
MAP DUALITY AND GENERALIZATIONS

Andrew Vince

Abstract. A map is an embedding of a graph into a surface so that each face is
simply connected. Geometric duality, whereby vertices and faces are reversed, is a

classic construction for maps. A generalization of map duality is given and discussed

both graph and group theoretically.

1. Introduction. A map is an embedding of a graph into a surface so that each

face is simply connected. The geometric dual of a map, whereby vertices and

faces are reversed, is a classic construction. The dual of the cube (as a map on

the sphere) is the octahedron and the dual of the icosahedron is the dodecahedron.

Maps have been generalized to hypergraph embeddings (hypermaps) [12] and to cell

complexes in dimensions greater than 2 [3][10]. Maps and their generalizations have

been investigated combinatorially and algebraically, as well as topologically, by way

of rotation systems [4], permutations schemes [9], edge colored graphs [8][10], and

map groups [6][10]. Several authors [5][7][8][13] have used these methods to extend

the notion of duality. Recently Jones and Thornton [7] and James [5] investigate a

group of operations on maps and hypermaps in terms of the automorphism group

of a certain finitely presented group. These operations include the classical dual of

a map.

This paper also concerns a generalization of map duality. Preliminary results on

maps and their generalizations appear in Section 2. In particular, a graph theoretic

generalization of map, called an n-graph, will be the central concept. In Section

3, a simple geometric duality construction is given that includes, as special cases,

the duality of Jones and Thornton and of James. This duality is an equivalence
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relation on n-graphs that preserves connectedness, the number of vertices and the

automorphism group (Theorem 1). Duality is especially interesting for symmetric

n-graphs, those with the greatest degree of symmetry. In fact, a pair of symmetric n-

graphs are dual if and only if they have the same number of vertices and isomorphic

automorphism groups (Theorem 4). The minimum symmetric cover of an arbirary

n-graph is defined in Section 5. Although a pair of dual n-graphs need not be

symmetric, it is shown that duality can always be lifted to the minimum symmetric

cover (Theorem 5). The duality construction is discussed in group theoretic terms

in Section 4. There is a bijection between n-graphs and permutation representaions

of a certain group W . A pair of n-graphs are dual if and only if the corresponding

permutation representations have the same image (Theorems 2 and 3). Jones and

Thornton [7] and James [5] define certain map operations in terms of automorphisms

of W , and, in Section 6, these operations are related to the notion of duality in this

paper. Section 7 closes with two open problems on self-dual maps.

2. Graph encoded maps. Let [n] = {0, 1, . . . , n − 1}. An n-graph G is a finite

graph, with loops and multiple edges allowed, regular of degree n (loops add only

one to the degree), together with an edge coloring f : E(G)→ [n] such that colors

on incident edges are distinct. Two vertices that are joined by an edge colored i

are called i-adjacent. In [8] and [10], it is shown how any map K on a surface can

be uniquely represented by a 3-graph G(K). An example is shown in Fig. 1. The

map K on the sphere, having two vertices, two edges and two faces, appears in

Fig. 1a. The 3-graph G(K) that encodes K appears in Fig. 1b. This example

is extremely simple so that it can easily be used to illustrate the concepts in this

section. Slightly more complicated are the 3-graph in Fig. 8a and the 3-graph in

Fig. 7a that enclodes the pyramid with square base (both maps on the sphere). A

map can be regarded as a 2-dimensional cell complex. More generally, any polytope

or cell complex K whose topological realization is an n-dimensional manifold (or

even pseudomanifold) can be uniquely represented by an (n+1)-graph G(K). Loops

in an n-graph correspond to the boundary of the manifold.
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An i-residue of an n-graph G is any connected component of G obtained by

removing all edges colored i. Call two residues incident if the their intersection is

non-empty. Let G(K) be the (n+ 1)-graph that represents a cell complex K whose

underlying space is an n-manifold. In [10] a bijection is provided between the faces

of K and the residues of G(K). Under this bijection i-faces of K correspond to i-

residues of G(K), and two faces are incident if and only the corresponding residues

are incident. In the example of Fig. 1, the 0-residue ({1, 2}-colored cycle) marked

v′ in G(K) corresponds to the vertex v in K, and the 1-residue marked e′ cor-

responds to the edge e. The fact that v′ and e′ have non-empty intersection in

G(K) corresponds to the fact that vertex v and edge e are incident in K. Alto-

gether in this example, G(K) has two 0-residues, two 1-residues and two 2-residues,

corresponding to the two vertices, two edges and two faces of K, respectively.

Fig. 1. A map K and the 3-graph G(K) that encodes it.

The faces of a complex K are partially ordered by inclusion. Analogously, call

an n-graph G ordered if there is a partial order < on the residues such that for any

pair x and y of residues, x < y or y < x if and only if x and y are incident residues.

The 3-graph G(K) in Fig. 1b is ordered, the ordering on the set of residues being

inherited from the partial order on the set of faces in the corresponding map K

in Fig. 1a. Some checking shows that the 3-graph in Fig. 2, having 12 residues,

is not ordered. Therefore this 3-graph is not associated with any map. In fact, a

connected 3-graph G is ordered if and only if G = G(K) for some map K on a

surface [10]. In light of this fact, the terms “map” and “ordered 3-graph” will be

used interchangably.

Fig. 2. Non-ordered 3-graph.

A necessary and sufficient condition for an n-graph to be ordered can be given

in terms of the diagram. For an n-graph G, the diagram D(G) is a complete graph
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with node set [n]. Each edge {i, j} in the diagram is labeled with an integer pij

equal to one half the least common multiple of the lengths of the {i, j}-colored

cycles in G. By convention, the edge is omitted when pij = 2, and the edge label is

omitted when pij = 3. The diagrams of the 3-graphs in Fig. 1b, 2, 7a and 8a are

shown in Fig. 3a,b,c,d, respectively. For example, the diagram of the graph G in

Fig. 1b has three nodes because G is a 3-graph. The nodes are not labeled in this

case because there is no ambiguity. In this diagram the edge joining nodes 0 and

1, 1 and 2, and 2 and 0, are each labeled 2 because the (12), (02) and (01)-colored

cycles in G all have length 4 = 2 · 2. By convention, an edge is omitted from the

diagram when the label is 2, so this diagram consists simply of three disjoint nodes.

In general, note that there is no edge joining nodes i and j in the the diagram of G

if and only if all {i, j}-colored cycles in G have length 2 or 4. A diagram is called

linear if pi,j = 2 for all i, j with |i − j| ≥ 2 i.e., if the diagram has the form in

Fig. 3f. (The labeling of the nodes 0, 1, . . . , n− 1 is understood to be from left to

right.) The diagram in Fig. 3a, c and d are linear while the diagram in Fig. 3b is

not linear. In [10] it is proved that an n-graph G is ordered if and only if D(G) is

linear.

Fig. 3. Diagrams.

A map on a surface, being ordered, has a linear diagram with 3 nodes. A map

consisting of p-gons, q of them incident at each vertex, is traditionally called type

{p, q}. In the diagram of a map of type {p, q}, the two edges are labeled p and q.

This is because the (0,1)-colored cycles of G(K) have length 2p, corresponding to

the fact that each face of K is incident with p edges and p vertices of K, and the

(1,2)-colored cycles of G(K) have length 2q, corresponding to the fact that each

vertex of K is incident with q edges and q faces of K. For example, the cube is of

type {4, 3}, with three 4-gons incident at each vertex, and its diagram is given in

Fig. 3e. (By convention, the 3 on the second edge is deleted.)

Although not every 3-graph corresponds to a map, every 3-graph does correspond
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to a hypermap [10]. A hypergraph H = (X,E) consists of a vertex set X and a

family E of subsets of X called edges, whose union is X. If all the edges have

cardinality 2, then H is a graph. Define a hypermap H (hypergraph embedding)

as a two colored map K on a surface. More precisely there is a coloring function

K2 → {1, 2} from the set K2 of 2-faces of the map, such that any pair of 2-faces

that share an edge are assigned distinct colors. The underlying hypergraph of H is

H = (X,E), where X is the set of vertices of K and a subset e ⊂ X is an edge in E

if e is the complete set of vertices of a 2-face in K colored 1. In the case of a graph,

all the faces colored 1 are 2-gons. To obtain the 3-graph G(H) corresponding to a

hypermap H, “blow up” each vertex of H into a cycle as in Fig. 4.

Fig. 4. The 3-graph of a hypermap.

3. Dual n-graphs. Although most of the examples in this section will be maps

or hypermaps, there is no added complexity in considering n-graphs, and, in fact,

the treatment is simplified by doing so. Let G be an n-graph and let τ = i1i2 . . . im

be a word in the elements of [n]. A path of type τ in G is a path whose edges are

labeled successively i1, i2, . . . , im. Call τ an involution for G if every path of type

τ2 = i1i2 . . . imi1i2 . . . im is closed. Let T = {τi | i ∈ [n]} be a set of n involutions.

Construct another graph T (G) as follows. The vertices of T (G) are the vertices of

G. Two vertices u and v are i-adjacent in T (G) if u and v are joined by a path of

type τi in G.

Lemma 1. If G is an n-graph and T a set of involutions of G, then T (G) is an

n-graph.

Proof. It must be shown that T (G) is regular and properly colored. Clearly each

vertex of T (G) is incident with at least one edge of each color. If a vertex x is

incident with two edges colored i, then there would be two vertices u and v such

that the unique paths of type τi beginning at u and v, respectively, end at x. Since

τi is an involution this would imply that the unique path of type τi beginning at x

ends at both u and v, clearly impossible unless u = v. �
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Call two n-graphs G and G∗ dual if there exist sets T and T ∗ of involutions

such that G∗ = T (G) and G = T ∗(G∗). It is routine to verify that duality is an

equivalence relation on n-graphs and G ∼ G∗ will denote that G and G∗ are dual.

Lemma 2. If G ∼ G∗, then G is connected if and only if G∗ is connected.

Proof. Assume that G is connected. To show that G∗ is connected, let u and v be

vertices of G∗. Since G is an n-graph, u and v are joined by a path, say of type

i1i2 . . . im in G. Denote the vertices of this path by u = u0, u1, . . . , um = v. By the

definition of duality, uj−1 and uj , 1 ≤ j ≤ m, are joined by a path of type τ∗ij ∈ T
∗.

Therefore u and v are joined by a path in G∗. �

An isomorphism f : V (G) → V (G′) between n-graphs is a graph isomorphism

that, in addition, preserves colors. That is, u and v are i-adjacent in G if and only

if f(u) and f(v) are i-adjacent in G′. An automorphism of an n-graph G is an

isomorphism from G onto itself. Let Γ(G) denote the automorphism group of G.

An n-graph is called symmetric if Γ(G) is transitive on vertices. It is straightfor-

ward to show that the automorphism group of a symmetric n-graph must, in fact,

act sharply transitive on vertices. The 3-graphs corresponding to (the boundary

complexes of) the Platonic solids, for example, are symmetric. For maps and cell

complexes, symmetry corresponds exactly to flag transitivity, that is, transitivity

on ordered tuples of faces (f0, f1, . . . ), where fi is an i-dimensional face and fi is

contained in fi+1 for all i. A flag in the cell complex corresponds to a vertex in

the corresponding n-graph. In the literature, a flag transitive map is often called a

regular map. Hereafter ≈ will denote group isomorphism.

Theorem 1. If G ∼ G∗ then Γ(G∗) ≈ Γ(G). Also G is symmetric if and only if

G∗ is symmetric.

Proof. Let f : V (G)→ V (G) be an automorphism of G. We will show that f also

induces an automorphism of T (G). Assume that u and v are i-adjacent in T (G).

Since there is a path of type τi from u to v and f is an automorphism of G, there

is a path of type τi from f(u) to f(v). Hence f(u) and f(v) are i-adjacent. The
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converse is similarly proved. The second statement of the theorem now follows from

the first. �

Example 1. Let σ be a permutation of [n] and let T = Tσ = {τi | i ∈ [n]}, where

τi = σ(i). (Each τi is a string of length one in this case.) Then T (G) is obtained

from G by merely permuting the edge colors. Let T ∗ = Tσ−1 where σ−1 is the

inverse permutation. Clearly G and G∗ = T (G) are dual because T ∗(G∗) = G.

In this case, call G∗ a permutation dual of G There are n! possible permutation

duals for any n-graph, corresponding to the n! possible permutations of [n]. When

n = 3, six duals of a map are obtained, which were first mentioned by Wilson

[13]. In the case where G is a map and σ is the transposition (0 2), the dual

Tσ(G) corresponds to the standard geometric dual of the map (interchanging the

role of 0 and 2-dimensional faces). In general the order reversing permutation

σ(i) = n − 1 − i, i = 0, . . . , n − 1, corresponds to the standard geometric dual of

a higher dimensional polytope or complex. The six permutation duals of the cube

are drawn as maps or hypermaps (not as 3-graphs) in Fig. 5.

Fig. 5. Permutation duals of the cube.

Example 2. Assume that j and k are non-adjacent nodes (pjk = 2) in the diagram

of an n-graph G. Then, by the remarks above concerning the diagram, every path

of type (jk)2 is closed in G. Take T = {τi | i ∈ [n]} where

τi =

{
jk if i = j

i otherwise.

Let T ∗ = T . Again G and G∗ = T (G) are dual because T ∗(G∗) = G. Consider,

for example, a map on a surface and take j = 0, k = 2. The construction of

the dual is shown in Fig. 6a. The two duals of the cube corresponding to j =

0, k = 2 and j = 2, k = 0 are shown as maps on a torus (not as 3-graphs) in Fig.

6b and 6c. (Like labeled edges are to be identified.) The case j = 0, k = 2 is

exactly the map constructed by Coxeter and Moser [1], whose faces are the Petrie

paths in the original map. It is possible to generate up to 18 duals of a map by
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applying Examples 1 and 2. (In certain symmetric cases, some of these duals may

be identical.) Up to six of these are ordered, and hence are themselves maps. For

the cube these six are the cube, octahedron, and the maps in Fig. 6. Those in Fig.

6d and 6e are the ordinary duals to those in Fig. 6b and 6c.

Fig. 6. Dual maps of the cube

Example 3. Given integers j, k ∈ [n], let T = {τi | i ∈ [n]} where

τi =

{
jkj if i = k

i otherwise.

Clearly any path of type τ2i , i ∈ [n] is closed. Again choose T ∗ = T to show that G

and G∗ = T (G) are dual. The example, shown in Fig. 7, is such a 3-graph and its

dual, where T = {101, 1, 2}. Fig. 7a is the 3-graph of a pyramid with square base.

Fig. 7b is the 3-graph of a hypermap on a surface of genus 3. Note that in Fig.

7b, there are 30 vertices; there are four places in the figure where 0-colored edges

cross, that are not vertices.

Fig. 7. A dual of a pyramid.

Example 4. This example is presented mainly because it will be of interest at the

end of Section 6. Let G be an ordered n-graph, n > 3. Consider the cases of even

and odd n separately. For n = 2k + 1 let T = {τi | i ∈ [n]} where

τi =

{
0k or k(n− 1) or 0k(n− 1) if i = k

i otherwise.

For n = 2k let T = {τi | i ∈ [n]} where either

τi =

{
0(k − 1) if i = k − 1

i otherwise

or

τi =

{
k(n− 1) if i = k

i otherwise
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or

τi =


0(k − 1) if i = k − 1

k(n− 1) if i = k

i otherwise.

In each case it is straightforward to show that T is a set of involutions, since the

length of an {i, j}-colored cycle in an ordered n-graph is 2 or 4 if i and j are not

consecutive. We leave it as an exercise to verify that G and T (G) are dual. In this

example each dual is also ordered.

Example 5. For a more sporadic example, consider the 3-graph G in Fig. 8a that

encodes a map on the sphere. Then T = {0, 1210, 2} is a set of involutions for G.

To show that G and G∗ = T (G) are dual, choose T ∗ = {0, 121, 2}. The dual G∗,

which encodes a map on a projective plane, is shown in Figure 8b. In this figure,

note that the intersection of the 0-colored edges is not a vertex in the 3-graph.

Fig. 8. A dual of a map on the sphere.

4. Permutation representations. Traditionally maps have been discussed in

terms of certain groups defined in terms of generators and relations [1]. This al-

gebraic approach will be generalized to n-graphs in Sections 4 and 6, and will be

applied to duality. Let

W =< r0, r1, . . . , rn−1 | r20 = r21 = · · · = r2n−1 = 1 >,

and let SV denote the symmetric group of permutations of the set V . A homo-

morphism α : W → SV is called a permutation representation of W . Two such

representations α : W → SV and β : W → SV are called equivalent if there exists a

permutation σ ∈ SV such that β(w) = σ−1 ·α(w) · σ for all w ∈W . In other words

the following diagram commutes, where the vertical arrow is conjugation by σ.

W
α−−−−→ SVy

SV
9



Given an n-graph G with vertex set V , let ρi, i ∈ [n] denote the involution in SV

that interchanges each pair of i-adjacent vertices. For example, in the 3-graph of

Fig. 1bc, the three involutions are ρ0 = (12)(34)(56)(78), ρ1 = (13)(24)(57)(68)

and ρ2 = (17)(28)(46)(35). In general, the set {ρi | i ∈ [n]} of involutions induce

a permutation representation α : W → SV defined on generators by α(ri) = ρi.

Call two permutation representations α and α∗ dual if they have the same image

in SV i.e., α∗(W ) = α(W ). This algebraic definition of duality and the geometric

definition in Section 3 are equivalent.

Theorem 2. There is a bijection between n-graphs (up to isomorphism) and per-

mutation representations (up to equivalence). Under this bijection, dual n-graphs

correspond to dual permutation representations.

Proof. The permutation representation α corresponding to the given n-graph G is

defined above. That this correspondence is a bijection is proved in [10].

Concerning the statement about duallity in the theorem, let G and G∗ be n-

graphs and α and α∗ be the corresponding permutation representations. First

assume that α and α∗ are dual and hence have the same image Σ in SV . To show

that G and G∗ are dual n-graphs, let N and N∗ be the kernels of α and α∗, resp.,

so that there are canonical homomorphisms h and h∗ and isomorphisms γ and γ∗

so that the two triangles in the diagram commute.

W/Nyγ
W

α−−−−→ Σxγ∗

W/N∗

If w denotes a word in the generators of W , let w denote the coset it represents

in W/N (or W/N∗). For i ∈ [n], let rj1rj2 . . . rjm be the image of ri under the

isomorphism γ−1 ◦ γ∗ : W/N∗ →W/N , so that γ(rj1rj2 . . . rjm) = γ∗(ri). Define a

set T = {τi | i ∈ [n]} by τi = j1j2 . . . jm. We claim that G∗ = T (G). To see this,

note that u is joined to v by a path of type τi in G if and only if v = (α(rj1) ·
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α(rj2) · . . . · α(rjm))u = α(rj1rj2 . . . rjm)u = γ(rj1rj2 . . . rjm)u = γ∗(ri)u = α∗(ri)u

if and only if u is i-adjacent to v in G∗. A set T ∗ such that G = T ∗(G∗) can be

constructed in a similar manner, thus showing that G and G∗ are dual.

Conversely assume that G and G∗ = T (G) are dual n-graphs on the same vertex

set V , for some set T = {τi | i ∈ [n]} of involutions. By definition, if τi = j1j2 . . . jm,

then α∗(ri) = α(rj1) ·α(rj2) · . . . ·α(rjm). Since the ri generate W , α∗(W ) ⊆ α(W ).

Containment in the other direction is similarly proved. �

If our intention is to investigate only ordered n-graphs (maps on surfaces in the

case n = 3), then Theorem 2 should be altered slightly. Theorem 3 below indicates

that it is appropriate to consider permutation representations of

W ′ =< r0, r1, . . . , rn−1 | r2i = 1, i ∈ [n], (rirj)
2 = 1, |i− j| ≥ 2 > .

This group is obtained from W by adding relations that state that each product

rirj has period 2 for non-consecutive i and j.

Theorem 3. There is a bijection between ordered n-graphs (up to isomorphism)

and permutation representations α : W ′ → SV (up to equivalence). Under this

bijection, dual n-graphs correspond to dual permutation representations.

Proof. Let G be an n-graph and α : W → SV the corresponding permutation

representation given by Theorem 2. If N is any normal subgroup of W contained

in the kernel α, then there is an induced permutation representation α : W/N → SV

defined by α(w) = α(w), so that the following diagram commutes,

W
α−−−−→ SV

h

y
W/N

where h denotes the canonical homomorphism h : W → W/N . The assignment

α 7→ α induces a bijection between permutation representations of W whose kernel

contains N and permutation representations of W/N . Take N to b the normal

closure of {(rirj)2 : |i − j| ≥ 2} in W . In this case, G is an ordered n-graph if

and only if all (i, j)-colored cycles with |i − j| ≥ 2 have length 2 or 4 if and only
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if N lies in the kernel of α. Thus, the permutation representations of W whose

kernel contains N are exactly the permutation representations of W corresponding

to ordered n-graphs. Now we have the desired bijection between ordered n-graphs

and permutation representations α : W ′ = W/N → SV .

The second statement follows from Theorem 2, and the fact that α : W → SV

and β : W → SV have the same image if and only if the induced permutation

representations α : W ′ → SV and β : W ′ → SV have the same image. �

5. Symmetric duals and the minimum symmetric cover. Two results con-

cerning symmetric n-graphs are proved in this section. The first is the converse

of Theorem 1. The second states that duality of arbitrary n-graphs lifts to the

minimum symmetric cover.

The concept of the group of an n-graph is required for the proofs. Again let

W =< r0, r1, . . . , rn−1 | r20 = r21 = · · · = r2n−1 = 1 >. For an n-graph G, let

α : W → SV be the permutation representation defined on generators by α(ri) = ρi.

For a fixed vertex v of G, let H(G) = {w ∈ W |α(w)(v) = (v)}. Up to conjuagacy

in W , the group H(G) is independent of the choice of v and is called the group

of G. Moreover, it is known [10] that H(G) is the unique subgroup of W , up to

conjugacy, such that G is isomorphic to the Schreier coset graph of W with respect

to H(G). Recall that the vertices of the Schreier coset graph are the right cosets of

H(G) in W , and two vertices in the Schreier coset graph are i-adjacent if the one

of the corresponding cosets is obtained from the other by multiplication by ri on

the right.

It is known [11] that an n-graph G is symmetric if and only if H(G) is normal in

W , in which case Γ(G) ≈W/H(G). Hence, in the case of a symmetric n-graph G,

there exists a set X of elements in W such that the group H(G) is the normal closure

of X in W . In other words, H(G) is the smallest normal subgroup of W containing

X. Each element of X can be thought of as a word in the letters r0, r1, . . . , rn−1 and

W/H(G) is isomorphic to the group W modulo the set of relations {w = 1 |w ∈ X}.

These relations are referred to as the defining relations of the symmetric n-graph G.
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Moreover, the generators ri in the presentation ofW have a geometric interpretation

as reflections, and the rirj as rotations. Defining relations for the 3-graph in Fig.

1b can be given by (r1r2)2 = (r0r2)2 = (r0r1)2 = 1. These relations indicate that a

rotation of period 2 about any vertex, edge or face, resp., is an automorphism of the

map in Fig. 1a. In the more complicated 3-graph in Fig. 6b, defining relations for

this symmetric map on the torus can be given by (r0r1)6 = (r1r2)3 = (r0r1r2)4 = 1.

The relations (r0r1)6 = 1 and (r1r2)3 = 1 indicate that rotations of period 6 about

face centers and rotations of period 3 about vertices are map automorphisms. The

relation (r0r1r2)4 = 1 indicates that a translation one step along a Petrie path is a

map automorphism.

Theorem 4. Let G and G∗ be symmetric n-graphs. If Γ(G) ≈ Γ(G∗), then G ∼

G∗.

Proof. Let H = H(G) and H∗ = H(G∗) be the groups of G and G∗, resp. Then,

by the remarks above, H and H∗ are normal in W , and W/H∗ ≈ Γ(G∗) ≈ Γ(G) ≈

W/H. Denote the resulting isomorphism by φ : W/H∗ → W/H . Regard G

as the Schreier coset graph of W with respect to H; similarly regard G∗ as the

Schreier coset graph of W with respect to H∗. By abuse of language, no distinction

will be made between a vertex of the graph and the corresponding coset in the

quotient. Then φ induces a bijection between V (G∗) and V (G). The notation

v∗ and v will be used for a vertex and its image, resp., under this bijection. For

i ∈ [n] let Hrj1rj2 . . . rjm = φ(H∗ri); let τi = j1j2 . . . jm; and let T = {τi | i ∈

[n]}. Note that τi is an involution in G because Hrj1rj2 . . . rjmrj1rj2 . . . rjm =

[φ(H∗ri)]
2 = φ(H∗r2i ) = H. Now vertices u∗ and v∗ are i-adjacent in G∗ if and

only if u∗ = v∗ri = v∗ · H∗ri if and only if φ(u∗) = φ(v∗) · Hrj1rj2 . . . rjm if and

only if u = v · rj1rj2 . . . rjm if and only if u and v are joined by path of type τi

in G. Therefore G∗ = T (G). That G = T ∗(G∗), for an appropriate T ∗, is proved

similarly by cosidering the inverse isomorhism φ−1 : W/G→W/H∗. �

Let G and G′ be n-graphs. A surjective function f : V (G′) → V (G) is called

a covering if f preserves i-adjacency for all i ∈ [n]. In terms of maps, a covering
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corresponds to a topological covering of the respective surfaces, possibly ramified at

vertices of the embedded graph or at face centers [10]. A covering will be denoted

simply f : G′ → G. Two coverings f1 : G′1 → G and f2 : G′2 → G are called

equivalent if there exists an isomorphism θ : G′1 → G′2 such that f1 = f2 ◦ θ. A

covering f : Ĝ→ G of G by a symmetric n-graph Ĝ is called a minimum symmetric

cover if f satisfies the following universal property: for any covering g : G′ → G

of G by a symmetric n-graph G′, there exists a covering g such that the following

diagram commutes.

G′
g−−−−→ Ĝyf

G
Lemma 3. For an n-graph G, the minimum symmetric covering of G exists and

is unique up to equivalence.

Proof. The uniqueness follows in the usual way from the universal property. To

prove existence, let H(G) be the group of G (unique up to conjugacy) and let

N(G) = ∩w∈Ww−1H(G)w.

So N(G) is the largest subgroup of H(G) that is normal in W in the sense that

it contains every subgroup of H(G) that is normal in W . Further let Ĝ be the

n-graph with group N(G) i.e., Ĝ is the Schreier coset graph of W with respect to

N(G). Since N(G) ≤ H(G), there is a canonical covering f : Ĝ → G, defined in

terms of the Schreier coset graph by f(N(G)w) = H(G)w for all w ∈ W . Since

N(G) / W , it follows, from the remarks at the beginning of this section, that Ĝ is

symmetric. Furthermore, if G is finite, then Ĝ is also finite [11].

To show that Ĝ satisfies the universal property, again represent G,G′ and Ĝ as

Schreier coset graphs. In [10] it is shown that any covering, in this case g, can

be given, up to equivalence, by g(H(G′)w) = H(G)w, where H(G′) and H(G) are

groups of G′ and G, resp., and H(G′) ≤ H(G). Since G′ is symmetric, H(G′) is

normal in W . Since H(Ĝ) = N(G) is the largest subgroup of H(G) that is normal

in W , and H(G′) is also a subgroup of H(G) normal in W , then H(G′) ≤ H(Ĝ).

Now if g is defined by g(H(G′)w) = H(Ĝ)w, the diagram commutes. �
14



Theorem 5. If G ∼ G∗ and Ĝ and Ĝ∗ are the minimum symmetric covers of G

and G∗, resp., then Ĝ ∼ Ĝ∗.

Proof. By Theorem 4 it is sufficient to prove that Γ(Ĝ) ≈ Γ(Ĝ∗). Let α and

α∗ be permutation representations of G and G∗, resp., and let N = N(G) and

N∗ = N(G∗). Now it is sufficient to define a chain of isomorphisms

Γ(Ĝ∗) ≈W/N∗ ≈W/ kerα∗ ≈ im α∗ ≈ im α ≈W/ kerα ≈W/N ≈ Γ(Ĝ).

The middle isomorphism, im α∗ ≈ im α, follows from Theorem 2 and the duality

of G and G∗. The last isomorphism follows from the remarks at the beginning of

this section and the facts that Ĝ is the Schreier coset graph of W with respect to

N and that Ĝ is symmetric. Similarly for the first isomorphism. Finally, if H is the

group of G, then, using the Schreier coset graph to represent G, the permuatation

representation α is defined on the generators ri by (αri)(Ha) = Hari for all i.

Therefore (αw)(Ha) = Haw for all w ∈ W , and hence kerα = {w ∈ W |Haw =

Ha for all a ∈ W } = N . Similarly kerα∗ = N∗, and the remaining isomorphisms

follow. �

6. Automorphism induced duality. This section gives a group theoretic con-

struction of dual n-graphs and, in particular, discusses two examples that appear

in the literature. Let G be an n-graph and α : W → SV be the corresponding

permutation representation of W given in Theorem 2. Further, let N be any given

normal subgroup contained in the kernel of α, and let Aut(W/N) denote the auto-

morphism group of W/N . Each φ ∈ Aut(W/N) induces an n-graph Gφ, dual to G,

as follows. Consider the homomorhisms

W
h−−−−→ W/N

φ−−−−→ W/N
α−−−−→ SV ,

where h is the canonical homomorhism, and α is the induced homomorphism defined

by α(w) = α(w). Thus φ induces a dual permutation representation αφ : W → SV

defined by αφ = α ◦ φ ◦ h. Consequently, by Theorem 2, φ induces an associated

n-graph Gφ, dual to G. Call any such dual n-graph Aut(W/N)-induced. The

remainder of this section is concerned with two examples.
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Example 1. Aut(W )-induced duality. This is the case when N is trivial and αφ =

α◦φ. Aut(W ) is exactly the set of hypermap operations that are the subject of the

paper [5] for the case n = 3. In that paper James proves that Gφ = G for each inner

automorphism φ of W . So Out(W ) = Aut(W )/Inn(W ) is the relevant group of

operations, and, furthermore, Out(W ) is isomorphic to PGL(2, Z). James further

remarks that if φ ∈ Aut(W ) then each φ(ri) is conjugate to some rj . Therefore

Aut(W ) is generated by a set of automorphisms each of which either permutes

{r0, r1, . . . , rn−1} or is of the form

φ(ri) =

{
rjrkrj if i = k

ri otherwise

for some j, k ∈ [n]. This implies that any Aut(W )-induced dual of G is generated

by some combination of the constructions of Examples 1 and 3 of Section 3.

Example 2. Aut(W ′)-induced duality. The group W ′ is as defined in Section 4.

The following lemma and its corollaries will be useful before considering Aut(W ′)-

induced duality.

Lemma 4. Let α and β be permutation representions of an arbitrary group W ,

and let N lie in the kernel of both α and β. If φ is an automorphism of W such

that β = α ◦ φ, then there exists an automorphism φ′ so that the following diagram

commutes.

Proof. Define φ′(w) = φ(w) for all w ∈ W . The lemma is then a routine exer-

cise. �

Corollary 1 below is a direct consequence of Lemma 4, and Corollary 2 follows

from Corollary 1 by letting N be the normal closure of {(rirj)2 : |i− j| ≥ 2} .
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Corollary 1. Suppose G and G∗ are Aut(W )-induced dual n-graphs and that N/W

lies in the kernel of both the permutation representations of G and G∗. Then G

and G∗ are also Aut(W/N)-induced duals.

Corollary 2. Suppose G and G∗ are ordered n-graphs and that G∗ is an Aut(W )-

induced dual of G. Then G∗ is also an Aut(W ′)-induced dual of G.

According to Corollary 2, for a given ordered n-graph, the Aut(W ′)-induced

duals already include the Aut(W )-induced ordered duals. Therefore, for ordered

n-graphs, Aut(W ′) is the pertinent group of operations, and these are exactly the

map operations considered by Jones and Thornton [7]. In that paper, analogous to

the results of James, they show that each inner automorphism of W ′ acts trivially

on a given n-graph G; so again Out(W ′) = Aut(W ′)/Inn(W ′) is the relevant

group of operations. Furthermore, when n = 3, this group is isomorphic to S3, the

symmetric group on 3 elements, and when n > 3, to D4, the dihedral group of 8

elements [5]. The six possible duals of a map (ordered 3-graph) are all generated

by the operations in Examples 2 of Section 3 and the order reversing permutation

dual in Example 1. For the cube, the six duals are the cube itself, the octahedron

and the four maps in Fig. 6. For n > 3, it can be shown that the eight possible

Aut(W ′)-induced duals of a given map (corresponding to the elements of D4) are

generated by our constructions in Example 4 of Section 3, together with the order

reversing permutation dual in Example 1.

7. Self dual maps. Let G be an n-graph and T a set of involutions such that

G and G∗ = T (G) are dual. It may occur that G and G∗ are isomorphic. In

the classical case, where G is a map and T = {2, 1, 0}, if G and G∗ = T (G) are

isomorphic, then the map G is usually called self dual. This definition implies a

homeomorphism of the surface taking the embedded graph onto its geometric dual.

Two questions are posed concerning self dual maps. In the 3-graphs corresponding

to a pair of self dual maps, the (0,1)-colored cycles (2-residues) in the 3-graph

correspond to the (2,1)-colored cycles (0-residues) in its dual. Hence a self dual

map must be of type {q, q} for some integer q.
17



Question 1. Is it true that if G is a symmetric map of type {q, q}, then G is self

dual?

We believe the answer to Question 2 is no, but have no counterexample. Here

∼= denotes isomorphism of n-graphs.

Question 2. With notation as in Theorem 5, does Ĝ ∼= Ĝ∗ necessarily imply

G ∼= G∗?.
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