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Our results and examples show how transformations between self-similar sets may be continuous almost
everywhere with respect to measures on the sets and may be used to carry well known notions from
analysis and functional analysis, for example flows and spectral analysis, from familiar settings to new
ones. The focus of this paper is on a number of surprising applications including what we call fractal
Fourier analysis, in which the graphs of the basis functions are Cantor sets, discontinuous at a countable
dense set of points, yet have good approximation properties. In a sequel, the focus will be on Lebesgue
measure-preserving flows whose wave-fronts are fractals. The key idea is to use fractal transformations
to provide unitary transformations between Hilbert spaces defined on attractors of iterated function
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1. Introduction

The study of self-similar sets via iterated function systems (IFSs)
has been intense for over 30 years. Only recently, however, have
fractal transformations between the attractors of two IFSs been in-
vestigated [7,8,10]. In this paper, such fractal transformations are
used to transform classical notions from analysis and functional
analysis on one attractor (say a line segment, a square, or a cir-
cle) to a fractal version of these notions on the other - thus the
title “old wine in fractal bottles”.

One instance of this “rebottling” considered in this paper is to
transform Fourier analysis on an interval to a fractal setting. An
example is shown in Fig. 1, illustrating two approximations to a
piecewise constant function with a jump in the middle. The frac-
tal sine series (red) has a dense set of discontinuities yet makes
a clean jump, while the comparable sine series (black) makes no
jump, due to the constraint of continuity and the Gibbs effect. The
L2 and L* errors of both approximations are nearly the same, but
the distributions of the errors are different.

If F={X; f1, f2...., fy} is a contractive IFS with attractor A and
with positive probability vector p = (pq, p2. ..., Pn), then there is
an invariant measure [, associated with the pair (F, p). According
to a theorem of Elton [12], this measure of a Borel set B, whose
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boundary has measure zero, is, “almost always”, in the limit, the
proportion of points in the chaos game algorithm that land in B,
where the function f; is chosen in the chaos game with probability
p; for all i.

Let F and G be two contractive IFSs with the same num-
ber of functions and with the same probability vector, with non-
overlapping (defined in Section 2.2) attractors Ar and Ag and with
respective invariant measures wur and u¢. The fractal transforma-
tions Trg: A — Ag and Tgr: Ag — Ar (defined in Section 2.2) are
proved to be measurable and continuous almost everywhere with
respect to wr and g, respectively. Moreover, these fractal trans-
formations are measure preserving. In some interesting cases, for
which a sufficient condition is provided, Tr; and Tgr are homeo-
morphisms and inverse to each other.

For an IFS F with attractor Af, the set ler of complex valued
functions on Af, square integrable with respect to an invariant
measure, is a Hilbert space. Given two IFSs with non-overlapping
attractors, a fractal transformation Tgg: AF — Ag induces a trans-
formation from L2 to LZ. Moreover, the operator Ugc : L2 — L2 in-
duced by the fractal transformation Tr; may be an isometry. Such
isometries allow for basic notions and results from analysis and
functional analysis to be transferred from the classical setting to
a fractal setting. For example, if Ap = A =[0, 1], the unit inter-
val, and up = u¢g is Lebesgue measure, then Ug; takes any or-
thonormal (ON) basis of functions for L2([0, 1]) to another ON ba-
sis for L2([0, 1]). In particular, the standard Fourier ON basis may
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Fig. 1. Partial sums of fractal sine series (red) and a classical sine series (black)
both approximate a step function. The fractal series makes a clean jump but pays a
price elsewhere. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

be transformed to a “fractal Fourier” ON basis - which leads to
fractal Fourier analysis. We note that this kind of spectral analysis
is distinct from the analysis on fractals of Kigami [17], Strichartz
[27] and others, whereby spectral analysis on some fractals, asso-
ciated with certain natural Laplacians, is developed de novo.

Throughout, except where otherwise stated, we assume that
each IFS F ={A; fi1. fo...., fn} is contractive, and that the ambi-
ent space of each IFS is its attractor. We further assume that each
function in the IFS is a homeomorphism onto its image, and that F
is endowed with a probability vector p = (py, py...., py) With pp
the associated invariant measure.

The paper is organized as follows. The definitions of the terms
above and of other relevant terms are reviewed in Section 2. In
particular, in Section 2.2 we recall the definition of the dynamical
boundary of an attractor of an IFS, and then define an attractor to
be non-overlapping if it is not equal to its dynamical boundary. In
Section 2.3 we introduce fractal transformations. In Section 2.4 it
is shown that the measure of the critical set (overlap set) and of
the dynamical boundary of a non-overlapping attractor of an IFS
is zero, for any probability vector. In Section 2.5 it is shown that,
given two such IFSs F and G with equal probability vectors and a
fractal transformation Tgg:Ar — Ag from the attractor Af of F to
the attractor Ag of G, the fractal transformations Tr; and Tgr are
measurable and continuous almost everywhere with respect to the
invariant measures pr and pg, respectively. Moreover, Trc and Tgp
are measure preserving in the sense that proTgr = g and pgo
Tcr = UF.

Examples of fractal transformations which illustrate results of
Section 2 appear in Section 3. These include self mappings of the
interval, a mapping from the unit interval to a filled triangle and
to the Koch curve, a mapping from a filled triangle to itself, and
the Hilbert’s space filling curve.

Given two IFSs with non-overlapping attractors, with the same
number of functions, a fractal transformation Tr; acts naturally on
the set Lf of square integrable complex valued functions on Ap.
This provides a map

Urg : Ll% — Lé
Urc /) (X) = f(Ter x)

for all f e L% and all x € Ag. Thus, for each ordinary function, there
is a fractal version of that function.

The mapping U is the subject of Section 4. The main result is
that Ug; and Ugr are isometries and inverses of each other. In the
case that A := Ar = A and the invariant measures on these spaces
are the same, the maps Ur; and Ugr are unitary transformations
with adjoint Uj. = Ugr. As a consequence, any classical orthonor-
mal basis for Lf_ (Fourier, Legendre, Haar) can be transformed into
ON basis for Lé, a fractal version of the original. In the Fourier case,
this leads to what we refer to as fractal Fourier analysis. Examples
are provided in Section 4.

2. Fractal transformations and invariant measures

This section introduces some essential concepts that run
throughout the paper, including (1) the invariant measure of an
IFS with probabilities, called a p-measure, and (2) fractal transfor-
mations from the attractor of one IFS to the attractor of another.
The main results needed in this paper are Theorem 2.2 which
states that, if an attractor is not equal to its dynamical boundary,
then all p-measures of the critical set, the dynamical boundary,
and the inner boundary are zero; and Theorem 2.3 which states
that a fractal transformation between non-overlapping attractors is
measurable and continuous almost everywhere with respect to ev-
ery p-measure, and that such a fractal transformation is p-measure
preserving.

2.1. Attractors and code space

We recall definitions and basic facts which lead to the central
notion of non-overlapping attractor. Let N={1,2,3,...} and Ny =
{0.1,2,...}. Throughout this paper we restrict attention to iterated
function systems (IFSs) of the form

F={X:fi.fo..... fn}
where N € N is fixed, X is a complete metric space, and f;: X — X is
a contraction for all i e I := {1, 2, ..., N}. By contraction we mean

there is A € [0, 1), such that dx (f;(x), fi(y)) < Adx(x,y) for all x, y
e X foralliel
For subsets Uc X let

N N
Froy=f W) and  F(U) =] fiU).

i=1 i=1

This defines mappings F, F~! on the family 2% of all subsets of X.
Let F~% mean F~! composed with itself k times; let F¥ mean F
composed with itself k times, for k € N. Let FO = F~0 =,

H(X) will denote the collection of nonempty compact subsets
of X. The classical Hutchinson operator F : H(X) — H(X) is just
the operator F above restricted to H(X). According to the basic
theory of contractive IFSs as developed in [16], there is a unique
attractor AcX of F. That is, Ais the unique nonempty compact
subset of X such that

A=F(A) , with the property A= klim F¥(B) ,
— 00
where convergence is with respect to the Hausdorff metric and is
independent of B € H(X).
Since, in this paper, we are only interested in A itself, we usu-
ally take X = A. Throughout this paper the following assumptions
are made:

« F={A; f1, fo,..., fy} is an IFS with attractor A such that each
of its functions is a contraction and is a homeomorphism onto
its image.

Note that under this assumption f ! o f;(B) = B. but f;o f~!(B)
often differs from B.

Let I® ={1,2,...,N}*, referred to as the code space, be the
set of all infinite sequences 0 = 016,605 --- with elements from
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I. The shift operator S: [* — [ is defined by S(0;6,05---) =
6,030, ---. Define a metric d on I* ={1,2,..., N} so that, for 6,
o e I® with & # o, the distance d(@, o) =27, where k is the
least integer such that o # 6. The pair (I*°, d) is a compact met-
ric space.

Example 21 (The code space IFS). Consider the IFS Z=
{I*°; s1,52,...,5n}, where s;: [® — [* is defined by s;(0’) = io. The
attractor of Z is I°°; each s; is a contraction and a homeomorphism
onto its image. In particular, a contraction constant is A = % inde-
pendently of i.

Definition 2.1. For any IFS F = {A; f1, f5. ..
. I® — Ais defined by

.. fn}. the coding map

(o) = lim fo, 0 fo, 0+ 0 fo, (@),
k— o0
for a fixed a € A, for all 0 =010y --- € I®.

Under the assumption that the IFS is contractive, it is well
known that the limit is a single point, independent of a € A, con-
vergence is uniform over [*°, and 7 is continuous and onto. The
sequence o is called an address of the point x € A if 7 (o) =x.
The map 7 is a conjugation between the code space IFS and the
given IFS F, in the sense that forallo e [* andi=1,...,N

m(si(0)) = fi(m(0))  and  7w(S(0)) € F'(m(0)). (21)

Thus the code space provides the archetypal IFS, and all other
IES are obtained from Z by an appropriate projection. The map m
can be a homeomorphism but usually it will not be one-to-one.

Definition 2.2. For the IFS F, the critical set or overlapping set of
the attractor A (w.r.t. F) is

C=J A n fA.
i#]
The inner boundary of the attractor A (w.r.t. F) is

C=JF©

keNy

The inner boundary of A is the set of points with more than
one address:

C={xeA: |n'x)|#1).
2.2. The open set condition and non-overlapping attractors

It is necessary in this paper to require that the critical set and
inner boundary of an attractor are not too large, so that the pieces
generated by the IFS can still be recognized. This is essential since
C will be the exceptional set, where a fractal transformation may
not be continuous. In the classical case of an IFS consisting of
similitudes on X = R", PA.P. Moran [21] noted already in 1945 that
open sets can be used to show that C is small, and to construct an
appropriate Hausdorff measure on A.

Definition 2.3. The IFS F = {X: fi. f2. ..., fy} with attractor A ful-
fils the open set condition (OSC) if there exists a nonempty sub-
set O of X, such that f;(0) cO and f;(0) n f;(0) = ¢ for i # j, for all
i,j=1,2,....N.

Theorem 2.1 ([21], Theorem III, cf. [16], [13], Theorem 9.3). If F =
{R™; f1, fo, ... fn} consists of similitudes with scaling ratio of f; equal
to s; < 1, and F obeys the OSC, then the Hausdorff dimension D of
the attractor A is the unique positive solution to "N 18P = 1. The D-
dimensional Hausdorff measure is positive and finite on A. Up to a
constant factor, it is the invariant measure (1, with probabilities p; =
sP. (See Definition 2.4.)

Since the proof uses Lebesgue measure on the open set O, it is
important to work on R", not only on A itself. The open set con-
dition is often difficult to check although it can be formulated al-
gebraically in terms of the data of the IFS [2]. Schief proved that
for similitudes in complete metric spaces, the OSC with ONA # ¢
implies the above equation for Hausdorff dimension, while on the
other hand, positive finite D-dimensional Hausdorff measure of A
yields the OSC [24].

We are interested, not only in similitudes, but also in affine and
non-linear mappings. For this reason we use an internal condition
on the IFS and its attractor which was introduced by M. Moran
[19], see also Kigami [18]. The condition has a geometric flavor and
applies to an IFS with arbitrary contractions in a complete metric
space. Let U denote the closure of Uc X and U° the interior. Since
A is compact, the closure of UcA within A is the same as in any
surrounding space X.

Definition 2.4. The dynamical boundary of A (w.r.t. F) is

dA = JFO)nA.
k=1

Define A to be non-overlapping (w.r.t. F) if

A+ 0A. 2.2)

The topological boundary of a set U in a surrounding space X is
the set UnX \ U. In particular, the topological boundary of U in U
is always empty. The following example shows that in general 0A
differs from the topological boundary of A in A as well as in X.

Example 2.2. Let F ={[0,1]; f1, f,} with Euclidean metric. The
topological boundary of [0, 1] in R is {0, 1}. If f;(x) = %x, frx) =
$x+ 1. then the dynamical boundary of the attractor A = [0, 1] is
0A = {0, 1}. In this case, by definition, A is non-overlapping. On the
other hand, if fij(x) = 2x, fo(x) = 2x+ 1, then again A=[0,1],
but dA = [0, 1]. In this case A is overlapping.

If the OSC holds for an IFS on R" with similitudes, the open
set can be chosen so that ONA#¢ [23], in which case A is
non-overlapping because O cannot intersect dA, [19, Theorem 2.3,
through the implications iii)=i) and i)=ii)]. Conversely, it is con-
jectured that the non-overlapping condition for similitudes on R"
implies the OSC. The proof of the statement [19, Theorem 2.3,
ii)=iii)] is wrong and the question is still open, cf. [3].

For similitudes on complete metric spaces, Moran [19, Theo-
rem 2.3| proved that A is non-overlapping if and only if there ex-
ists a set O cA open in A which fulfils F(O)c O and F(0) nC = .
Also Kigami [18, p. 15] proved that every open O c A\0A fulfils an
“intrinsic open set condition”. For our purposes, it is important to
note that inner and dynamical boundary of a non-overlapping at-
tractor are small in a topological sense.

Proposition 2.1 (cf. [19],[17]). For a non-overlapping attractor, the
sets C,dA, and C do not contain interior points with respect to A.

Proof. If U < A is open in A, then there is a piece Ay =
fo, -+ fo,(A) at some level k in A which is contained in U,
and hence F¥(U)=A. Thus U < C would contradict the non-
overlapping property. The same argument shows that U C dA is not
possible, since the definition of dA implies F~¥(dA) = dA for k =
1,2,... [19]. Now C is a countable union of closed nowhere dense
sets of the form fo, --- f5, (C), and Baire’s category theorem shows
that C cannot contain an interior point in the compact set A. [

To show below that the inner and dynamical boundaries are
also small in a measure-theoretic sense, we state one more prop-
erty of non-overlapping attractors (cf. [11]). A point w € I*® is
called disjunctive if {S*w : k e N} is dense in I*.
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Proposition 2.2. If a point x in a non-overlapping attractor has a
disjunctive address, it can neither belong to the dynamical nor to the
inner boundary.

Proof. If 77 (w) = x. then 7 (S¥(w)) € F*(x) by (2.1). So if x is in
9A, all of m(S*(w)) belongs to dA. If x is in C, then m(S¥(w)) will
be in C for k = ko and in 0A for all k > kg. On the other hand, if
w is disjunctive then the 77 (S¥(w)) with k=1,2,... form a dense
set in A. Non-overlapping means that dA is not dense in A, so @
disjunctive means that 7 (w) is not a boundary point. [J

2.3. Fractal Transformations

The purpose of this subsection is to define the central notion of
a fractal transformation from one attractor to another.

The code space I* is equipped with the lexicographical order-
ing, so that & > 0 means 0 # o and 6, > o where k is the least
index such that 6, # o). Here 1>2>3... > N—-1>N.

Definition 2.5. A section of the coding map 7: I — A is a map
T: A — I such that ot is the identity. In other words t is a map
that assigns to each point in A an address in the code space. The
top section of 77: [*® — A is the map 7: A — I*® given by

7(x) = maxm ' (x)

for all x € A, where the maximum is with respect to the lexico-
graphic ordering. The value 7(x) is well-defined because 7 ~1(x) is
a closed subset of .

The technique of top sections was developed by Barnsley [5], [6,
Section 4.11]. The top section is forward shift invariant in the sense
that S(t(A)) = t(A). See [9] for a classification of all sections such
that S(z(A)) < t(A). For the following definition see [7] and [8].

Definition 2.6. Let Ar and A¢ be the attractors, respectively, of IFSs
F={Ar: f1.fo..... fn} and G={Az:81.82. ..., gy} with the same
number of functions. The fractal transformations Tr;: AF — Ag
and Tgr: Ag — Af are defined to be

Trc = g o T and Ter = 7TF o T¢,

where g AF — I and 75: Ag — I are sections. If Tgg is a home-
omorphism, then it is called a fractal homeomorphism, and in
this case Tgr = (Tr¢)~'. Except where otherwise implied, it is as-
sumed that the top sections are used.

The general notion of a fractal transformation using a shift in-
variant section is discussed in [9]. The following proposition gives
a sufficient condition for when a fractal transformation is continu-
ous and when it is a homeomorphism. When, in our examples, it
is claimed that a certain fractal transformation is continuous, it is
the condition in this proposition that is readily verified.

Proposition 2.3. Let the attractor Ar of the IFS F be non-overlapping,
and let Pr = {JTF‘1 (x) : x € Ap}, which is a partition of the code space
I°°. For two non-overlapping attractors Ap and Ag, a fractal transfor-
mation Trg: AF — Ag is continuous if Pg is a finer partition than Pg,
i.e, for each part S in Pr there is a part T in Pg such that S € T. If
Pr = P, then Tgg is a homeomorphism.

Proof. Once we verify that tr(Ar) = I, the proposition follows
immediately from [7, Theorem 1]; see [8], for references and sub-
tler results.

To show that tr(Af) =I*, let D denote the set of disjunctive
sequences in [*. By Proposition 2.2 we have mg(D) € Ap \6. Since
Ar \f is the set of points having a single address, the coding map
is bijective when restricted to this set; therefore,

Dcr (A \C) =I°\ 77" (C) € 1 (Ap).

the last inclusion because unique addresses must lie in T(A). But it
is well known [26] that D is dense in I°°. Therefore so is Tp(A). O

2.4. Invariant Measures on an Attractor

In this subsection we recall the definition of the invariant mea-
sures on an IFS with probabilities, also called p-measures, and de-
termine that both the dynamical boundary of a non-overlapping
attractor A and the inner boundary of A have measure zero.

Definition 2.7 ([16], cf. [13]). Let p = (p1, P2 ---, pn) satisfy p; +
p2+---+pv=1and p; > 0 fori=1,2,...,N. Such a positive N-
tuple P will be referred to as a probability vector. There is a
unique normalized positive Borel measure p supported on A and
invariant under F in the sense that
N
WB) =Y pin(f; ' (B) (2.3)
i=1
for all Borel subsets B of X. We call i the invariant measure of
F corresponding to the probability vector p and refer to it as the
p-measure (w.r.t. F). To emphasize the dependence on p, we may
write pp in place of w.

Example 2.3. This is a continuation of Example 2.1, where Z =
{I*; sy, 53, ...,sn}. For a probability vector p = (p1, p2. ..., py). the
corresponding p-measure is the Bernoulli measure v, where

Vp([Cﬁ 03+ 0p]) = l_[paw
i=1

where [0 05--0p] := {w € I®: w; =o0; fori=1,2,.., N} denotes
a cylinder set, the collection of which generate the sigma algebra
of Borel sets of I*°.

The Bernoulli product measures are the archetypes of self-
similar measures:

Proposition 2.4 (Hutchinson [16]). If F is an IFS with probability
vector p, corresponding invariant measure (p, and Z is the IFS of
Example 2.3 with the same probability vector p and corresponding in-
variant measure vy, then pp(B) = vp(;r ~1(B)) for all Borel sets B.

We can now prove that dynamical and inner boundary of a
non-overlapping attractor are small in a measure-theoretic sense.
They are zero sets with respect to all invariant measures. This
was stated by Graf [14, 3.4] and Moran and Rey [20, Theo-
rem 2.1] for similitudes with the OSC on R", by Patzschke in [22,
Lemma 4.2] for self-conformal sets with the OSC on a Riemannian
manifold, and by Kigami [18, Theorem 1.2.4] in a more abstract set-
ting. Disjunctive sequences provide a simple proof for contractions
on complete metric spaces.

Theorem 2.2. For a non-overlapping IFS, the sets C,dA, and C have
measure zero with respect to all invariant measures (i, on A.

Proof. For a probability vector p, let v, the Bernoulli measure on
I, as above. Let DcI® be the set of disjunctive sequences. It is
not difficult to prove that vy(D) =1 for all probability vectors p,
see [26].

Proposition 2.2 says that A\dA contains all points with disjunc-
tive addresses. That is, 71 (A \ dA) 2 D. Proposition 2.4 implies

Up(A\ 0A) = vy(r~1(A\ 0A)) = vp(D) = 1.

Since pp is a probability measure, pup(A\ 0A) =1 and pp(0A) =
0. The set C fulfils fﬂ(C) cO0A for i=1,...,N. So (2.3) yields
Up(C) =0. The same argument is used to show that u,(F(C)) =
0, and, inductively, up(FK(C)) =0 for k=2,3,... Thus ;Lp(f) =
0. O

Remark. Let F and G be two IFSs with the same number of
functions and with Ar non-overlapping. If Tr; and T/ are two frac-
tal transformations from attractor Ar to attractor A; correspond-
ing to two sections, then Tr; = T} almost everywhere with respect
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to any invariant measure on Af, i.e., corresponding to any prob-
ability vector p for F. More specifically, Trg(x) = T.(x) for all x
except those x in the set f,.— of measure zero. This follows from
Theorem 2.2 because, if Tr and 7/ are the sections used to form
Tre and T/, respectively, then 7r and 7/ agree everywhere except
on Cg.

2.5. Continuity and Measure Preserving Properties of Fractal
Transformations

The main results of this subsection are that fractal transforma-
tions between non-overlapping attractors are measurable, continu-
ous almost everywhere, and map p-measures to p-measures.

Theorem 2.3 ([6], Theorem 4.11.5). Let F = {A; fi. f>...., fn} be an
IFS with non-overlapping attractor A, probability vector p, and corre-
sponding invariant measure . The section t: A — I°° is measurable
and continuous almost everywhere w.r.t. wp, for all p.

Proof. The function 7 is measurable because T '[oy...0n] (cf.
Example 2.3) is a Borel set in A which is easily determined by a
recursive procedure [6, Section 4.11]. The proof given in [6] can
be simplified as follows. Since C, the set of points with multi-
ple addresses, has pp measure zero, it is enough to show that
the bijective map t :A\f — I is continuous. Take a sequence
with limit x;, — x in A\a and let o be an accumulation point of
7(xn) which by compactness exists. Since 7t is continuous, we must
have x;, = w(t(xy)) — 7 (0) = x, by uniqueness of the limit. Thus
T(x) = o, and this is the only accumulation point. The restricted t
is continuous. O

For an IFS F, let
Ir =771 (Cp).
Consider two non-overlapping IFSs F and G with the same proba-

bility vector. With notation as in Definition 2.6 of fractal transfor-
mation, let

F{F,G] = FF U FG and A{F,G} =% \ F{F,G}
Al =mr(Arg) and Al =7e(Afrg)
A = Ap \ Al and Al =Ac\ A}

Note that A(F) depends also on G and that Ag depends also on F;
similarly for A} and Al.

Proposition 2.5. Assume that both Ar and Ag are non-overlapping,

and let pup and puc be invariant measures associated with the same

probability vector. With notation as above

L up(AD) = ug(Ab) =1,

2. The fractal transformation Tg; maps A} bijectively onto AL, and
maps A? into AJ.

3. Restricted to Al we have (Tgg)~! = Tgr; hence (Trg) ™! = Tgr al-
most everywhere.

Proof. Using Proposition 2.4 and Theorem 2.2 we have

v(Tg) = v(w;'CGe) = e (Gp) = 0. This implies that v(I'rg)) =0

or V(Agg) =1 Again using Proposition 24 we have

wr(AL) = pp(Te(Agp ) = v ' mp(Apg)) = V(Agg) = 1.

This proves statement (1).

Concerning statement (2), we know that nF‘l = 7p is single-
valued on Ap\Cr D Al. Now 7 takes Al bijectively onto A ¢y and
7 takes A gy bijectively onto AL. Similarly, 7 takes AY into
['(r ) and 7 takes I'r ¢, into A2.

Concerning statement (3), restricted to A}; we have Tgg o Tgr =
TG o (Tp o Mg) 0 Tg = Mg o Tg = I, the identity. O

Theorem 2.4. Assume that both Ar and Ag are non-overlapping, and
let up and g be invariant measures associated with the same prob-
ability vector. Then

1. Trg: AF — Ag is measurable and continuous a.e. with respect to
s
2. upoTor = g and pg o Trg = KF-

Proof. Since Trg = 7 o T, statement (1) follows from the continu-
ity of ms: I*® — Ac and Theorem 2.3.

Concerning statement (2), let B be a Borel set in Ag, and let
B®=BnAQ, B! =BnAL. By Propositions 2.4 and 2.5

we(B) = (g 'B) = p(mg (B UB'))
= (g 'B%) + (g ' BY) = u(eB),

the last equality because 7 T(B%) = 7¢(B?), which has measure
zero.
By similar arguments

e (Top B) = g (Ter (B° UBY)) = e (Ter B®) + e (Tor B)
= (" om0 T6(B")) = (16 By).

the second to last equality because Tgr(B°) c A2, which has mea-
sure zero. [J

For the special case of similitudes in R" with the OSC, we ob-
tain a correspondence between the normalized Hausdorff mea-
sures of Theorem 2.1.

Proposition 2.6. Let F ={Ar cR"™; fi, f5,...fy} and G={AgcC
R"; g1.2>....8v} be two IFS satisfying the open set condition and
consisting of similitudes with scaling ratios s;, t; < 1 respectively. If
slpF = tiDG for all i, then

Mr = g o Trg,

where up and g are the normalized Dr and Dg-dimensional Haus-

dorff measures on Ap and Ag, respectively, where the probabilities are
Dr D¢

pi=s"=t"°.

3. Examples

Example 3.1 (Fractal homeomorphisms of an interval). Consider
IFSs F = {([0,1]; fi, f>} and G = {([0, 1]; g1, &»}. with probabilities
D1, P2, Where

fi(x) = pix,
g1(x) =rx,

and 0 < r < 1. The OSC is fulfilled and we have only one critical
point Gz = {p1}, Cc = {r}, with addresses 12 and 21 in both cases.
Thus the fractal transformation Tr; : [0, 1] — [0, 1] is a homeomor-
phism by Proposition 2.3. By Theorem 2.1, the invariant measure
for F is Lebesgue measure A while G describes an arbitrary p-
measure pp. By Theorem 2.4, Tg; transforms A to up and Tgr
transforms pp to A. This example can be generalized from 2 to N
functions.

Thus each p-measure of such an IFS can be transformed to
Lebesgue measure by a fractal homeomorphism. It is well known
that each non-atomic probability measure © on [0, 1] can be trans-
formed into A by a homeomorphism F, which is in fact the cumu-
lative distribution function of x. In the case of a fractal homeomor-
phism, the piece structure is also preserved. This may be useful for
Haar wavelets, as indicated in Section 4.

f2(x) = pax+ py
LX) =0-r)x+r,

The next two examples deal with the special case of the binary
representation of [0, 1],

X x 1 1

F:{[O,l], flzi, f2:§+§}7 P1=P2=§-

Example 3.2 (The Cantor function). Consider the IFS G=
{¢: 1x, 1x+ 2} with attractor equal to the standard Cantor set C
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Fig. 2. Graph of the fractal transformation Tg¢, discussed in Example 3.3. The trans-
formation preserves Lebesgue measure on [0,1] and is continuous except for a dense
countable set of discontinuities. The viewing window is slightly larger than [0,1] x
[01].

and empty critical set, while the attractor of F is [0, 1] and the crit-
ical set is {%}A In this case Tgr : C — [0, 1] is continuous and essen-
tially the Cantor function, called “devil’s staircase” by Mandelbrot.
The Cantor function is usually defined as a function f:[0,1] —
[0,1] so that if x is expressed in ternary notation as x =ijip ---
where i, € {0, 1, 2} for all k, then f(x) =i}, --- expressed in
binary, where i’ =0 if i € {0, 1} and i’ =1 if i = 2. The function
Ter : € — [0, 1] is the restriction of this function to C where i, = 1
is forbidden. The inverse Tr¢ : [0, 1] — C is discontinuous at % and
points of the form k/2".

Example 3.3 (Self mappings of the interval). Beside F, there are
three other IFSs which fulfil the OSC and have the Lebesgue mea-
sure as invariant measure for p; = p; = %

x 1 x 1
G1:{[0,1];g1:—§+§,g2=§+§},

x 1 X
GZ:{[0,1];g1:—§+§,g2=—§+1},

X X
G={l01h g =5 8=-3+1}

Thus Ap = Ag, = [0, 1] for i=1,2,3. All four IFSs have the critical
set C = {%} and the inner boundary

~ k
C:{zrl:k:O,l,.-uz"?”eN}'

The three fractal transformations Trg,, i=1,2,3, are homeomor-
phism when restricted to [0, 1]\6 Due to the choice of the top
section, the Tr¢, are continuous from the left at all points in (0,
1]. For p1 =py = % the p-measure is Lebesgue measure on [0, 1],
which is preserved by the Trg, according to Proposition 2.6. The
graph of the function Trg, appears in Fig. 2, and the graph of Ty,
appears in Fig. 3.

The fractal transformation Trc, is its own inverse, i.e., Trg, ©
Trc, = id, the identity, a.e. This can be verified using binary rep-
resentation:

X=Y dy/2", dye{0,1}, implies Trc,(x) =Y (=1)""dy/2".

n=1 n=1

Fig. 3. Graph of the fractal transformation T¢, discussed in Section 3.3. Unlike T,
in Fig. 2, Trg, is its own inverse.

Example 3.4 (Koch curves and space-filling curves). For the IFS G,
above, which we call G now, the two addresses of the critical point
% are 112 and 221. Exactly the same identification of addresses can
be obtained in the complex plane when we replace the factor —0.5
by —0.5 + @i with —0.5 < & < 0.5. The attractor Ag of

F=F ={C; fi = (=05 —ai)z, f, = (0.5 + ai)z + 1.5 — i}

is a fractal curve. See [4, Figures VIII.237 and VIIL.238] where other
constant terms were used. (Here we defined F so that the fixed
points of f;, f, are 0 and 1 but the endpoints of the curve are
the fixed points of fif; and f,f;.) The OSC is easy to verify. For
a = +/3/6 the mappings involve a rotation around + 150°, so we
obtain the classical Koch snowflake curve. Since C, is always a sin-
gle point with addresses 112 and 221, the fractal transformations
Tcr, Trc are homeomorphisms between interval and Koch curve
with Trg = T, by Proposition 2.3.

For p; = p = 0.5, the measure ¢ is Lebesgue measure on [0,
1]. The pushfoward of pg to Ar under Tgp is the normalized Haus-
dorff measure ur on the Koch curve Af, by Proposition 2.6. (We
remark that the measure of any Borel subset B of Ar may be com-
puted by, and thought of in terms of the chaos game algorithm on
F with equal probabilities, [12].) The Hausdorff dimensions of Ag

and Ar are 1 and In2/In1/r, where r = %+a2 is the ratio of f;

and f,. Thus, a fractal transformation may change the dimension
of a set upon which it acts.

Now consider the case o = % The mappings fi, f, involve a ro-
tation around + 1359, and the attractor Ar = A becomes a right-
angled isosceles triangle, with dimension In2/In1/r equal to 2. The
0SC is still fulfilled, the addresses 112 and 221 are still identified.
However, many new identifications arise. The critical set is an in-
terval - the altitude of a is the intersection of the pieces fi(a) and
fo(a). According to Proposition 2.3 the transformation Tgr remains
continuous, and describes a plane-filling curve. For p; = p, =0.5
the one-dimensional Lebesgue measure p; on [0, 1] is transformed
into the two-dimensional Lebesgue measure @r on A. Moreover,
Tgr : A — [0, 1] is continuous almost everywhere with respect to
two-dimensional Lebesgue measure, with discontinuities located
on a countable set of intervals. We have that Tgr o Trg(x) = x for
all x € A, and Tr¢ o Tgr () = x for almost all x € [0, 1], with respect
to one-dimensional Lebesgue measure. Tg;(A) is not the whole in-
terval [0, 1] but a dense subset of [0, 1].
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Fig. 4. Hilbert’s original design for a continuous map from [0,1] to [0,1] x [0,1].

Fig. 5. See Example 3.6.

Example 3.5 (Hilbert’s space filling curve). Space filling curves,
from the point of view of IFS theory, have been considered in [25].
In [7] it is shown how, as follows, functions such as the Hilbert
mapping h: [0, 1] — [0, 1]2 (see Fig. 4) are examples of fractal
transformations.

Let A=A;=(0,0),B=B,=1(0,1),C=CG =(1,1),D=Dy4 = (1,
0), D;=A,=1(0,0.5), C; =Dy =A3=B4=(0.5,05), Bj=C4=
(0.5,0),G; =B3 = (0.5,1), and D3 = A4 = (1,0.5). Let

x+i—1

F:{Kﬁ:4,i:LZ3A}

G={R%g.i=1234}

where g;:R?2 — R? is the unique affine transformation such
that g;(ABCD) = A;B;G;D;, by which we mean g;(A) =A;, g(B) =
B;, g;(C) =C;, gi(D) =D; for i=1,2,3,4. (Similar notation will be
used elsewhere in this paper.) In complex notation, we have the
explicit expressions

(z+1)
2

Z+1+1)
s

&@=?&@= .&3(2) =

(—iz+2+1)

5 .
The Hilbert mapping is h = Tg¢ : [0, 1] — [0, 1]2. The functions in G
were chosen to conform to the orientations of Fig. 4, which comes
from Hilbert’s paper [15] concerning Peano curves. That Tg; is con-
tinuous follows from Proposition 2.3.

If p1 = p2 = p3 = ps = 0.25, then, by Proposition 2.1 , the as-
sociated invariant measure pf is the Lebesgue measure on [0, 1],
and ¢ is Lebesgue measure on [0, 1]2. The inverse of TFEl is the
fractal transformation T : [0, 1]2 — [0, 1], which is continuous al-
most everywhere with respect to two dimensional Lebesgue mea-
sure. More precisely, Tgr o h(x) = x for almost all x € [0, 1] (with re-
spect to Lebesgue measure), and ho Tgp (x) = x for all x € [0, 1]2. If
0 < a < B <1, then by Proposition 2.1

Ah([a. ) =B —a.

84(2) =

where A is 2-dimensional Lebesgue measure.

Example 3.6 (A family of fractal homeomorphisms of an equilat-
eral triangle). Let A denote a filled equilateral triangle as illus-
trated in Fig. 5. The [FS K, 0 <r < % on A consists of the four
affine functions as illustrated in the figure on the left, where a
is mapped to the four smaller triangles so that points A, B, C are
mapped, respectively, to points a, b, c. A probability vector is asso-
ciated with F such that the probability is proportional to the area
of the corresponding triangle. The IFS G, is defined in exactly the
same way, but according to the figure on the right. The attractor
of each IFS is a. (Although subtle, there exists a metric, equivalent
to the Euclidean metric on R2, such that both IFSs are contrac-
tive, see [1].) Because the functions in F- and G, are affine func-
tions rather than similitudes, Theorem 2.1 does not hold. Never-
theless, the corresponding invariant measures pp and pg are both
2-dimensional Lebesgue measure, because the invariant measure
is unique and Lebesgue measure satisfies the defining Eq. (2.3).
By Proposition 2.3 and Theorem 2.4, the fractal transformation Tf.
is an area-preserving homeomorphism of a for all 0 <r < % This
example seems to be the simplest example of an area preserving
fractal homeomorphism in R2.

4. Isometries between Hilbert Spaces

Given an IFS F with attractor Ar and an invariant measure i,
the Hilbert space L2 = L?(A, ) of complex-valued functions on
Ar that are square integrable w.r.t. ur are endowed with the inner
product (-, -) ¢ defined by

(WFJ/’F)F=/A Ve dir,

for all Vg, F € LI%. Functions that are equivalent, i.e., equal almost
everywhere, are considered to be the same function in L%.

Definition 4.1. Given two IFSs F and G with the same number of
functions, with the same probabilities, with attractors Ar and Ag
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and invariant measures pr and g, respectively, let Tr; and Tgr be
the fractal transformations. The induced isometries U : L% — L%
and Ugr : L2 — L2 are given by

Urcpr) (¥) = e (Tor (¥))
Ucr9c) (x) = ¢ (Trc (X))

for all ¢ € L% and all Y e L2, for all x € Af and all y € A¢. That
these linear operators are indeed isometries is proved as part of
Theorem 4.1 below.

Theorem 4.1. Under the conditions of Definition 4.1,

1. Upg : L2 — 2 and Ugr : L2 — L% are isometries;

2. Upg oUgr = idp and Ugr o Ugg = idg, the identity maps on L% and
L% respectively;

3. (V6. Urcer)c = (UgrVe, @r)r for all Y e L2, ¢F € L2,

Proof. (1) To show that the linear operators are isometries:
[Urcerlle = /A Urcor|*diic
G
=f lgF o Ter[*d g
Ac
=f lgr|?d(1ac o Trc)
Ap

- / e 2d i = [l |12
Ap

the third equality from the change of variable formula and
Proposition 2.5, the fourth equality from statement (2) of
Theorem 2.4.

(2) From the definition of the induced isometries

(Ucr Urc(@r)) (x) = @p (Tgr Trg (X)).

But by Proposition 2.5, the fractal transformations Tgr and Tg; are
inverses of each other almost everywhere. Therefore the functions
Ucr Urc(@F) and ¢f are equal for almost all x € Ap.

(3) This is an exercise in change of variables, similar to the
proof of (1). O

Let F and G be IFSs with the same number of functions, the
same probability vectors, and corresponding invariant measures (g
and pg. If {ep} is an orthonormal basis for L%, then by Theorem 4.1,
the set {en} = {Urgen} is an orthonormal basis for Lé. For example,
if IFSs F and G have the same attractor Ar = Ag = [0, 1], and the
invariant measures are both Lebesgue measure, then the Fourier
orthonormal basis {e27i*}e _of [2([0, 1]) is transformed under
Ugc to a “fractalized” orthonormal basis of L%([0, 1]). Therefore, ev-
ery function in L2([0, 1]) has, not only a Fourier series, but also a
corresponding (via Tgg) fractal Fourier series.

4.1. Fractal Fourier sine series

Consider the IFSs F, Gy, G, of Example 3.3 with probabili-
ties p; = pp = 0.5. In this case ur, g, and pg, are all Lebesgue
measure on [0, 1]. Consider the orthonormal Fourier sine ba-
sis {\FZen};“:l for L[2[0, 1], where e, = sin(nzx). For the fractal
transformations Trc,, i = 1,2, the fractally transformed orthonor-
mal bases for L2[0, 1] are {v2€,}%°, and {v2€,}5°,. where

en(x) :=sin(n Tg, ¢ (%)),
en(x) 1= sin(nmw Tg,r (X))

for all n e N. Fig. 7 illustrates e,, n=1,2,3, in colors black, red,
and green, respectively. For comparison, Fig. 6 illustrates the corre-
sponding sine functions e, = sin(nwx) forn=1, 2, 3.

Fig. 6. The sine functions e, = sin(nmx) for n = 1, 2, 3, for comparison with the
fractal sine functions shown in Fig. 7.

Fig. 7. The fractally transformed sine functions, €, = sin(nT;,r(x)), n = 1 (black),
2 (red), 3 (green). The viewing window is [0,1] x [-1,1]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Y

Fig. 8. For comparison with Fig. 9, this shows the Fourier sine series approxima-
tions to a constant function on [0, 1] using k = 10 (red), 50 (green) and 100 (black)
significant terms. Note the well-known end effects at the edges of the interval. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

]

- WA ¢ 4 o, %l;’\l

f n
| |
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|

Fig. 9. Fractal sine series approximations to a constant function on the interval [0,
1]. The number of terms used here are 10 (red), 50 (green) and 100 (black). Com-
pare with Fig. 8. The r.m.s. errors are the same as for the approximation to the
same constant function using a sine series with the same number of terms. Notice
that the edge effect has been shifted from 0 to 1/3. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 10. Sum of the first 100 (green) and 500 (black) terms in the Fourier sine
series for a step function. The viewing window is [0,1] x [-0.1,1.5]. Compare with
Figs. 11 and 12. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. Sum of the first 100 (green) and 500 (black) terms in a fractal Fourier sine
series (using €, functions) for a step function. Compare with Figs. 10 and 12. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Example 4.1 (Constant function). Fig. 8 illustrates the standard
sine series Fourier approximation to a constant function on the in-
terval [0, 1]. Fig. 9 illustrates three fractal Fourier sine series ap-
proximations. The respective Fourier series are

> exn-1 (X) > 52n—1(x)
m_1 2n—1
n=1 n=1

The calculation, in the fractal case, of the Fourier coefficients, uses
the change of variables formula, the fact from Example 3.3 that up
and u are Lebesgue measure, and statement 2 of Theorem 2.4.

Example 4.2 (Step function). Figs. 10-12 illustrate the Fourier ap-
proximations of a step function for 100 (green) and 500 (black)
terms, where the orthogonal basis functions are e,, e, and &,, re-

+-

Fig. 12. Sum of the first 100 (green) and 500 (black) terms in a fractal Fourier sine
series (using €, functions) for a step function. Compare with Figs. 10 and 11. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. See Example 4.3. Fourier sine series approximants to a tent function and
fractal counterparts.

spectively. The respective Fourier series are
2 1 —cos(nm/2)

— —— fu(x),

P B

where f, is ey, e, and &, respectively. Note that the jump in the
step function at x = 0.5 is cleanly approximated in both the frac-
tal series, in contrast to the well-known edge effect (Gibbs phe-
nomenon) in the classical case. The price that is paid is that the
fractal approximants have greater pointwise errors at some other
values of x in [0, 1]. The analysis of where this occurs and proof
that the mean square error is the same for all three schemes, is
omitted here.

Example 4.3 (Tent function). In Fig. 13 partial sums of the Fourier
sine series and their fractal counterparts are compared, for the tent
function f(x) = min{x, 1 — x} on the unit interval. The figure shows
Fourier approximations to the tent function using orthogonal func-
tions ep, and fractal approximations to the fractally transformed
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Fig. 14. See Example 4.4. The approximants converge to T;,r(x) in £2[0, 1] as the
number of terms in series approaches infinity.

tent function using fractal orthogonal functions €,. The approxima-
tions use 3 (red), 5 (green), 7 (blue), 20 (black) terms. The Fourier
series are (up to a normalization constant)

k

Z 2 sin(rrn/2n)2— sin(zrn) en ()
n=1
k2 sin(ztn/2) —sin(mTn) ~
and g 3 en(X).

Example 4.4 (Function with a dense set of discontinu-
ities). Consider the following approximation of a function with
a dense set of discontinuities. Let ¥ e L2[0, 1] be defined by
Y (x) =x for all xe[0,1]. Then ¢; =Ur, ¥, i=1.2, is given by
¢i(x) = Urq, ¥ ) (x) = ¥ (Tgr(x)) = Top(x), which has a dense
set of discontinuities (see Example 3.3). It follows, by a short
calculation using statement 2 of Theorem 2.4, that the coefficients
in the e, and e, Fourier series expansion of ¢; are the same as the
coefficients in the e, expansion for . Therefore the fractal Fourier
series expansions for ¢;, i = 1,2, are

2 S —cos(mn) ~ 2 & —cos(mn) ~
- ,12:1: — en(x), and = n; — en(x),

respectively. Sums with 10, 30, and 100 terms are shown in red,
green, and blue, respectively, in Fig. 14 for ¢4, and in Fig. 15 for
¢-, using the first 1000 terms of the series.

4.2. Legendre polynomials.

The Legendre polynomials are the result of applying Gram-
Schmidt orthogonalization to {1,x,x2,...}, with respect to
Lebesgue measure on [—1,1]. Denote the Legendre polynomials
shifted to the interval [0, 1] by {Py(x)}32,. They form a complete
orthogonal basis for %[0, 1], where the inner product is

1
(V. o) =/O ¥ ()@ (x)dx.

In this case each of the unitary transformations Urg,, i = 1,2 as-
sociated with Example 3.3 maps L2[0, 1] to itself, and we obtain
the fractal Legendre polynomials

PEC (x) = Po(Ter (%)).

Fig. 15. See Example 4.4. This illustrates the sum of the first thousand terms of a
fractal sine series for Tyg, (x) on [0, 1]. Compare with Fig. 3. Note the “fractal Gibbs
effect 8” that has resulted in the vertical line.

Fig. 16. Legendre polynomials and their fractal counterparts corresponding to Ty,
Both sets of functions form orthogonal basis sets with respect to Lebesgue measure
on the interval [-1, 1]. See also Fig. 17.

Figs. 16 and 17 illustrate the Legendre polynomials and their frac-
tal counterparts. Fig. 16 shows the fractal Legendre polynomials
P,f G (x) and Fig. 17 shows the fractal Legendre polynomials P,f C2 (x).

4.3. The action of the unitary operator on Haar wavelets.

With F, G; and T =Tgg, : [0, 1] — [0, 1] as previously defined,
let U =Ug, : L?[0,1] — [?[0,1] be the associated (self-adjoint)
unitary transformation. Let Iy =[0, 1] and Hy : R — R be the Haar
mother wavelet defined by

+1ifx €[0,0.5),
-1ifx €[0.5,1),
0 otherwise.

Hy(x) =

For o € {0,1}%, ke N, write 0 = 0103...0} and |o| =k. If |o| =0
then o = ¢, the empty string. Also let Iy = hy, ohgyo---0 hgk (Iy),
where hy = f; and h; = f>, and let A,y : R — R be the unique affine



488 C. Bandt et al./Chaos, Solitons and Fractals 91 (2016) 478-489

Fig. 17. Legendre polynomials and their fractal counterparts corresponding to Tr,.
See also Fig. 16.

map such that A, (Iy) = I,. With this notation, the standard Haar
basis, a complete orthonormal basis for L2[0, 1], is
{Hy 10 €{0,1}* ke N} U {Hs(x)} U {1},

where 1 is the characteristic function of [0, 1) and H, : [0,1) - R
is defined by

Hy (x) = 21°2H (A1 (x)).

There is an interesting action of U =Upg, on Haar wavelets.
The operator U permutes pairs of Haar wavelets at each level and
flips signs of those at odd levels, as follows. By calculation, for
0 € Urenf0, 1}k’

UH,; = (_1)|0‘H0"
where |o| = ’0’| and o/ = (-D)"*op+ (14 (-1)%)/2 for all I =

1,2,..., ]o’|, UHy = Hy, and U1 = 1. It follows that if f e [2]0, 1]
is of the special form

f=aHs+

0 €Uyen {0,112

Co (H(r + Ha’)-

then Uf = f and foT = f. Such signals are invariant under U. It
also follows that if P is the projection operator that maps L2[0, 1]
onto the span of all Haar wavelets down to a fixed depth, then
U-'PU =P.

4.4. Unitary transformations from the Hilbert mapping and its inverse

This continues Example 3.5, where the fractal transformations
h := Tz and h~!:=Tg are the Hilbert mapping and its in-
verse, both of which preserve Lebesgue measure and are map-
pings between one and two dimensions. The unitary transforma-
tions Ugg : L2([0, 1]) — L2([0, 1]?) and Ugr: L3([0, 1]?) — L%([0, 1])
are given by

Urc(f) = foh™, Uer(f) = foh.

A picture can be considered as a function f : [0, 1]> — R, where
the image of a point x in R? gives a gray scale value. Three such
functions (or one function f:[0,1]2 — R3) can be combined to
give RGB colors. The top image of Fig. 18 is such a picture given
by a function f:[0,1]> — R3. The bottom image is the function
(picture) Ugr f = f o h transformed by the unitary operator.

B

L] INI NI W I 1IE nm

Fig. 18. See Section 4.4.

Fig. 19. The bottom band shows the graph of sin(wx) with function values repre-
sented by shades of grey. The top band shows the graph of h(sin(xx)), where h is

the Hilbert function.

Fig. 20. The top image illustrates the graph of f(x.y) = sin(wx) for x,y € [0, 1]%.
The band at the bottom illustrates the graph of the pull-back foh:[0,1] — [-1,1],
which is continuous, in contrast to the situations in Fig. 18.

Since the Hilbert map h:[0,1] — [0,1]? is continuous, if f:
[0,1]2 — R is also continuous, then so is the pull-back Ugr(f) =
foh:[0,1] — R!. Therefore, any orthonormal basis {1/,: [0, 1] —
R} on [0, 1] consisting of continuous functions is mapped, via the
unitary operator Ugr, to an orthonormal basis {{/; o h: [0, 1] — R}
consisting of continuous functions. In the other direction, the im-
age under Ug; of an orthonormal basis consisting of continuous
functions on [0, 1] may not comprise continuous functions on [0,
1]2. Figs. 19 and 20 illustrate this.

In Fig. 21, the right image represents the function f : [0, 1] —
[-1,1] defined by f(x,y) =sin(wx)sin(wry). The left image rep-
resents the function g:[0,1] — [-1,1] defined by the continu-
ous function g(x,y) = Ugr (f) = f o h(x) where h:[0,1] — [0, 1]? is
the Hilbert function. The set of functions in the orthogonal ba-
sis {sin(nmx)sin(mmy) : n,m e N} for L2([0, 1]?) (w.r.t. Lebesgue
two-dimensional measure) is fractally transformed via the Hilbert
mapping to an othogonal basis for L2[0, 1] (w.r.t. Lebesgue one-
dimensional measure). In contrast to the situation in Section 4.1,
these fractal sine functions are continuous.
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Fig. 21. The right image represents the graph of f:[0,1]> — [-1,1] defined
by f(x,y) =sin(;rx)sin(rry). The left image represents the graph of g:[0,1]*> —
[-1.1] defined by the continuous function g(x,y) = Ugr(f) = foh(x) where h:
[0,1] — [0, 1]? is the Hilbert function.
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