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1. INTRODUCTION 

There has been recent interest in combinatorial versions of classical 
theorems in topology. In particular, Stahl [S] and Little [3] have proved 
discrete versions of the Jordan Curve Theorem. The classical theorem 
states that a simple closed curve y separates the 2-sphere into two con- 
nected components of which y is their common boundary. The statements 
and proofs of the combinatorial versions in [3, 51 are given in terms of 
permutation pairs and colored graphs (see Sect. 4). In this paper short 
proofs of three graph theoretic versions of the Jordan Curve Theorem are 
given. 

A graph G may have multiple edges but no loops. It is understood that 
each vertex in a cycle has degree 2. A cycle y in a graph G will be said to 
have the First Jordan Curve Property (JCPl) if there exist connected 
proper subgraphs Z and 0 of G such that In 0 = y and Zu 0 = GO, where 
G, is the connected component of G containing y. In particular, any path 
from a vertex of Z to a vertex of 0 contains a vertex of y. A family C of 
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cycles of a graph G is called a double COWY if every edge in G is contained 
in exactly two cycles of C. The l-skeleton triangulation of a closed surface 
is an example, where C is the set of triangles. More generally, any 2-cell 
embedding of a graph on a surface is an example, if the set C of boundaries 
of 2-cells contains only cycles. 

For a set C of cycles in G let K(C) be the subspace of the cycle space 
spanned by C and define k = k(C) = JCI - dim K(C). Let 1 denote the 
number of connected components of G. Define the Euler characteristic of 
G with respect to a double cover C by x( G, C) = 1 VI - IEl + I Cl, where I/ 
and E are the vertex and edge sets, respectively. For a triangulation or a 
graph embedding, this is the usual definition. The following discrete version 
of the Jordan Curve Theorem is proved in Section 3. Two other discrete 
versions of the Jordan Curve Theorem appear as Theorem 2 in Section 3 
and Theorem 3 in Section 4. 

THEOREM 1. Ifx(G, C)=k+lf or some double cover C, then every cycle 
not in C has the First Jordan Curve Property. 

Note that a 2-connected planar graph G, where C is the set of boun- 
daries of regions, satisfies the hypotheses of the theorem with k = 1= 1 and 
x( G, C) = 2. 

2. DOUBLE COVERS 

If H is a subgraph of a graph G with double cover C, let CH denote the 
subset of C contained in H. The pair (G, C) is called irreducible if G has no 
proper subgraph H such that CH is a double cover of H. In general, a sub- 
graph H of G where (H, C,) is irreducible is called an irreducible compo- 
nent of G. It is clear that G is the union of its irreducible components and 
that the intersection of any two irreducible components is either empty or 
consists of isolated vertices. 

In the cycle space of a graph sums are modulo 2 (symmetric difference), 
and if C ci is a sum of cycles, it is always assumed, without loss of 
generality, that there are no repetitions among the ci. 

LEMMA 1. If C is a double cover of a graph G, then 

(i) k(C) equals the number oj’ irreducible components of (G, C). 

(ii) x(G, C) <k + 1 with equality if and only if C spans the cycle space 
of G. 

Proof: (i) Let (Gi, C,), 1 < i < m, be the irreducible components of 
(G, C) and let B be a subset of C consisting of ICi) - 1 cycles from each set 
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Cj. If B is dependent, then some subset D of B forms a double cover of the 
union of the cycles in D, contradicting the irreducibility of C. 

(ii) Let w(G) denote the cycle space of G. Then 

x(G, C)= IV1 - [El + ICI = IV/1 -[El +k+dimK(C) 

<II+-IEI+k+dim%(G) 

=IVI-IEl+k+lEI-lVl+l=k+l 

and equality is achieved if and only if dim K(C) = dim w(G). 1 

LEMMA 2. If C is an irreducible double cover of G, then 

(i) k=l= 1, 

(ii) x(G, C) < 2 with equality if and only if C spans the cycle space 
of G. 

ProoJ: If G is not connected, then for any component H of G the set of 
cycles C, forms a double cover of H, contradicting the irreducibility of C. 
That k = 1 follows directly from (i) of Lemma 1 and part (ii) follows from 
part (ii) of Lemma 1 and part (i) of Lemma 2. 1 

In the case of equality in the second part of Lemma 1 we have: 

LEMMA 3. Let C be a double cover of a graph G. If x(G, C) = k + 1 then 
for every block B of G 

(i) (B, C,) is irreducible, 

(ii) x(B, C,) = 2. 

Proof Let G1, GZ, . . . . G, be the irreducible components of G and 
Cj := C,, the irreducible double cover of Gj for each i. We claim that the 
Gj are exactly the blocks of G. From the definition of Euler characteristic 
it follows by induction that 

X( G, C) d C ;C(Gj, Cj) - m + 1, 

with equality if and only if each Gj is a block of G. 

Also by Lemma 1 

(1) 

k(C) = m. (2) 

From (1 ), (2), and Lemma 2 it follows that 

x(G, C)<CX(Gj, Cj)-m+l<2m-m+l=m+l=k+l 

with equality if and only if each Gj is a block of G. 1 
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The dual can be defined for a graph G with respect to a double cover C. 
Let G* be the graph with vertex set C such that for each edge e E E(G) 
there is an edge e* E E(G*) joining the two cycles in C containing e. For 
any vertex u E V(G) let E(u) be the set of edges incident to u. Then the 
set {e* 1 eE E(v)} forms a set C*(U) of disjoint cycles in G*. Now 
C* = (J (C*(u) 1 IJ E V(G)} is a double cover of G*. The dual of (G, C) is 
denoted (G, C)* = (G*, C*). Thus if C is the set of boundaries of regions 
formed by a graph G embedded on a surface, then G* is the ordinary dual. 
Lemmas 4 and 5 below follow from the definitions. 

LEMMA 4. If G1, . . . . G, are the irreducible components of G with respect 
to a double cover C, then GT is connected for each i and G* = u GT, where 
the union is disjoint. 

LEMMA 5. We have (G, C) ** = (G, C) zf and only zf IC*(u)l = 1 for all 
u E V(G). In this case x( G*, C*) = x(G, C). 

For any cycle y in G, let E*(y) = (e* I eE E(y)}. 

LEMMA 6. Let G be a graph with double cover C and y any cycle in G. 
Then G* -E*(y) has at most one more connected component than G*. 

Proof. Let H* be any connected component of G* -E*(y). Let D be the 
subset of C corresponding to V(H*) and H the subgraph of G that is the 
union of the cycles in D. Consider o = CcE D c. By the construction o c y 
and every vertex of 0 has degree greater than 1. Therefore, either 0 = 0 or 
CJ = y. In either case H contains y. Now consider any irreducible component 
GO of G. Then, by Lemma 4, if y does not lie entirely in GO, then 
G,* - E *(y ) remains connected. If y does lie entirely in GO, then G,* - E *( y ) 
has at most two connected components because each edge of y is covered 
only twice by C. 1 

3 4 
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FIGURE 1 
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FIGURE 2 

A curve y in G is said to have the Second Jordan Curve Property (JCP2) 
if G* -E*(y) has one more connected component than G*. If C is an 
irreducible double cover of G, then by Lemmas 4 and 6, y satisfies JCP2 
if and only if G* has exactly one connected component and G* - E*(y) has 
exactly two. For a graph embedded on a surface, this definition 
corresponds to the intuitive notion of a separating curve. 

JCPl and JCP2 are not equivalent. In Fig. 1 the graph is the l-skeleton 
of the cube with the understanding that the vertices labeled 1 are identified, 
and the cycles in C are the boundaries of the six faces. Then‘the cycle (2, 
3, A, 5, 6, 7, 2) has JCP2 but not JCPl. In the other direction the graph 
in Fig. 2 is understood to be embedded in the torus with opposite sides 
of the square identified. The cycles in C are the boundaries of the faces: 
(1, 2, 5, 6, 7), (1, 2, 3, 6, 7), (1, 4, 5, 6, 7), (1, 4, 3, 6, 7), (2, 3, 4), and 
(2, 4, 5). Then the cycle (1, 2, 3, 4, 1) has JCPl but not JCP2. 

3. DISCRETE JORDAN CURVE THEOREM 

This section contains the proof of Theorem 1 and a second discrete 
Jordan Curve Theorem, Theorem 2, based on the dual graph. 

Assume that C is an irreducible double cover of G and that 
x( G, C) = k + 1. By Lemma 2, C spans the cycle space of G. Hence there is 
a subset D of C such that CcEDc=y. Also CcECpDc=y. Let I and 0 be 
the union of the cycles in D and in C - D, respectively. Then Z and 0 are 
exactly the “inside” and “outside” subgraphs of y in the definition of JCPl. 

Proof of Theorem 1. The theorem is first proved in the case that (G, C) 
is irreducible. Since every edge in G lies on some cycle of C, I u 0 = G. 
Clearly I and 0 are proper subgraphs of G. We next show that Z and 0 are 
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connected. Clearly y c In 0. By way of contradiction, assume that there is 
a component I’ of Z that is disjoint from y. Then (I’, DIf) contradicts the 
irreducibility of (G, C). The same argument shows that 0 is connected. It 
remains only to show that In 0 = y. Every edge in Z, except those on y, lies 
on exactly two cycles of D and therefore on no cycle of C - D. Hence for 
edge sets E(Z) n E( 0) = E(y). Finally assume, by way of contradiction, that 
there is a vertex U, not on y, such that u E In 0. Because Z and 0 are 
connected and y c In 0, for a suitable such u there must exist a cycle 

7: v = vo, VI) . ..) v,, . . . . v, = v, 0 < m < n, 

such that (vi-l, vi)EE(Z) for i= 1, . . . . m and (vipl, vi)EE(O) for i=m+ 1, . . . . ~1. 
Since C spans the cycle space of G, there is a subset F of C such that 
c CE F c = z. Then there must exist a sequence F’ = (c, , . . . . c,) of cycles in F 
with the following properties: (1) ( V, V,)EC~ and (v, v,-,)Ec,; (2) VEcifor 
l<i<k; and (3) there are edges (V,Ui)Ecinci+, for i= 1,2,...,k-1. 
Because CccD c=Y=~,.~-~ c and no edge incident to v lies in y, either 
F’ c D or F’ c C - D. But this implies that edges (v, vi) and (v,- i, v) both 
lie in Z or both lie in 0. This contradicts E(Z) n E( 0) = E(y). 

Now consider the general case where (G, C) may be reducible. Let B be the 
block in which y is contained. Lemma 3 states that the result above can be 
applied to B. Let Ze and 0, be the two subgraphs of G guaranteed by the 
theorem. Consider the connected components of the graph obtained from G 
by removing B. Let I’ and 0’ be the union of those components that have a 
vertex in common with ZB and 0,, resp. If a component has a vertex in 
common with both, i.e., with y, then it is placed arbitrarily in one of I’ or 0’, 
but not both. Then Z= ZB u I’ and 0 = OS u 0’ are the subgraphs required 
in Theorem 1. 1 

The following discrete Jordan Curve Theorem has the advantage that the 
converse also holds. It has the disadvantage that JCP2, in contrast to JCPl, 
depends on the double cover C (via the construction of the dual). Comments 
on the converse of Theorem 1 are made in Section 5. 

THEOREM 2. Let G be a graph with double cover C. Then every cycle in 
G has the Second Jordan Curve Property if and only if x(G, C) = k + 1. 

ProojI Assume x(G, C) = k + 1 and that y is a cycle in G. Then y must 
lie in some block B of G. By Lemma 3, (B, C,) is irreducible and 
x(Z?, C,) = 2. By Lemma 4, B* is one of the connected components of G*. 
Let D be the subset of C and Z and 0 the graphs defined at the beginning 
of this section. Then B* -E*(y) = Z* u 0* and Z* n 0* = 0. Therefore 
B* - E*(y) has one more connected component than B*; and hence the 
same is true for G* -E*(y) and G*. 
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Conversely assume that x(G, C) < k + Z, and let y be a cycle not in the 
span of C. Assume, by way of contradiction, that G* -E*(y) has more 
components than G*. Then for some connected component G,* of G* there 
are two connected components, H* and another, of G,* -E*(y). Let D and 
0 = C, E D c be as defined in the proof of Lemma 6. As in the proof of that 
lemma, either u = y or 0 = 0. But if 0 = 0, then H* is the only connected 
component of G,* -E*(y), a contradiction. Hence y = 0 = CcED c, con- 
tradicting the assumption that y is not in the span of C. 1 

4. ORIENTABLE GRAPHS 

Let G be a graph with double cover C. For a cycle y let E’(y) be the set 
of edges incident to, but not on y. Define an equivalence relation on E’(y) 
as follows: e, w  e2 if edges e, and e2 both belong to the same cycle in C. 
The equivalence relation is then the transitive closure of N. It is not dif- 
ficult to show that if E’(y) is not empty and IC*(u)l = 1 for all u E V(G), 
then there are either 1 or 2 equivalence classes. Call (G, C) orientable if (1) 
1 C*(V) 1 = 1 for all u E V(G) and (2) there are two equivalence classes for 
every cycle y not in C. In this case call the equivalence classes L’ = L’(y) 
and R’ = R’(y). If y E C define L’ = L’(y) = E’(y) and R’ = R’(y) = 0. The 
terminology is motivated by the fact that for an embedding of a graph on 
a surface property (1) holds and property (2) holds exactly if the surface 
is orientable. On this surface the “left” edges L’ lie on the “opposite side” 
of y from the “right” edges R’. By a path from edge e to edge e’ is meant 
a path from a vertex of e to a vertex of e’. Let L = L(y) and R = R(y) be 
the sets of vertices reachable from edges of L’ and R’, resp., by paths not 
containing a vertex in y. Clearly L u R = V( G,) - V(y), where Go is the 
connected component of G containing y. A cycle y is said to have the Third 
Jordan Curve Property (JCP3) if L n R = 0. In particular, if y has JCP3, 
then every path from L’ to R’ crosses y. 

LEMMA 7. Let y be a cycle in an orientable graph. If y has JCP2 then y 
has JCP3. Conversely if L(y) # 0, R(y) # 0, and y has JCP3 then y has 
JCP2. 

Proof: Without loss of generality we may assume that G is connected. 
If G is connected and (G, C) is orientable, then C is an irreducible cover. 
Otherwise any vertex in the intersection of two irreducible components 
would violate property (1) in the definition of orientability. For a vertex 
v* E V(G*) let c(u*) denote the corresponding cycle in C. Now assume that 
G* -E*(y) has two components I* and O*. Then Z= Uo+EI* c(v*) and 
o=u 0+ E 0+ c(u*) are subgraphs of G such that Iu 0 = G and 
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E(Z) n E(O) = E(y). Also L’ c Z and R’ c 0 (or vice versa). To show that 
L n R = 0 it is sulficient to show that Z and 0 have no vertices in common 
except those on y. But if Z and 0 have such a vertex in common, property 
(1) in the definition of orientability of G implies that Z and 0 also have an 
edge, not in y, in common. This is a contradiction. 

Conversely assume that G* -E*(y) is connected. Then there exists 
a path h* from u,* to v,* in G* -E*(y) such that c(~f) contains a 
vertex in L and c(u,*) contains a vertex in R. Consider the subgraph 
H= U,*Efi + c(u*) of G. Let b = u1 u2 ... U, be a shortest path in H from a 
vertex in L to a vertex in R. To show that L n R # 0, it is sufficient to 
show that fi does not cross y. Assume, by way of contradiction, that ui+ 1 
is the first vertex of # that crosses y. Then ui lies in either L or R. If vi lies 
in R, then the path u1v2 a.* Ui contradicts the minimality of b. If ui lies in 
L, assume that subpath v,v,+ 1 a.. Vj- I lies on y and that ~j does not lie on 
y. By the definition of L’ edge uj- I Uj lies in L’ and ~j lies in L. Then path 
~j~j+l .’ . u, contradicts the minimality of b. 1 

THEOREM 3. Let G be an orientable graph with double cover C. Then 
every cycle in G has the Third Jordan Curve Property if and only if 
x( G, C) = 21. 

Proof: As in the proof of Lemma 7, for (G, C) orientable, the connected 
components are irreducible. Therefore k = I by Lemmas 1 and 2. If 
x(G, C) = 21= k + 1 then by Theorem 2 and Lemma 7 every cycle has JCP3. 
For the converse assume x(G, C) < 21. It is suhicient to find a cycle y, not 
in K(C), and such that L(y) and R(y) are non-empty. Then, exactly as in 
the proof of Theorem 3, y will not have JCP2 and, by Lemma 7, will not 
have JCP3. Thus let y be any cycle not in K(C). To complete the proof we 
need only show that L # 0 and R # 0. Assume, by way of contradiction, 
that L = 0. Let D be the set of all cycles in C containing edges in L’. Note 
that L’ contains only chords of y, because L = 0, and so the cycles in D 
contain only edges and chords of y. Hence CCE D c = y, contradicting the 
assumption that y 4 K(C). g 

Examples: permutation pairs and 3-graphs. These examples are of 
interest in relating the results of this paper to those of [3, 51. Both exam- 
ples are generalizations of graph embeddings. The 3-graph is slightly more 
general, allowing for non-orientable, as well as orientable, embeddings. 
Permutation pairs and 3-graphs are defined below and the correspondence 
between them is explained. The versions of the Jordan Curve Theorem in 
[3, 51; based on these concepts, are cases of Theorem 3 in this section. 

Let A = {II, e, f >. A 3-graph G is a connected, regular graph G of degree 
3 together with a coloring E(G) + A such that incident edges have different 
colors. These graphs and their generalizations have been investigated by 
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Ferri, Gagliardi, Lins, Vince [ 1,2, 6, 71, and others. Let G,, a E A, denote 
the subgraph of G obtained by deleting all edges of color a. The components 
of G, are two-colored cycles of G, called faces of type a. A face F, of type 
a is incident to a face Fb of type b if I;h n I;b # a. In the case that the faces 
of type e are all 4-gons, the faces of type ZI, e, and f can be realized as the 
vertices, edges, and faces, resp., of a graph embedding, in such a way that 
the incidence relation above corresponds to the ordinary notion of 
incidence. Moreover the original graph G is the dual graph of the barycentric 
subdivision of this embedding [ 61. 

A permutation pair consists of a pair of permutations (rc,, x~) of a finite 
set S. The concept was introduced by Stahl [43, and a similar representa- 
tion of maps by permutations is due to Tutte [S]. For a permutation pair 
(no, nf) define nn, = nn,~,- For aEA= (V,e, f} define a face of type a as a 
cycle in the permutation n,. A face FU of type a is called incident to a face 
I;b of type b if F, n Fb # @. In the case that 71, is an involution (order 2), 
the faces of type v, e, and f can be realized as the vertices, edges, and faces, 
resp., of a graph embedding on an orientable surface [4]. 

There is a bijection between the set of bipartite 3-graphs and the set 
of permutation pairs. Given a 3-graph G = (V, E) with bipartition 
I/= V, u V2, let 0, be the order 2 permutation of I/ that maps‘each vertex 
to the vertex joined to it by an edge of color v; similarly for CT, and ar 
Then the corresponding permutation pair is (n,, x~), where 71, and nf are 
permutations of 1/i given by 71, = a,af and 7tf = 0~0~. 

Conversely, given a permutation pair (7~“) Ed), the corresponding 3-graph 
has vertex set S x { 1, - 1) where for each i E I/, , the vertex (i, 1) is joined 
to vertices (nY i, - 1 ), (i, - 1 ), and (z; ‘i, - 1) by edges colored v, e, and f, 
resp. [3]. The significance of G being bipartitte is the following. When G 
represents a graph embedding, this embedding is orientable if and only if 
G is bipartite [6]. 

Stahl [S] gives a version of the Jordan Curve Theorem in terms of per- 
mutation pairs and Little [3] interprets this result in terms of 3-graphs via 
the correspondence in the paragraph above. Both relate to the results of 
this paper as follows. Let G be a 3-graph. Consider the set of cycles C2 = 
G, u G, u Gf, i.e., the 2-colored cycles. Since G is connected, C, is clearly 
an irreducible double cover of G. It is not hard to show that (G, C,) is 
orientable if x(G, C,) = 2. Then Theorem 3 implies that G has the JCP3 if 
and only if x(G, C,) = 2. This is analogous to the theorem of [3, 51. It 
would be interesting to know if the two theorems are actually equivalent. 
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5. AN OPEN PROBLEM 

The converse of Theorem 1 in general is false. Figure 3 shows a con- 
nected graph where x( G, C) = 2 # 3 = k + 1, but every cycle not in C has the 
First Jordan Curve Property. The double cover of G in this counter- 
example is C=(124),(234), (1234), (356), (561), (3516)). Note 
that C is a reducible double cover; there are two irreducible components. 
The converse of Theorem 1 in the irreducible case is open. 

Conjecture 1. If x(G, C) # 2 for an irreducible double cover C of G, then 
there exists a cycle, not in C, that does not have the First Jordan Curve 
Property. 

The following conjecture is related to Conjecture 1. 

Conjecture 2. If x(G, C) # 2 for an irreducible cover C, then there exists 
a cycle y, not in C, such that G - y is connected. 

The connection between Conjecture 1 and Conjecture 2 is as follows. If 
“cycle” in Conjecture 2 is strengthened to “chordless cycle,” then Conjec- 
ture 2 implies Conjecture 1. To see this, assume x(G, C) # 2 and let y be a 
chordless cycle such that G - y is connected. Assume, by way of contradic- 
tion, that y has JCPl with separating sets I and 0. Let I’ = I- y and 
0’ = 0 - y. Then I’ u 0’ = G - y and I’ n 0’ = 0, contradicting the con- 
nectedness of G - y. The condition that y is chordless is needed to ensure 
that neither I’ nor 0’ is empty. 

The following strong version of Conjecture 1 seems plausible, but is false: 
If x( G, C) # 2 for an irreducible double cover C, then the First Jordan 

2 

6 

FIGURE 3 
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Curve Property fails for every cycle not in K(C). The 3-graph in Fig. 2 
again serves as a counterexample. Here x(G, C) = 0, but in Section 2 a 
curve y, not in K(C), was given that does have the Jordan curve property. 
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