� be the set of lattie points that are the lower leftorners of unit squares that lie inside A(K1(�)).Theorem 6.4. (Vine [V4℄) The mapping � : � 7! (A� ; D�) indues a bije-tion from the olletion of all boundary data to the olletion of all tile data suhthat �Tn(A� ; D�) = Kn(�):Moreover, if any of the onditions in Theorem 4.2 hold, then�T (A�; D�) = K(�):
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Figure 11. Approximations to the boundary of the twin dragon.

Figure 12. Boundary of the gasket.The bijetion is algorithmi and was used to draw Figure 11, whih gives the�rst approximations to the boundary of the twin dragon orresponding to the ap-proximations in Figure 3 drawn by the IFS method. The endomorphism is that ofExample 6.1. Figure 12 shows the boundary of the topologially more ompliatedgasket originally pitured in Figure 4. The endomorphism is that of Example 6.2.7. Lattie Tiling Problem and Aperiodi Proto-tile ProblemOne part of Hilbert's 18th problem asks whether there exists a polyhedron,opies of whih tile spae, but whih is not the fundamental region of a groupof isometries. In other words, the symmetry group of the tiling is not transitiveon tiles. Examples were disovered early on, a polyhedron in 3 dimensions byReinhardt [Re℄ in 1928 and a onvex pentagon in 2 dimensions by Kershner [Ker℄



DIGIT TILING OF EUCLIDEAN SPACE 23in 1968. All known examples, however, are periodi. A tiling of Rd is periodi if itssymmetry group ontains translations in d linearly independent diretions.A strong version of Hilbert's question is whether there exists a single tile whihadmits only nonperiodi tilings. A nonperiodi tiling is one that admits no transla-tions. The Penrose tiles omprise a set of two tiles, opies of whih tile the plane inunountably many ways, but no suh tiling is periodi. A set of proto-tiles, opiesof whih tile Rd but only nonperiodially, is alled aperiodi. The Shmitt-Conway-Danzer (SCD) tile [Da, Sh℄, for example, is a single, onvex, aperiodi tile in R3(under the restrition that mirror image opies of the proto-tile are not allowed andsrew symmetry does not ount as a periodi symmetry). The SCD tile provides asolution to the above question, but the following questions remain open.Question 7.1. Does there exists a single aperiodi proto-tile in R2?Question 7.2. Does there exist an aperiodi proto-tile that tiles Rd by trans-lation?The answer to Question 7.2 in dimension 1 is no [LW1℄. Venkov [Ven℄ answeredQuestion 7.2 in 1954 in any dimension for the ase of a onvex proto-tile, a resultindependently redisovered by MMullen [MM℄. Their result: if a onvex T tilesRd by translation, then there is a lattie tiling of Rd by opies of T . The same resultis true in dimension 2 for polyominoes1 [BN, KV, WvL℄. However, the Venkov-MMullen result is not true for non-onvex tiles in general. The 1-dimensional tile[0; 1℄ [ [2; 3℄ allows a a tiling, but no lattie tiling of R. Szab�o [Sz℄ onstruts a3-dimensional, entrally symmetri, star polyhedron whose translates tile R3 , butadmits no lattie tiling of R3 . A lattie tiling is periodi, but a periodi tiling is notneessarily a lattie tiling. So Question 7.2 remains unresolved in the non-onvex,non-polyomino ase.A natural plae to seek an example that might aÆrmatively answer Question 7.2is among the digit tiles. Any digit tile T admits a tiling by translation as given byEq. (4.1) in x4. However this tiling is sometimes not periodi, as in Example 4.1 andFigure 7. The tile in Figure 7, however, does admit a lattie tiling - by translationby the lattie generated by vetors (1; 0) and (0; 2). Gr�ohenig and Haas [GH℄onjetured that every digit tile admits a lattie tiling. What makes the onjeturediÆult is the existene of tiles, as in Example 4.1, that do not satisfy the onditionsof Theorem 4.2. The lattie tiling onjeture was reently veri�ed by Lagarias andWang; so it is not possible to �nd an aperiodi digit tile. Note that the tilingguaranteed by their theorem is not neessarily self-repliating in the sense of x4.Theorem 7.3. (Lagarias and Wang [LW4℄) Every digit tile T admits a lattietiling of Rd for some lattie L � Zd.For remarks on Question 7.1 see Penrose's paper [P2℄. Although there is noknown single aperiodi proto-tile in R2 , the analogous problem for overings ofR2 is solved. Moreover, the result has reeived onsiderable attention reentlybeause of its impliations for the struture of real quasirystals. Consider themarked regular deagon on the left in Figure 13. This proto-tile is used to overthe plane with overlap allowed, but only aording to the following overlap rule:two deagons may overlap only if shaded regions overlap and the overlap area isgreater than or equal to the area of the overlap hexagon in the enter illustration in1A polyomino is a rookwise onneted tile formed by joining unit squares at their edges.
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Figure 13. Overlapping marked deagons.Figure 13. The �gure shows the two possible sizes of the overlap. Gummelt [Gu℄proved that every overing by marked deagons that satis�es the overlap rule isnonperiodi. Moverover, by disseting eah deagon into Penrose aute and obtusetriangles (Figure 15), suh deagon overings an be put into orrespondene withthe Penrose tilings.Jeong and Steinhardt [JS℄ subsequently proved that both the Penrose mathingrules for Penrose tilings and the overlap rule for deagon overings an be replaedby a ondition on the density of ertain lusters. More preisely, the Penrosetilings are the tilings by Penrose rhombs for whih the density of ertain lusters oftiles (lusters whose union is essentially the Gummelt deagon) is maximum. Thisresult led Jeong and Steinhardt to hypothesize that quasirystals are formed froma single type of atomi luster that an share atoms with neighboring lusters andthat quasirystals maximize luster density. Evidene for suh a model reentlyame from eletron mirosopy [St℄. Eletron mirographs of Al72Ni20Co8 showstriking similarities to the deagon overings in Gummelt's paper.8. Crystallographi digit tilingA rystallographi group � is a disrete, oompat group of isometries of Eu-lidean spae. Disrete means that any ball ontains at most �nitely many pointsin the �-orbit of any point. Coompat means that the quotient spae Rd=� isompat. A lattie group, the group of translations by the points of a lattie, isa speial ase of a rystallographi group. A fundamental theorem of Bieberbahstates that it � is a d-dimensional rystallographi group, then � ontains a trans-lation subgroup, a subgroup generated by translations in d independent diretions.Under any of the onditions of Theorem 4.2 a self-repliating digit tiling is alattie tiling. This means that T = f(T ) j  2 Lg;where L is a lattie group. But a lattie group L is only one of 17 rystallographigroups in the plane and only one of 230 rystallographi groups in 3-spae. Thissetion briey desribes a generalization, due to Gelbrih [Ge1℄, from lattie tilingto rystallographi tiling. A rystallographi tiling is of the formT = f(T ) j  2 �g;where � is a rystallographi group.2The basi onstrution of digit tiles given in x2 is based on a lattie L. Thelinear expansion A maps L into itself; so ALA�1 is the subgroup of translations by2The term \rystallographi" is often used interhangeably with the term \periodi." Arystallographi tiling is periodi by Bieberbah's theorem, but a periodi tiling is not neessarilyrystallographi. The symmetry group of a periodi tiling may not at transitively on the tiles.



DIGIT TILING OF EUCLIDEAN SPACE 25points of the sublattie A(L). A set of oset representatives of L=ALA�1 onsistsof translations by a digit set D. To generalize, let � be any rystallographi group;let A : Rd ! Rd be a linear expanding map suh that A�A�1 � � and letD = fd1; : : : ; dNg be a set of right oset representatives of �=A�A�1. Then theontrations fi(x) = A�1 Æ di(x)provide an iterated funtion system with a unique attrator, say T := T (�; A;D).The analogue of Theorem 2.5 holds: T (�; A;D) is a ompat set that is the losureof its interior. Call T (�; A;D) a rystallographi digit tile.

Figure 14. Crystallographi digit tilings: sea horse and oral reef.Using the same reasoning as for ordinary digit tiles, every rystallographidigit tile in Rd admits a tiling of Rd that is self-repliating in the sense of x4.Some rystallographi tilings, ourtesy of Gelbrih and Gieshe [GeG℄, are shownin Figure 14 and are reminisent of fratalized Esher prints. Analogous to (4.1) itan be shown that every self-repliating rystallographi tiling is of the formT = f(T ) j  2 �0g;where �0 is a subset (not neessarily a subgroup) of �.



26 ANDREW VINCEThe analogous result to Theorem 7.3, that every rystallographi digit tileadmits a rystallographi tiling seems likely, but is open as far as we know. Theissue is, given a rystallographi tile T , whether there exists a tiling f(T ) :  2 �0gwhere �0 is a rystallographi group. Generalizing the results of x4, x5 and x6 torystallographi tiles would also be of interest.9. Hierarhial tilingAll tilings in x1 - x8 are by opies of a single tile. We now turn to tilings byopies of tiles taken from a �nite set of proto-tiles. Many of the onepts that ourin the remainder of this paper are valid in a general ontext; so we introdue thenotions of hierarhy and hierarhial tiling and frame the theory in this setting.Hierarhy is the basi notion; the tilings will be produed automatially from thehierarhy.9.1. Hierarhy. Let P = (P0; P1; P2; : : : ) be a sequene of �nite proto-tilesets. De�ne inradius (Pn) to be the largest r suh that eah proto-tile in Pnontains a ball of radius r. Call P a hierarhy if the following three onditions aresatis�ed.1. limn!1 inradius (Pn) =1.2. Eah tile in Pn+1 has a unique subdivision into the non-overlapping unionof isometri opies of tiles in Pn.The subdivision rule in ondition (2) must be unique in the sense that eah tile inPn+1 an be subdivided into the non-overlapping union of isometri opies of tiles inPn in a unique way. (If there is ambiguity, for example if a proto-tile has nontrivialsymmetry, then it is ommon to olor some points in the tiles so that olors mustmath. In the IFS approah disussed in x10 this oloring is unneessary.) Let Sbe an non-overlapping set of tiles in Rd taken from Pn. Using the subdivision rulethere is a unique set S(1) of tiles from Pn�1 obtained by subdividing eah tile inS aording to the subdivision rule. Repeat to obtain from S the kth subdivisionS(k); k � n, by tiles in Pn�k.3. For any given m, eah tile in Pm appears in the (n � m)th subdivision ofeah tile in Pn for all n suÆiently large.The square hierarhy example in Figure 15 shows the �rst three proto-tile setsand the �rst and seond subdivisions. (Eah proto-tile set onsists of a single tile.)The seond hierarhy in Figure 13 is by aute and obtuse Penrose triangles. Eahproto-tile set onsists of two tiles. The seond subdivision is shown. (It an alsobe onsidered as the fourth subdivisions in the �ner hierarhy shown in [GS, p.540℄.) To insure uniqueness of the subdivision rule, the verties of the trianglesshould be appropriately olored, as is usually done for the Penrose tiles. In both ofthese examples the proto-tile sets P0; P1; : : : have the same ardinality. Moreover,orresponding tiles in Pn and Pn+1 are similar, the ratio being 2 in the ase of thesquares and the golden ratio � in the ase of the Penrose tiles. (These are examplesof what are ommonly alled loal ination rules). In general, this does not haveto be the ase for a hierarhy.9.2. Hierarhial tiling. A tiling by opies of tiles taken from a proto-tileset P will be alled a P-tiling. A path of a tiling is a subset of tiles whose unionis a topologial ball. The de�nition of hierarhy onerns the proto-tile sets, not
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Figure 15. Square and Penrose hierarhies.tilings by these proto-tiles. Now de�ne a tiling T to be hierarhial if there existsa hierarhy P0; P1; P2; : : : and a sequene T0; T1; T2; : : : of tilings with T0 = T suhthat1. Tn is a Pn-tiling for all n.2. Tn is the subdivision of Tn+1 for eah n.3. Eah path in T appears in the nth subdivision of some tile in Pn, for nsuÆiently large, n depending only on the size of the path.The last ondition is to eliminate from onsideration tilings suh as the following.Combine the square tiling of the left half-plane and the square tiling of the righthalf-plane o�set slightly along a vertial \fault" where the two half-planes meet.If T is a tiling with hierarhy P , then T will be referred to as a P-tiling. We alsouse the terminology P admits the tiling T . Note that if P = (P0; P1; P2; : : : ) is ahierarhy then so is any in�nite subsequene P 0 = (Pi0; Pi1; Pi2 : : : ) with the obvioussubdivision rule oming from the subdivision rule for P . Moreover, if P0 = Pi0,then a tiling T is a P-tiling if and only if T is a P 0-tiling. Suh hierarhies P andP 0 will be onsidered equivalent.If, for every P-tiling T , the sequene T0; T1; T2; : : : is uniquely determined, thenwe say that P fores uniqueness. The hierarhy of squares in Figure 15 does notfore uniqueness; for the tiling T of the plane by squares, there are in�nitely manyways to hoose the sequene of tilings T0; T1; T2; : : : . The Penrose hierarhy doesfore uniqueness on any Penrose tiling of the plane by thik and thin triangles. Inother words, the subdivision rule for the Penrose hierarhy is loally invertible; thesubdivision rule for the square hierarhy is not. If the hierarhy for a tiling foresuniqueness, then the tiling is ommonly said to satisfy the unique ompositionproperty or the loal ination/deation property.



28 ANDREW VINCEA tiling T is of �nite type if, for any positive number r, there are at most�nitely many pathes, up to ongruene, within a ball of radius r. A tiling T hasthe loal isomorphism property if, for any path Q of T , there is a number R suhthat any ball of radius R ontains, up to ongruene, a opy of Q. Two tilings T1and T2 are said to be loally isomorphi if every path of T1 an be found in T2and vie versa. Loal isomorphism is an equivalene relation.3 Nonperiodi tilingsthat are both of �nite type and satisfy the loal isomorphism property have beenreferred to as quasiperiodi. Sine the term quasiperiodi has multiple de�nitionsin the literature we will not use it.4Theorem 9.1. Let P be a hierarhy.1. Every P-tiling is of �nite type.2. Every P-tiling has the loal isomorphism property, and any two P-tilings areloally isomorphi.3. If P fores uniqueness, then every P-tiling is nonperiodi.Proof. Let P = (P0; P1; P2; : : : ) be the hierarhy and (T0; T1; T2; : : : ) the or-responding sequene of tilings with T0 = T . By ondition (3) in the de�nitionof hierarhial tiling, any ball of radius r in a P-tiling T is ontained in the kthsubdivision p(k) of some tile p 2 Pk, where k depends only on r. Sine there are atmost �nitely many on�gurations within the kth subdivision of the tiles of Pk, the�nite type property is veri�ed.To verify the loal isomorphism property, let Q be a path in T . Again, Qappears in the kth subdivision p(k) of some proto-tile p 2 Pk. But by ondition (3)in the de�nition of hierarhy, the proto-tile p, in turn, appears in the subdivisionof eah tile in Pn for n suÆiently large. Finally, sine the tiles are ompat, thereis a number R, depending only on n, suh that any ball of radius R ontains sometile in Tn. Therefore any ball of radius R ontains Q. The same reasoning showsthat any two P-tilings are loally isomorphi.Assume that P fores uniqueness, and assume, by way of ontradition, thatT admits a translational symmetry. This indues a translational symmetry of T1;otherwise uniqueness of T1 is violated. Repeating this argument implies that, foreah n, there is a translational symmetry of Tn. But this is impossible beauseinradius (Pn)!1 by ondition (1) in the de�nition of hierarhy.Note that, for the set P of Penrose tiles, the standard mathing rules guaranteethat every P -tiling is a P-tiling. Sine the Penrose hierarhy fores uniqueness, itfollows from Theorem 9.1 that no P -tiling is periodi. In this ase we all P anaperiodi set; no tiling by opies of tiles in P is periodi.So far it has not been assumed that a given hierarhy P = (P0; P1; : : : ) admitseven a single tiling. The existene of P-tilings is now addressed. If pn 2 Pn andpn+1 2 Pn+1 then, in aordane with the subdivision rule, pn an possibly appear3Conerning terminology in the literature, two tiling in the same loal isomorphism lassare sometimes alled loally indistinguishable, and a tiling with the loal isomorphism property issometimes alled repetitive. Another equivalene relation among tilings, mutual loal derivability,will not ome into play in this paper. We use the terms \�nite type" and \loal isomorphism"with respet to ongruene. Analogous versions with respet to translations are also often used.4This paper does not disuss the well known projetion method for onstruting \quasiperi-odi" point sets. It is interesting to note, however, that there exists suh sets for whih the windowsystem an be interpreted as a self-similar tile with fratal boundary; see [LGJJ℄.



DIGIT TILING OF EUCLIDEAN SPACE 29several times in pn+1 (or not at all). Let S(pn; pn+1) be a set of symbols denotingthe positions of pn in the subdivision of pn+1. If pn does not appear in pn+1,then S(pn; pn+1) is empty. Consider any sequene C = (0; 1; : : : ) where eahn 2 S(pn; pn+1) for some pn 2 Pn; pn+1 2 Pn+1 and, if n�1 2 S(qn�1; qn) andn 2 S(pn; pn+1) then qn = pn. Construt a tiling from C as follows. Start withQ0 := p0; Q0 is embedded in the subdivision Q1 of tile p1 in position 0; p1, inturn, is embedded in the subdivision Q2 of p2 in position 1. Continue in this wayto obtain a nested sequene Q0 ,! Q1 ,! Q2 ,! : : : of pathes. The union SnQnis a partial tiling. We use the term \partial" beause the union may not be allRd . Call two suh sequenes C and C 0 equivalent if there is an integer k suh thatthe sequenes C and C 0 agree after the �rst k terms. Beause of the uniquenessof subdivision, equivalent sequenes yield the same partial tiling up to ongruene.Call an equivalene lass of sequenes a ode for the tiling it produes. So there isa well-de�ned mapping from the set of odes onto the set of partial P-tilings. (Themapping may not be one-to-one; the square tiling of the plane, for instane, hasin�nitely many odes.)If, in ondition (3) in the de�nition of hierarhy, it is required that eah tile inPm appears in the interior (not interseting the boundary) of eah tile in Pn, thenwe all the hierarhy interior. The following result is surely known; in partiular ithas long been known for the Penrose hierarhy [GS℄.Theorem 9.2. 1. If a hierarhy P is interior, then P admits (full) tilings.2. If P fores uniqueness, then there is a bijetion between the set of odes andthe set of partial tilings (up to isometry). In partiular P admits unountablymany partial tilings (unountably many full tilings if P is interior).Proof. Conerning (1), the property of being interior insures that for someode the union SnQn desribed above overs all Rd , hene produing a full tiling.Conerning (2), given a P-tiling T , any ode C(T ) = (0; 1; : : : ) for T isobtained as follows. Choose an arbitrary tile T0 2 T , where T0 has proto-tile typep0, Then T0 is ontained at position 0 in a unique tile T1 of proto-tile type p1 atthe next level. In general Tn of type pn is ontained at position n in a uniquetile of type pn+1. Moreover if C and C 0 are both odes for T then they must beequivalent beause, any two initial tiles in T are ontained in the same single tileat a suÆiently high level.Beause of ondition (1) in the de�nition of hierarhy, there are at least twohoies for the next embedding at in�nitely many stages. So there are unountablymany odes, hene unountably many tilings.The ode for the Penrose tiling by aute and obtuse triangles an be denotedby binary digits 0 or 1 in suh a way that eah partial tiling is given by a uniquebinary sequene whih ontains no subsequene 11. (This ode is with respet to the�ner hierarhy mentioned in referene to Figure 13.) Every suh binary sequene,exept (000 : : : ), (10001000 : : : ) and (00100010001 : : :) yields a tiling of R2 . Theexeptions yield partial tilings whih an easily be extended to full tilings. Hene byTheorem 9.2 there is a bijetion between the set of odes and set of Penrose tilings.The Penrose tiling with ode (000 : : : ), alled the artwheel, has been singled out inthe literature. For example it is shown in [GS℄ that, exept for seven exeptions,every tile in the artwheel tiling lies in a path of tiles whose symmetry group isthe dihedral group D5. A speial ase of Theorem 10.1 in the next setion implies



30 ANDREW VINCEthe surprising property that the artwheel is the unique Penrose tiling T for whihan expansion by the golden ratio sends eah tile in T to the union of tiles in T .10. Self-aÆne and Self-similar tilingThe basi onept in x9 is a hierarhy P . From a given hierarhy, tilingsare produed aording to Theorem 9.2, in�nitely many in the ase that P foresuniqueness. This setion onerns two speial types of hierarhies, self-aÆne andself-similar, and their assoiated tilings. After de�ning self-aÆne and self-similarhierarhy (x10.1), a few important results onerning the assoiated tilings are pre-sented (x10.2). An alternative approah based on graph iterated funtion systemsis given in x10.3. Examples appear in x10.4.10.1. De�nitions. Let A : Rd ! Rd be a linear expanding map. Let P =fT1; T2; : : : ; TNg be a �nite set of proto-tiles, and letPn = fAn(p) j p 2 Pg: (10:1)The subdivision rule for the �rst level of a hierarhy P = (P0; P1; : : : ) is givenexpliitly as follows for eah i = 1; 2 : : : ; N :A(Ti) =[ gkij(Tj); (10:2)where the union is non-overlapping with indies j = 1; 2; : : : ; N and \multipliities"k = 1; 2; : : : ; k(i; j), and eah gkij is an isometry. The funtional equation (10.2)states that eah large tile A(Ti) is the non-overlapping union of opies of the smalltiles T1; : : : ; TN . In this union, eah tile of type Tj an appear one or more times(k(i; j) � 1) or not at all (k(i; j) = 0).To de�ne the subdivision rule on Pn for n > 1; make the following assumption:A Æ gkij ÆA�1 is an isometry for all i; j; k: (10:3)Assumption (10.3) allows Eq. (10.2) to be iterated to obtain a subdivision ruleat every level. The matrix M = (k(i; j)) of multipliities from (10.2) is alledthe substitution matrix for the subdivision. Thus k(i; j) is the number of times Tjappears in Ti. Condition (3) in the de�nition of hierarhy in x9.1 is equivalent tosome power ofM being stritly positive, i.e.,M is what is alled a primitive matrix.If this is the ase P satis�es all three onditions in the de�nition of hierarhy.Assumption (10.3) holds if either1. gkij is a translation for eah i; j; k, or2. A is a similarity.In ase (1) the hierarhy P will be alled self-aÆne and in ase (2) self-similar. Ifboth (1) and (2) hold we all the hierarhy translationally self-similar. Let Pn beas in Eq. 10.1 and let P 0n = fA0n(p) j p 2 Pg, where A0 = � ÆA for some isometry�. Note that P = (P0; P1; : : : ) and P 0 = (P 00; P 01; : : : ) are the same hierarhy. Inpartiular, in the self-similar ase it an be assumed that A(x) = x where  > 1.In either ase, the remarks in x9.2 imply that replaing A by � ÆAs, where � is anisometry and s any positive integer results in an equivalent hierarhy as de�ned inx9.2.A P-tiling will be alled self-aÆne if P is a self-aÆne hierarhy and self-similarif P is a self-similar hierarhy. It is unfortunate that the term \self-similar" has



DIGIT TILING OF EUCLIDEAN SPACE 31slightly di�erent de�nitions in various publiations on the subjet. The de�nitionof self-similar in [So2℄, for example, assumes that both onditions (1) and (2) hold,translationally self-similar in our terminology. A self-similar tiling in [Ke3, So1,Th℄ has an additional property we will all speial. A self-aÆne or self-similar tilingT is speial if the image A0(T ) is, for any T 2 T , the union of tiles in T . HereA0 an be any linear map of the form � ÆAs, whih, as disussed in the paragraphabove, results in a hierarhy equivalent to the original hierarhy. This de�nition ofspeial is a diret generalization from x4 of the term self-repliating; in that ases = 1.10.2. Some results. In this setion several misellaneous results on self-aÆneand self-similar tilings are presented. Let P be either a self-aÆne or a self-similarhierarhy and denote by 
P the set of all P-tilings. The subdivision operator� : 
P ! 
P is de�ned as follows. Using the notation A(T ) = fA(T ) j T 2 T gde�ne �(T ) = A(T )(1);the �rst subdivision of the inated tiling A(T ). Aording to the next result, thespeial self-aÆne and self-similar tilings are the ones with a repeating ode.Theorem 10.1. The following statements are equivalent for a self-aÆne orself-similar tiling T .1. T is a �xed point of the subdivision operator �s for some positive integer s.2. There is a repeating ode for T of the formC(T ) = (1; 2; : : : ; s; 1; 2; : : : ; s; : : : ).3. The tiling T is speial.Proof. (1) () (2) First, �s(T ) = T if and only if the two tilings have asame ode (up to equivalene), say (1; 2; : : : ). But if C(T ) = (1; 2; : : : ), then, bythe de�nition of the subdivision operator, C(�s(T )) = (01; 02; : : : ; 0s; 1; 2; : : : ) forsome symbols 01; 02; : : : ; 0s. Hene, by the de�nition of equivalent odes, �s(T ) = Tif and only if k+s = k for k suÆiently large. This is the ase if and only if (T )repeats with period s.(1) () (3) The tiling T is a �xed point of the subdivision operator �s if andonly if As(T )(s) = �(T ) for some isometry �. This is the ase if and only if, foreah tile T 2 T , we have As(T ) = SKi=1 �(Ti) for some tiles Ti 2 T . This equationis equivalent to (��1 ÆAs)(T ) = SKi=1 Ti; in other words, T is speial.Corollary 10.2. Every self-aÆne or self-similar hierarhy admits a speialtiling.Proof. Property (3) in the de�nition of the hierarhy, i.e. that the substi-tution matrix is primitive, implies that the hierarhy admits a tiling whose oderepeats. The result then follows from Theorem 10.1.The following result onerns the unique omposition property de�ned in x9.2.The third part of Theorem 9.1 states, in partiular, that a self-aÆne tiling withthe unique omposition property (loal ination/deation) must be nonperiodi. Aproof of the onverse in the 1-dimensional ase appeared in [Mo℄. The onverse istrue in general.



32 ANDREW VINCETheorem 10.3. (Solomyak [So2℄) If a self-aÆne tiling is nonperiodi then ithas the unique omposition property.The next result onerns tile frequenies. Reall, for example, that the fre-quenies of the two Penrose tiles in any Penrose tiling exist and the ratio of thetwo frequenies is the golden ratio [GS℄. The existene of uniform frequenies ofpathes in ubes was established by Lunnon and Pleasants for substitution tilingsby tiles that are polytopes [LuP℄. In general, let Q be a path in a tiling T . LetLQ(X) denote the number of translates of Q in a region X � Rd . The frequenyfreq(Q) of the path is de�ned as the following limit, if it exists,limn!1 LQ(Xn)V ol(Xn) ;where Xn is a region with d-dimension measure Vol(Xn) that tends to in�nity insuh a way that the boundary of Xn does not wriggle too muh. A preise de�nitionand the following statement appear in [So1℄.Theorem 10.4. (Solomyak) If T is a self-aÆne tilling, then the frequenies ofpathes exist.For a nonempty path Q in a translationally self-similar tiling T , de�ne theloator set LQ(T ) = fx 2 Rd j there exists Q0 � T with Q = Q0 � xg:Voronoi tilings based on these loator sets an be onstruted. Priebe [Pri℄ provesan interesting �niteness property onerning the number of these derived Voronoitilings of T .There is a growing body of work on the dynamial systems arising from theation by translation on a ertain spae of tilings. Solomyak [So1℄ gives a om-prehensive survey of results on the dynamis of self-aÆne tilings, inluding a proofof unique ergodiity. We refer the interested reader to the ited paper and thereferenes therein.Perhaps the best known property of translationally self-similar tilings onernspossible expansion onstants. For a self-similar tiling of the plane R2 �= C themap A an be represented as multipliation by an expansion onstant � 2 C . Thenext theorem was announed by Thurston with a proof of neessity. Kenyon gavea onstrutive proof of suÆieny and a generalization to self-aÆne tilings in Rd[Ke1℄.Theorem 10.5. (Thurston [Th℄, Kenyon [Ke3℄) A translationally self-similartiling of the plane with expansion onstant � exists if and only � is a omplexPerron number, that is, an algebrai integer whose Galois onjugates, exept �, areless than j�j in modulus.Conerning Theorem 10.5, it is not hard to show that, for a translationally self-similar tiling, j�j2 = �� is a real Perron number. In fat, this is essentially whatis done in the proof of Proposition 10.1 later in this paper. The proof that j�j2 isa Perron number is based on the fat that the area of eah proto-tile inreases bya fator of j�j2 under the ination by � and this inated area is an integer linearombination of the areas of the original proto-tiles. To show the stronger resultthat � itself is a Perron number, Thurston onsiders ertain distinguished points(apitals or ontrol points) for eah proto-tile, and a ertain �nite set of di�erenes



DIGIT TILING OF EUCLIDEAN SPACE 33between ontrol points in the tiling. Then � inates this set of di�erenes so thatthe inated di�erenes are an integer linear ombination of the original di�erenes.We onlude this setion with a very brief omment on the di�ration spetrumof a self-similar tiling. One of the ommon de�nitions of quasirystal is that of anatomi struture whose X-ray di�ration shows Bragg peaks - sharp spots in thedi�ration pattern. For a disrete set Y of points in Rd (an atomi arrangementsay), onsider the distribution f(x) = Py2Y Æy, where Æx is the Dira delta. TheX-ray di�ration of Y an be desribed using the Fourier transform b of a relateddistribution , alled the autoorrelation. See [Ba℄ or [Se℄, for example, for de�ni-tions and bakground. Under mild onditions b an be deomposed into a disretepart (Bragg spetrum) and ontinuous part (di�use spetrum). Conerning tilings,by hoosing a distinguished point for eah type of tile, the spetrum of a P-tiling anbe disussed. In several examples of self-similar tilings it was notied that, for theexistene of nontrivial Bragg spetrum, it is neessary that the Perron-Frobeniuseigenvalue (the largest eigenvalue) of the substitution matrix be a Pisot number[BT℄. A Pisot number is an algebrai integer � > 1 suh that all its other Galoisonjugates lie inside the unit irle. In the generality below, the result is due toG�ahler and Klitzing [GK℄.Theorem 10.6. (G�ahler and Klitzing) If  > 1 is the expansion fator of aself-similar tiling with nontrivial Bragg spetrum, then  must be a Pisot number.That  is a Pisot number is equivalent to the Perron-Frobenius eigenvalue ofthe substitution matrix being a Pisot number. G�ahler and Klitzing go on to givea nie desription of the Bragg spetrum of a self-similar tiling, whih leads todistinguishing three types of suh tilings: quasiperiodi, limit-periodi and limit-quasiperiodi.10.3. Graph iterated funtion systems. This setion onerns a onstru-tive approah to self-aÆne and self-similar tilings based on graph iterated funtionsystems. Whereas the attrator to an IFS is a single ompat set, the attrator of agraph IFS is a �nite olletion of ompat sets. This generalization an be found in[MW℄ as well as in the literature on image ompression. Bandt [B1, B3℄ appliesthe method to tilings.Using the same notation as in x2 let C := C(Rd ) denote the spae of nonemptyompat subsets of Rd , omplete with respet to the Hausdor� metri, and let CNbe the N -fold Cartesian produt of opies of C. A graph iterated funtion system(GIFS) is a direted graph G, possibly with loops and multiple edges in whihthe verties of G are labeled by f1; 2; : : : ; Ng and eah edge e is labeled with aontration fe : Rd ! Rd . It is also assumed that G is strongly onneted, i.e., thatthere is a direted path from any vertex to any other. Let Eij denote the set ofedges from vertex i to vertex j. De�ne the funtionF : CN ! CNas follows. If X = (X1; X2; : : : ; XN ) 2 CN , thenF (X) = (F1(X); F2(X); : : : ; FN (X));where Fi(X) = N[j=1 [e2Eij fe(Xj):



34 ANDREW VINCEIt an be shown that F is a ontration on CN , and onsequently has a unique �xedpoint T = (T1; T2; : : : ; TN).Now onsider the speial ase where eah ontration is of the formfe(x) = A�1 Æ ge;where A is an expanding linear map and ge is an isometry. The de�nition of �xedpoint implies A(Ti) = N[j=1 [e2Eij ge(Tj); i = 1; 2; : : : ; N; (10:4)whih is preisely Eq. (10.2). So, if eah ge is a translation or A is a similarity,then all the GIFS self-aÆne or self-similar, respetively. In this ase the sequeneP = fT; A(T); A2(T); : : : g (10:5)is a self-aÆne or self-similar hierarhy whose substitution rules are determined by(10.4) provided1. Ti is the losure of its interior for eah i, and2. the unions in Eq. (10.4) are non-overlapping.
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Figure 16. Graph iterated funtion system for the Penrose tiles.From [Kees℄ it is known that m(�Ti) = 0. In the de�nition of GIFS, the onditionthat G be strongly onneted is equivalent to ondition (3) in the de�nition ofhierarhy in x9.1. So, assuming onditions (1) and (2) given just above, the P-tilingsare self-aÆne or self-similar tilings and, onversely, every self-aÆne or self-similartiling an be obtained by suh a GIFS onstrution.Figure 16 shows the self similar GIFS whose �xed point is the pair of Penrosetiles shown in Figure 15. The two loops direted from the left node orrespond tothe two similarities taking the aute Penrose triangle to two smaller similar opies inits �rst subdivision. The edge direted from the �rst to the seond node orrespondsto the similarity taking the obtuse Penrose triangle to a smaller similar opy in the�rst subdivision of the aute Penrose triangle. Likewise, the two edges direted fromthe right node orrespond to similarities taking eah of the two Penrose trianglesto smaller similar opies in the �rst subdivision of the obtuse triangle.Assuming ondition (1) holds, it is not diÆult to give a neessary and suÆientondition for ondition (2). Note that, in the GIFS terminology, the N �N matrixM = (jEij j) is the substitution matrix as de�ned in x10.1.Proposition 10.1. Assume that ondition (1) holds for a self-aÆne or self-similar GIFS. Then ondition (2) holds if and only if j detAj is the Perron-Frobeniuseigenvalue (the largest real eigenvalue) of the substitution matrix M .



DIGIT TILING OF EUCLIDEAN SPACE 35Proof. Let xi denote the Lebesgue measure of tile Ti. The unions in Eq. 10.4are non-overlapping if and only ifj detAjxi = NXj=1 jEij jxj ; i = 1; 2; : : : ; N:This means that j detAj is an eigenvalue of M . But for a non-negative matrix, theonly eigenvalue with a positive eigenvetor is the Perron-Frobenius eigenvalue.Given a direted edge path p = e1e2 � � � en and a ontration f : Rd ! Rd weintrodue the notation fp = fe1 Æ fe2 Æ � � � Æ fen :The following proposition follows diretly from Eq. (2.3) and allows for an algorithmto produe approximations of eah of the proto-tiles T1; T2; : : : ; TN in the self-aÆneor self-similar hierarhy.Proposition 10.2. Let T = (T1; T2; : : : ; TN ) be the �xed point of a GIFS G,and let E(n)i denote the set of all �nite, direted edge paths of length n in the graphG with initial vertex i. Then Ti is the limit with respet to the Hausdor� metriof the sets ffp(0) j p 2 E(n)i g as n!1.Aording to the proposition above, the graph G an be regarded as a �nitestate mahine. If the initial state is vertex i, then the tile Ti is the languageaepted by the mahine. (In fat, this is the point of view taken by Thurston [Th℄in the Pisot tiling example in x10.4.) Reall that a �nite state mahine M overthe alphabet F is a �nite set S (the states of the mahine), a map t : F � S ! S(the state transition map), together with a distinguished element I 2 S (the initialstate), and a distinguished set OK � S (the aepting states). A �nite statemahine an be represented as a direted graph in whih eah state is representedby a node and eah transition (f; s) 7! s0 is represented by an ar from s to s0labeled f . A word w in the alphabet F is aepted byM if, when you start at I andgo along the diretion given by w, you end up in OK. An in�nite word is aeptedif eah �nite pre�x is aepted. The GIFS graph G is made into �nite state mahineby delaring the verties of G aepting states and adding \fail states" so that thetransition map is de�ned for on all F � S.In a ode (0; 1; : : : ) for a self-aÆne or self-similar tiling, the position n of a tileAn(Tj) in tile An+1(Ti) is ompletely determined by fe where e is the appropriateedge from vertex i to vertex j in the graph G. Therefore, a ode for suh a tilingorresponds to (the equivalene lass of) an in�nite direted path in G with a giventerminal vertex. (Two edge paths with the same terminal vertex are equivalentif they oinide exept possibly for the last �nite number m of edges.) If thehierarhy fores uniqueness, then there is a bijetion between suh equivaleneslasses of direted paths and the (partial) tilings. In fat, the tilings an be givenexpliitly. In the self-aÆne ase eah ontration an be written in the formfe(x) = A�1x+ de; (10:6)where de 2 Rd . In the self-similar ase eah ontration is of the formfe(x) =  ge(x); (10:7)



36 ANDREW VINCEwhere  < 1 and ge is an isometry. If p is an in�nite, direted edge path in the graphG with �xed terminal vertex, let p(n) denote the �nite, direted edge path with thesame terminal vertex onsisting of the last n edges in p. By arefully applying thede�nitions we obtain the following tilings.Proposition 10.3. Let T = (T1; T2; : : : ; TN ) be the proto-tiles of a self-aÆneor self-similar hierarhy orresponding to the graph iterated funtion system G.1. If T is a self-aÆne tiling (ontrations of the form 10.6) with ode given bypath p = � � � e2e1e0, thenT =[ f nXj=0 (Aj(de0j � dej ) + Ti)g;where the union is over all n and all edge paths q = e0n � � � e01e00 with thesame initial vertex as p(n), and i is the terminal vertex of q.2. If T is a self-similar tiling (ontrations of the form 10.7) with ode givenby path p, then T =[ f(g�1p(n) Æ gq) (Ti)g;where the union is over all n and all edge paths q that have the same lengthand initial vertex as p(n), and i is the terminal vertex of q.10.4. Examples. Four types of examples of self-similar hierarhies are men-tioned in this setion. Reall that a self-similar hierarhy is ompletely determinedby the �rst subdivision rule, that is, by Eq. (10.4) of the GIFS graph G.Polygonal hierarhies. Numerous sporadi self-similar hierarhies using a singlepolygonal tile have been onstruted [GS℄. A simple example is the L-shapedtriomino hierarhy with subdivision rule as given by the third diagram in Figure2. This partiular hierarhy fores uniqueness; so by the results of x9 there areunountably many L-shaped triomino tilings, all nonperiodi, of �nite type andloally isomorphi. This is alled the hair tiling, and it has obvious analogues inhigher dimensions.

Figure 17. Subdivision rule for the pinwheel tiling.The best known polygonal self-similar hierarhy is the Penrose hierarhy inFigure 13 - already disussed in x9. Another important hierarhy is the the pin-wheel hierarhy [R1℄ based on 1; 2;p5 right triangles, the subdivision rule shownin Figure 17. This hierarhy has the property that, up to ongruene, there is one



DIGIT TILING OF EUCLIDEAN SPACE 37proto-tile, but in any of the unountably many, nonperiodi pinwheel tilings, thetile appears in (ountably) in�nitely many orientations.Hierarhies using a free group endomorphism. For ertain speial ases, Kenyon[Ke3℄ has extended the reurrent set method of x6.5 Using essentially the samenotation as in x6, let G := Gha1; : : : ; aN i denote the free group on N generators;let � : G ! G be an endomorphism. Using the notation [a b℄ = aba�1b�1 for theommutator, assume that eah �([ai aj ℄) is the produt of onjugates of various[air ajr ℄. Kenyon �nds a family of endomorphisms that satisfy this assumption.Take, for example, the ase N = 3 and let�(a) = b�(b) = �() = qa�sb�rwhere q; r � 0; s � 1. Then there is a omplex root � of x3� qx2+ rx+ s = 0 suhthat, if f : G ! C is the homomorphism determined by f(a) = 1; f(b) = �; f() =�2 and p denotes the orresponding polygonal path, thenAn = ��np(�(n)([a b℄))Bn = ��np(�(n)([b ℄))Cn = ��np(�(n)([a ℄))onverge in the Hausdor� metri to losed urvesA;B;C, respetively. Let Ta; Tb; Tdenote the enlosed ompat tiles. Then �Ta is Tb; �Tb is the non-overlapping unionof s translates of T and r translates of Tb; and �T is the non-overlapping union ofq translates of Tb and s translates of Ta. This gives a subdivision rule for a transla-tionally self-similar hierarhy. Some assoiated tilings are illustrated in [Ke3, So1℄.Figure 18 is an example with six types of tiles, ourtesy of R. Kenyon, whose ex-pansion is a omplex root of x4 + x + 1. It is also a Pisot tiling as de�ned in thenext paragraph.Pisot tilings. Thurston [Th℄ onsiders radix representation of a real numberon the line or omplex number in the plane in the form z = Pni=i0 ai��i, where� is a �xed real (omplex) number and the ai are hosen from a �nite set D ofalgebrai integers in Q(�), and D ontains 0. In general, D is not a digit set in thesense of x2. It is not diÆult to hoose D so that every number z has suh a radixrepresentation, but the representation is usually not unique.The �rst step in onstruting a self-similar hierarhy is to hoose an orderingof D : d1 < d2 < � � � < dN . A proper representation of a number z is the one whihis greatest in the orresponding lexiographi order. A representation of z is weaklyproper if every �nite initial segment of z an be extended to a proper representation.As a one dimensional example onsider base � = 1+p52 and D = f0; 1g with 0 < 1.Then :101010 : : : is weakly proper, but not proper beause 1 = :101010 : : : . In thisexample the weakly proper representations are exatly those that ontain no twoonseutive 1's.Thurston shows that if � is a omplex (or real) Pisot number, an algebraiinteger suh that all its Galois onjugates exept � and � lie inside the unit irle,5Also related is the work of Garia-Esudero and Kramer [G-EK℄ onerning an interpreta-tion of ertain 2-dimensional tilings using automorphisms of free groups.
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Figure 18. Pisot tiling.then there exists a �nite state mahineM(�;D), as de�ned in x10.3, whih will re-ognize whether a sequene of elements from D gives a weakly proper representationfor some number z. (In the one dimensional ase, the �nite state mahine an beexpliitly onstruted from the arry sequene, whih is the sequene of digits in theweakly proper representation of 1. If � is a Pisot number then the arry sequeneis eventually periodi. In the example above :101010 : : : is the arry sequene.)A self-similar hierarhy an be onstruted from the �nite state mahine. Turnthe �nite state mahine into a graph iterated funtion system as follows. Givena pair (�;D), where � is a Pisot number, �rst remove all the FAIL states (thestates that are not OK) from the assoiated �nite state mahine M(�;D). Thenrelabel the edges as follows. On eah edge e replae its label de by the ontrationfe(z) = ��1(z + de). This graph G, with say N nodes, determines a GIFS. Theattrator of this GIFS is (T1; T2; : : : ; TN ), where Tj an be desribed as follows.Aording to Proposition 10.2, the tile Tj onsists of all points z = P1i=1 ai��i,where ai 2 D for all i, and where the word a1a2a3 : : : is aepted by the �nite statemahine M(�;D) with vertex j as the initial state. In other words, Tj onsists ofall real (omplex) numbers with deimal expansion only to the right of the deimalpoint and with weakly proper representation orresponding to a direted path in Gstarting at vertex j. Let Eji denote the set of edges from vertex j to vertex i. Sinemultipliation by � is just a right shift of the deimal point we have the subdivision



DIGIT TILING OF EUCLIDEAN SPACE 39rule for eah j: �(Tj) = N[i=1 [e2Eji Ti + de:The union is non-overlapping beause of the uniqueness of weakly proper represen-tation.The Pisot tiling of R. Kenyon in Figure 18 has six types of tiles and uses radix� where � is a omplex root of x4 + x+ 1 with modulus greater than 1.Dual hierarhies. Given a self-aÆne or self-similar hierarhy P in terms of aGIFS graph G, the onstrution of a dual hierarhy P� is outlined by Thurston[Th℄ and expanded on and generalized by Gelbrih [Ge3℄ and by Praggastis [Pra℄.It also appears in a paper on the onstrution of so� partitions of hyperboli toralautomorphisms by Kenyon and Vershik [KeVe℄. We sketh the basi idea of theonstrution given in [Ge3℄.Given a GIFS graph G de�ne a dual graph G� as follows. If G has vertex setf1; 2; : : : ; Ng, let G� have vertex set f1�; 2�; : : : ; N�g. Eah edge in G labeled witha ontration f : Rd ! Rd is replaed by an oppositely direted edge in G� labeledby its dual f�, whih is de�ned in the next paragraph.A toral automorphism ~A : RM ! RM is a linear map leaving some lattie Linvariant and suh that j det ~Aj = 1. If eah eigenvalue of ~A has modulus 6= 1,then RM = Es � Eu suh that ~As = ~AjEs is a ontration and ~Au = ~AjEu isan expansion. It is known that, for a map A : Rd ! Rd that is the expansionfor ertain self-similar or self-aÆne hierarhies, there exists a toral automorphism~A : RM ! RM that is a lifting of A. This means that there is an embeddingi : Rd ,! RMsuh that i(Rd) = Eu and ~A Æ i = i Æ A. Let A� = ~A�1jEs be the inverse of thelifting restrited to the omplementary spae.More generally, for suh a self-aÆne hierarhy (and sometimes for a self-similarhierarhy) an aÆne ontration f : Rd ! Rd with linear part A an also be liftedto an aÆne map ~f : RM ! RM given by ~f(x) = ~A(x � b) where ~A leaves Eu andEs invariant and maps L bijetively onto itself. Let f� : Es ! Es be de�ned byf�(x) = A�(x) + projEsb:Now the dual graph G�, and thus the dual hierarhy P�, is de�ned.Some examples of this dual onstrution appear in [So1, Th℄. Figure 19,ourtesy of R. Kenyon, shows the 2-dimensional dual of a 1-dimensional Pisot tilingthat uses the real root of x3�x2�1 as base and f0; 1g as digit set. The subdivisionrule for the three types of tiles is of the form: T1 = f1(T2); T2 = f2(T3); T3 =f1(T1 [ T3).Gelbrih [Ge3℄ omputes the dual of the Penrose hierarhy and gives illustra-tions of some assoiated tilings. These tilings appeared previously in [BGu℄ andhave the following appealing property. For the Penrose tiles (kite and dart, thikand thin rhombs, or aute and obtuse triangles), somewhat arti�ial mathing rulesguarantee that the tilings are self-similar and, onsequently, that the proto-tile setis aperiodi. For the dual proto-tile set, the mathing rules are a diret onsequeneof the fratal shape of the boundaries of the two proto-tiles. Every tiling by opiesof the dual proto-tiles must be a self-similar tiling.
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Figure 19. Dual of a Pisot tiling.It is not always the ase that (1) the dual tiles have non-empty interior and (2)the union in (10.4) for the dual is non-overlapping. But these two onditions turnout to be equivalent [Ge4℄.11. Conluding RemarkA main question at this point is how, in general, to onstrut the self-aÆne andself-similar hierarhies - and hene tilings. Any suh hierarhy is the attrator of aGIFS. So from the GIFS point of view the issue is how to hoose the parameters (thelinear map A and translations de in 10.6 or the expansion fator  and isometriesge in 10.7) so that the tiles in the attrator of the GIFS have nonempty interior(ondition 1 in x10.3). In the ase of a single proto-tile this was done in x2 byhoosing the set of translations de as a digit set D. In the absene of periodiity,however, there is no obvious analogue of the quotient D = L=A(L) of a lattie bythe sublattie. There are known suÆient onditions to insure nonempty interior,inluding the \open set ondition" [F1℄ and an equivalent algebrai ondition dueto Bandt and Graf [BGr℄, but these are usually not readily appliable in pratie.A reasonable approah to the problem appears open at this time.
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