Note

Dyck's Map $(3,7)_{8}$ Is a Counterexample to a Clique Covering Conjecture

A. Vince
Department of Mathematics, University of Florida, Gainesville, Florida 32611

AND
Steve Wilson
Department of Mathematics, Northern Arizona University, Flagstaff, Arizona 86001

Communicated by the Editors
Received August 3, 1989

Let $c(G)$ denote the minimum number of cliques necessary to cover all edges of a graph G. A counterexample is provided to a conjecture communicated by P. Erdös. If $c(G-e)<c(G)$ for every edge e, then G contains no triangles. © 1992 Academic Press, Inc.

Let $c(G)$ denote the minimum number of cliques necessary to cover all edges of a graph G. If G contains no triangle, then the cliques are the edges of G. In this case removing any edge e must reduce the value of $c(G)$, that is,

$$
\begin{equation*}
c(G-e)<c(G) . \tag{1}
\end{equation*}
$$

P. Erdős [4] communicated the conjecture that this is the only situation in which (1) holds for all edges e in G.

Conjecture. If (1) holds for every edge e of a graph G, then G contains no triangle.

A counterexample is given in this note. Unfortunately the origin of the conjecture is not known to us. The symbol $\{p, q\}$ denotes the regular tessellation of a simply connected surface into p-gons, q incident at each
vertex. If $1 / p+1 / q<1 / 2$ then the tesselation consists of infinitely many regular p-gons filling the hyperbolic plane. A Petrie path of $\{p, q\}$ is a "zigzag" path in which every two consecutive edges, but not three, belong to a face. The symbol $\{p, q\}$, denotes the map obtained from $\{p, q\}$ by identifying each pair of vertices that are separated by a Petrie path of length r. It is well known that the automorphism group of the map $\{p, q\}_{r}$ acts flag transitively, in particular, transitively on vertices, edges, and faces. Lists of finite maps $\{p, q\}_{r}$ are included in [1,2]. In particular, $\{3,7\}_{8}$ is a map on the orientable surface of genus 3 and has 56 faces, 84 edges, and 24 vertices. This particular map was studied extensively by W. Dyck [3] in 1880 in connection with Riemann surfaces and led to a good deal of interest in maps in general. The underlying graph G_{0} of $\{3,7\}_{8}$ provides a counterexample to the conjecture above. This particular graph seemed a likely candidate as a counterexample for the following reasons. Because of its symmetry, inequality (1) need only be checked for a single edge. The cliques of G_{0} are simply the triangles in the triangulation $\{3,7\}_{8}$. Let C be a clique covering, i.e., a set of triangles that covers the edges of G_{0}. Two triangles are said to be adjacent if they share a common edge. Three triangles are said to be in a row if one triangle is adjacent to both of the other triangles. The proof below is based on the fact that C must contain three triangles in a row. Smaller maps like the icosahedral map have clique covers without three triangles in a row.

Theorem. For every edge e of G_{0} we have $c\left(G_{0}-e\right)<c\left(G_{0}\right)$.
Proof. It is not hard to verify that each K_{3} in G_{0} is a face of $\{3,7\}_{8}$. Thus G_{0} can have no K_{4}, and therefore the cliques of G_{0} are exactly the boundaries of triangular faces of $\{3,7\}_{8}$. An adjacency table for these triangles is given below. We claim that in any covering of the edges by a set C of triangles, there must be three triangles in a row. If this is so with triangle w adjacent to triangles x and y, then in a minimum clique covering C of $G_{0}, C-w$ will cover $G_{0}-e$ where x, y, z are the neighbors of w and $e=w \cap z$ (see Fig. 1). This implies that $c\left(G_{0}-e\right)<c\left(G_{0}\right)$. Since the automorphism of G_{0} acts transitively on edges, this is true for all edges e.

To verify the above claim let C be a clique covering and refer to Table I. Since each vertex degree is seven, there must exist incident to each vertex two adjacent triangles in C. By symmetry it can then be assumed, without loss of generality, that triangles 1 and 2 are both in C. By way of contradiction assume that G_{0} has no three triangles in a row in C. This forces triangles $3,8,10,7$ out of C. For example, if 10 were in C then, according to Table I, triangle 2 is adjacent to both 1 and 10 and hence 1,2 , and 10 would be three triangles in C in a row. In any clique covering C of G_{0} no two adjacent triangles lie in the complement of C which forces $4,26,6,15$,

Figure 1

TABLE I
Adjacency List for the Graph G_{0}

1: 388	2: 1107
3: 48981	4: 5233
5: 6244	6: $725 \quad 5$
7: 2266	8: $1520 \quad 1$
9: $31 \begin{array}{llll} & 13 & 16\end{array}$	10: 141112
11: 101219	12: 131118
13: 17129	14: 213710
15: 22318	16: 93422
17: 304413	18: 125354
19: 115539	20: 83321
21: 203214	22: 164315
23: 43830	24: 54129
25: 64928	26: $7 \quad 3927$
27: 263147	28: 253746
29: 243645	30: $23 \begin{array}{lll}35 & 17\end{array}$
31: 152742	32: 215051
33: 382048	34: 165441
35: 305640	36: 294939
37: 285314	38: 332345
39: 362619	40: 352547
41: 342446	42: 314948
43: 225152	44: 525517
45: 295038	46: 285141
47: 524027	48: 425633
49: 423654	50: 553245
51: 324346	52: 434447
53: 183756	54: 493418
55: 194450	56: 533548

20, 14, 11 in $C ; 5,21$ out of $C ; 24,32$ in C. Now either face 12 is in C or it is not. If 12 is in C then 19 is out; $55,39 \mathrm{in} ; 36,50$ out; $29,45 \mathrm{in} ; 45$ out. Now 45 both in and out is a contradiction. On the other hand, if 12 is not in C then 13 in; 16 out; 34,22 in; 41,43 out; 46,51 in; 32 out. Now 32 both in and out is also a contradiction.
It is not known whether G_{0} is the smallest counterexample to the conjecture.

References

1. H. S. M. Coxeter and W.O.J. Moser, "Generators and Relations for Discrete Groups," Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 14, Springer-Verlag, New York, 1980.
2. H. S. M. Coxeter, The abstract group $G^{\text {m.n. }}$, Trans. Amer. Math. Soc. 45 (1939), 73-150.
3. W. Dyck, Uber Aufstellung und Untersuchung von Gruppe und Irrationalität regularer Riemannscher Flächen, Math. Ann. 17 (1880), 473-508.
4. P. Erdős, Private communication.
