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Abstract
It is proved that homeomorphic images of certain two-dimensional aperiodic tilings,
such as Ammann A2 tilings, are recognizable, in both mathematical and practical
senses. One implication of the results is that it is possible to search for distorted
aperiodic structures in nature, where they may be hiding in plain sight.
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1 Introduction

Herein we prove that homeomorphic images of certain two-dimensional self-similar
aperiodic tilings are recognizable, in both mathematical and practical senses. In the
practical sense our results say it is possible to search for and recognize distorted
aperiodic structures, for example in natural and physical settings.

In this paper we focus on Ammann A2 tilings because of their simplicity. But the
ideas are more generally applicable. Our results illustrate that aperiodic tilings can be
retrieved from their images distorted by unknown homeomorphisms. Figure1 shows
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Fig. 1 This illustrates a patch of an Ammann A2 tiling, top left, and three different homeomorphisms of it.
Properties of the Ammann A2 tiling may be determined from a distorted image

an undistorted Ammann A2 tiling and three distortions of it. In Fig. 2 an algorithm
(without knowledge of the distorting homeomorphism) is applied to the distorted tiling
to successively retrieve a patch of the original Ammann A2 tiling. The situation is a
bit strange: the unknown distortion may be such as to change the Hausdorff dimension
of the boundaries of the tiles in a very rough way, or to transform an Ammann A2
tiling to a tiling by triangles. Nevertheless, the key properties of the tiling may still be
discernable.

There is a substantial literature on the occurrence of two-dimensional tilings in
physics [10]. Many of these are distortions of tilings by hexagons [9]. Many naturally
occurring tilings have an average of six faces per tile, and typical tiles are hexagons.
Ammann A2 tiles are hexagonal and comprise among the simplest of self-similar
tilings. Despite this, they do not seem to show up in nature. Are they hiding in plain
sight?

The main result of this paper addresses the following mathematical question. Sup-
pose that we are given a distorted version T ′ of an Ammann A2 tiling T . Specifically,
there is an unknown (not revealed to us) homeomorphism h of the plane such that
T ′ = h(T ). Is it possible to retrieve the undistorted Ammann A2 tiling T from its
distorted image T ′ - without knowledge of h?

An affirmative answer, Theorem 4.6, and its proof appear in Sect. 4. This result
depends on a distortion reversing operator Q that is defined in Sect. 3. Section2
provides background on Ammann A2 tilings. Restricted to a finite region of the plane,
which is by necessity the case for all tiling illustrations, the distortion reversal mapping
Q can be easily and efficiently carried out. This is how Fig. 2 was obtained.
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Fig. 2 Successive images, obtained using a distortion reversing operator Q, converge towards patches of
an Ammann A2 tiling

2 Ammann A2 Tilings

In this paper a tile is defined as a set in the plane homeomorphic to a closed disk. A
tiling of the plane is a countable set of non-overlapping tiles whose union is R2. A
tiling of a subset of the plane is defined similarly. By non-overlapping is meant that
the intersection of any two distinct tiles has empty interior. For all tilings in this paper,
the intersection of any two distinct tiles is connected (possibly empty). A patch of a
tiling is a finite number of tiles whose union is a topological disk. Two tilings T and
T ′ are said to be congruent if there is an isometry U such that T ′ = U (T ). A finite
set of tiles P , called a prototile set is aperiodic if there exist tilings of the plane by
copies of the tiles in P , but every such tiling has no translational symmetry. A tiling T
is repetitive, also called quasiperiodic, if, for every finite patch P of T , there is a real
number R such that every ball of radius R contains a patch congruent to P . Two tilings
are locally isomorphic if any patch in either tiling also appears in the other tiling.

A vertex of a tiling is a point where three or more tiles intersect; an edge is a
connected subset of the boundary of a tile that contains no vertices in its interior and
that is bounded by two vertices. For any tiling T of the plane, denote by �(T ) the
graph whose vertices and edges are the vertices and edges of T . Note that if T and T ′
are homeomorphic, then �(T ) and �(T ′) are isomorphic graphs.

The classical Ammann A2 hexagon G, sometimes referred as the golden bee, is
depicted in Fig. 3. It is the only polygon, other than any right triangle and any parallel-
ogram with side lengths in the ratio

√
2 : 1, that is the non-overlapping union of two

smaller similar copies of itself [8]. These two smaller copies are isometric to sG and
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Fig. 3 Golden bee G

Fig. 4 Two equivalent matching rules for the Amman tilings

s2G, where s = 1/τ and τ is the square root of the golden ratio, i.e., τ is the positive
real root of x4 − x2 − 1 = 0.

An Ammann A2 tiling is a tiling of the plane by non-overlapping isometric copies
of sG and s2G, which we will refer to as the large and small tiles, respectively. The
tiling must obey matching rules dictated by the elliptical markings on the upper tiles
at the left in Fig. 4. A patch of tiles with marked matchings are shown in Fig. 5. Other
alternative but equivalent definitions of the Ammann A2 tiling are also possible. For
example, the matching rules indicated by markings shown on the right in Fig. 4 [5,
p. 551]. Hereafter we will call an Ammann A2 tiling simply an Ammann tiling. A
portion of an Ammann tiling is shown at the upper left in Fig. 1. There are three (up to
congruence) tilings of the first quadrant of R2 by Ammann tiles [4]. These give rise,
via reflections in the x and y-axes, to special Ammann tilings of R2.

Much has been written on Ammann tilings both in mathematics journals, for exam-
ple [1, 2, 4, 5] and in recreational sources, notably [6, 7]. The pair ofAmmann tiles, like
the Penrose tiles, is an aperiodic prototile set. There are uncountable many Ammann
tilings. Every Ammann tiling is repetitive and every pair of Ammann tilings are locally
isomorphic. A property of every Ammann tiling T that is significant for our results is
the following.
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Fig. 5 Left: a circular patch of an Ammann A2 tiling, with markings as in Fig. 4. Right: the same patch,
with tiles in various colors, and part of a possible continuation using faded tiles

• For each small tile s in T , there is a partner, defined as the unique large tile b in
T such that the union of s and b, called the amalgamation of s and b, is a hexagon
congruent to G. Any two distinct small tiles have distinct partners.

The tiling obtained from T by amalgamating each small tile with its partner is
denoted A(T ). The scaled tiling a(T ) := s A(T ) is an Ammann tiling called the
amalgamation of T .

Proposition 2.1 If T is an Ammann tiling then its amalgamation a(T ) is an Ammann
tiling. Conversely, each Ammann tiling is the amalgamation of a unique Ammann tiling
a−1(T ). That is, a provides a bijection from the set of all Ammann tilings to itself.

Proof The upper left and right panels of Fig. 4 show two different decorations on the
small and large tiles, call them the D1 and the D2 decorations, respectively. Each
small tile in a(T ) (left tile in the right panel of Fig. 4) is a (scaled by s) large tile in
T (right tile in the left panel); and each large tile in a(T ) (right tile in the right panel)
is the scaled amalgamation of a small and large tile in T (bottom of the left panel).
As previously noted, the matching rules dictated by the D1 and D2 decorations are
equivalent in that they both define the Ammann tilings. Therefore if T is an Ammann
tiling, then so is a(T ). Conversely, let T be an Ammann tiling. Then form the tiling
s−1T and split each of the resulting largest tiles (uniquely) into a small tile and a large
tile, yielding a−1(T ). ��
Remark 2.2 Let T ′ = h(T ) be the image of an Ammann tiling T under a homeomor-
phism h. The small and large tiles in T ′ are defined to be the images of the small and
large tiles in T . If s′ is a small tile in T ′ corresponding to a small tile s in T , then
the partner of s′ is the image under h of the partner of s. Therefore the amalgamation
mapping a is meaningful for the distorted Ammann tiling T ′ using exactly the same
definitions as are used for an undistorted Ammann tiling. We employ the notation
a(T ′) for the amalgamation of T ′. Note, however, that from the picture alone, say in
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Fig. 6 The patches Tn for n = −1, 0, 1, 2, 3

the distorted Ammann tilings in Fig. 1 ignoring the colors, it is not apparent which tile
is the partner of a given tile.

3 The Hierarchy and the Distortion Reversal Mapping

Let A be the amalgamation operator on the Ammann tilings. Given an Ammann tiling
T , the sequence of tilings H(T ) := {T , A(T ), A2(T ), . . . }, consisting of Ammann
tilings at larger and larger scales, will be referred to as the hierarchy of T . If t is any tile
at any level of the hierarchy, then t is the non-overlapping union of tiles in T . Denote
this patch of T by T (T , t). Because the amalgamation of a small tile with its large
partner is unique, Proposition 3.1 below follows by a routine induction argument.

Proposition 3.1 If t1 and t2 are congruent tiles at any level of the respective hierarchies
of Ammann tilings T1 and T2, then T (T1, t1) and T (T2, t2) are congruent.

For an Ammann tiling T and n ≥ 0, let tn be any large tile in An(T ). By
Proposition 3.1 the patch T (T , tn) is independent of T and tn . Denote this patch,
up to isomorphism, by Tn and call T (T , tn) the Tn-patch corresponding to the tile
tn ∈ An(T ).

Definition 3.2 (The red tiling) Let T be a tiling of the plane and � = �(T ), the
associated graph as defined in Sect. 2. A red graph ̂� is constructed as follows. Color
red each edge of � (and its two incident vertices) that joins two vertices of degree
4. For any red vertex lying on only one red edge, remove the color red from that
vertex and remove the incident edge. Let ̂� be the graph induced by the red edges
and vertices, i.e., by removing all edges and vertices not colored red. If each face of
̂� is homeomorphic to a disk, then let ̂T denote the tiling induced by ̂�. Note that
vertices of degree 2 in ̂� are not vertices of ̂T . The red tiling ̂T of an Ammann tiling
T is illustrated on the right in Fig. 7. For any region f of ̂T (face of the red graph) its
red boundary together with all enclosed original tiles of T is a finite tiling which is
denoted T ( f ).

The following property of Ammann tilings is known as border forcing, see for
example [1, 3].
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Fig. 7 The left panel shows a patch taken from an Ammann tiling of the plane. It had been subdivided into
T6’s and T7’s to illustrate (part of) a tiled member of a hierarchy. The middle panel shows the same patch
with some of the vertices and edges coloured red, according to the first step in the construction in Definition
3.2. The right panel shows the visible part of the red tiling obtained after the construction in Definition 3.2
is completed

Fig. 8 The forced tiles on the boundaries of any T4 and T5. See text

Proposition 3.3 Let T be an Ammann tiling. For n ≥ 4, let T (T , tn) be the Tn-patch
corresponding to a tile tn ∈ An(T ). If t ∈ T \T (T , tn) is a tile that shares an edge
with tn, then t is the refection across part of the boundary of tn of a tile in T (T , tn).

Proof Using tile markings it can be established that there is a small finite set of neigh-
borhoods of any small tile in anyAmmann tiling. See Fig. 9. By expanding and splitting
these neighborhoods five times we reveal all ways in which t can meet the boundary
of any T4, up to isometry. We find that t is the reflection across part of the boundary
of T4 of a tile that is contained in T4, up to isometry. The general case follows by
induction, using the facts that a is a bijection and the reflection property is invariant
under application of a−1. ��

Figure 8 shows the forced positions of the tiles that are adjacent to any T4 and to
any T5 that appear in any Ammann tiling of the plane. Not only is the tiling of the
regions with red boundaries unique, but the surrounding layer of tiles is also unique,
or "forced".

Theorem 3.4 If T is an Ammann tiling, then ̂T = A5(T ).

123



Discrete & Computational Geometry

Fig. 9 The only ways in which a small tile can share segments of its boundary with other tiles in any
Ammann tiling of the plane, up to isometry

Proof ByProposition 2.1 anyAmmann tiling T of the plane by s andb can equivalently
be considered as a tiling by T4’s and T5’s, according to T = a−5

̂T . By Proposition
3.3 each tile that shares a segment of the boundary of an isometric copy of T4 or T5
is reflected across a segment of the boundary. This implies that every vertex of the
outer boundary of each (isometric copy of) T4, and also of each T5, is a meeting point
of four edges, including two successive edges of the outer boundary of the T4 or T5,
respectively. This implies that the red tiling includes the boundaries of all isometric
copies ofT4’s and T5’s that it contains. It is straightfoward to check that the red tiling
construction algorithm removes all edges and vertices in the interior of any copies
of T4 and of any copies of T5. Since a−5T = ̂T can be treated as a unique union of
nonoverlapping copies of T4’s and T5’s, again by Proposition 2.1, the red tiling has to
be s−5a5̂T = A5(T ). ��

In Fig. 10, the red tiling construction is applied to a distorted Ammann tiling.

Definition 3.5 If T is any tiling such that ̂T is also a tiling, then the distortion reversal
operator Q is defined by

Q(T ) = s5 ̂T .

Corollary 3.6 If T ′ is the homeomorphic image of an Ammann tiling, then Q(T ′) =
a5(T ′).

Proof By Theorem 3.4 we have Q(T ) = s5 ̂T = s5A5(T ) = a5(T ). As noted in
Sect. 2, the graph �(T ′) is isomorphic to �(T ). Therefore, ̂T ′ is homeomorphic to ̂T
and Q(T ′) = s5̂T ′ = s5A5(T ′) = a5(T ′). ��

4 Distortion Reversal

Definition 4.1 A homeomorphism h of the plane has bounded distortion if there is a
constant C such that

|x − h(x)| ≤ C

for all x ∈ R
2.
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Fig. 10 Left: a distorted Ammann tiling with edges that connect vertices of degree 4 marked in red. Right:
the same tiling after removal of red edges that do not lie on red cycles

If C is the constant in Definition 4.1 of a homeomorphism h of bounded distortion,
then h is said to have bounded distortion C .

Lemma 4.2 Let h be a homeomorphism of the plane of bounded distortion C. If φr is
a similarity transformation with scaling ratio r , then

|x − φ−1 ◦ h ◦ φ(x)| ≤ 1

r
C

for all x ∈ R
2.

Proof Let x ∈ R
2, y = φr (x), z = h(y), w = φ−1

r (z). Then

|x − φ−1
r ◦ h ◦ φr (x)| = |x − w| = |φ−1

r (y) − φ−1
r (z)| = 1

r
|y − z|

= 1

r
|y − h(y)| ≤ 1

r
C

123



Discrete & Computational Geometry

for all x ∈ R
2. ��

Definition 4.3 For any two tilings T1 and T2 of the plane, a distances function is given
by

d(T1, T2) = dH (∂T1, ∂T2),

where ∂T is the union of the boundaries of the tiles in T and dH is the Hausdorff
distance. Intuitively, the d-distance between two tilings is small if the tilings are
almost the same over the entire plane.

Corollary 4.4 below follows immediately from Lemma 4.2.

Corollary 4.4 If T is a tiling of the plane, h a homeomorphism of bounded distortion
C, and φr is a similarity transformation with scaling ratio r , then

d
(

φ−1
r ◦ h ◦ φr )(T ), T

) ≤ 1

r
C .

Theorem 4.5 Let T be an Ammann tiling, h a bounded distortion homeomorphism of
the plane, and T ′ = h(T ). Then

lim
k→∞ d

(

ak(T ′), ak(T )
) = 0.

Proof Let H(T ) = {T = T0, T1, T2, . . . } be the hierarchy of T and H(T ′) = {T ′ =
T ′
0, T

′
1, T

′
2, . . . } the hierarchy of T ′. Then

ak(T ) = skTk,

ak(T ′) = skT ′
k = skh(Tk) = skh(s−kak(T )) = (sk ◦ h ◦ s−k)

(

ak(T )
)

,

= (τ−k ◦ h ◦ τ k)
(

ak(T )
)

,

where we recall that τ = s−1. By Corollary 4.4 we have

d
(

ak(T ′), ak(T )
) = d

(

(τ−k ◦ h ◦ τ k)
(

ak(T )), ak(T )
) ≤ C

τ k
.

From this it follows that

lim
k→∞ d

(

ak(T ′), ak(T )
) = 0.

��
Theorem 4.6 Let T be an Ammann tiling, h a homeomorphism of the plane, and
T ′ = h(T ) the distorted image of T . If h has bounded distortion, then there exists a
sequence (Tk)k≥0 of Ammann tilings such that

lim
k→∞ d

(

Qk(T ′), Tk
) = 0.
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Proof of Theorem 4.6 Let Tk = a5k(T ). From Corollary 3.6 and Theorem 4.5, it ime-
diately follows that

lim
k→∞ d

(

Qk(T ′), Tk
) = lim

k→∞ d
(

a5k(T ′), a5k(T )
) = 0.

��
Theorem 4.6 does not state that Qk(T ′) → T . It does imply, however, that an

arbitrarily large finite patch of the tiling Qk(T ′) becomes arbitrarily close to a patch
Pk of T as k → ∞. This follows from the local isomorphism property of Ammann
tilings (see Sect. 2 for a definition of local isomorphism).
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