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a b s t r a c t 

Our results and examples show how transformations between self-similar sets may be continuous almost 

everywhere with respect to measures on the sets and may be used to carry well known notions from 

analysis and functional analysis, for example flows and spectral analysis, from familiar settings to new 

ones. The focus of this paper is on a number of surprising applications including what we call fractal 

Fourier analysis, in which the graphs of the basis functions are Cantor sets, discontinuous at a countable 

dense set of points, yet have good approximation properties. In a sequel, the focus will be on Lebesgue 

measure-preserving flows whose wave-fronts are fractals. The key idea is to use fractal transformations 

to provide unitary transformations between Hilbert spaces defined on attractors of iterated function 

systems. 
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1. Introduction 

The study of self-similar sets via iterated function systems (IFSs)

has been intense for over 30 years. Only recently, however, have

fractal transformations between the attractors of two IFSs been in-

vestigated [7,8,10] . In this paper, such fractal transformations are

used to transform classical notions from analysis and functional

analysis on one attractor (say a line segment, a square, or a cir-

cle) to a fractal version of these notions on the other - thus the

title “old wine in fractal bottles”. 

One instance of this “rebottling” considered in this paper is to

transform Fourier analysis on an interval to a fractal setting. An

example is shown in Fig. 1 , illustrating two approximations to a

piecewise constant function with a jump in the middle. The frac-

tal sine series (red) has a dense set of discontinuities yet makes

a clean jump, while the comparable sine series (black) makes no

jump, due to the constraint of continuity and the Gibbs effect. The

L 2 and L ∞ errors of both approximations are nearly the same, but

the distributions of the errors are different. 

If F = { X; f 1 , f 2 , . . . , f N } is a contractive IFS with attractor A and

with positive probability vector p = (p 1 , p 2 , . . . , p N ) , then there is

an invariant measure μp associated with the pair ( F , p ). According

to a theorem of Elton [12] , this measure of a Borel set B , whose
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oundary has measure zero, is, “almost always”, in the limit, the

roportion of points in the chaos game algorithm that land in B ,

here the function f i is chosen in the chaos game with probability

 i for all i . 

Let F and G be two contractive IFSs with the same num-

er of functions and with the same probability vector, with non-

verlapping (defined in Section 2.2 ) attractors A F and A G and with

espective invariant measures μF and μG . The fractal transforma-

ions T FG : A F → A G and T GF : A G → A F (defined in Section 2.2 ) are

roved to be measurable and continuous almost everywhere with

espect to μF and μG , respectively. Moreover, these fractal trans-

ormations are measure preserving. In some interesting cases, for

hich a sufficient condition is provided, T FG and T GF are homeo-

orphisms and inverse to each other. 

For an IFS F with attractor A F , the set L 2 
F 

of complex valued

unctions on A F , square integrable with respect to an invariant

easure, is a Hilbert space. Given two IFSs with non-overlapping

ttractors, a fractal transformation T FG : A F → A G induces a trans-

ormation from L 2 F to L 2 G . Moreover, the operator U F G : L 
2 
F → L 2 G in-

uced by the fractal transformation T FG may be an isometry. Such

sometries allow for basic notions and results from analysis and

unctional analysis to be transferred from the classical setting to

 fractal setting. For example, if A F = A G = [0 , 1] , the unit inter-

al, and μF = μG is Lebesgue measure, then U FG takes any or-

honormal (ON) basis of functions for L 2 ([0, 1]) to another ON ba-

is for L 2 ([0, 1]). In particular, the standard Fourier ON basis may
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. Partial sums of fractal sine series (red) and a classical sine series (black) 

both approximate a step function. The fractal series makes a clean jump but pays a 

price elsewhere. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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e transformed to a “fractal Fourier” ON basis - which leads to

ractal Fourier analysis. We note that this kind of spectral analysis

s distinct from the analysis on fractals of Kigami [17] , Strichartz

27] and others, whereby spectral analysis on some fractals, asso-

iated with certain natural Laplacians, is developed de novo . 

Throughout, except where otherwise stated, we assume that

ach IFS F = { A ; f 1 , f 2 , . . . , f N } is contractive, and that the ambi-

nt space of each IFS is its attractor. We further assume that each

unction in the IFS is a homeomorphism onto its image, and that F

s endowed with a probability vector p = (p 1 , p 1 , . . . , p N ) with μp 

he associated invariant measure. 

The paper is organized as follows. The definitions of the terms

bove and of other relevant terms are reviewed in Section 2 . In

articular, in Section 2.2 we recall the definition of the dynamical

oundary of an attractor of an IFS, and then define an attractor to

e non-overlapping if it is not equal to its dynamical boundary. In

ection 2.3 we introduce fractal transformations. In Section 2.4 it

s shown that the measure of the critical set (overlap set) and of

he dynamical boundary of a non-overlapping attractor of an IFS

s zero, for any probability vector. In Section 2.5 it is shown that,

iven two such IFSs F and G with equal probability vectors and a

ractal transformation T FG : A F → A G from the attractor A F of F to

he attractor A G of G , the fractal transformations T FG and T GF are

easurable and continuous almost everywhere with respect to the

nvariant measures μF and μG , respectively. Moreover, T FG and T GF 

re measure preserving in the sense that μF ◦ T GF = μG and μG ◦
 GF = μF . 

Examples of fractal transformations which illustrate results of

ection 2 appear in Section 3 . These include self mappings of the

nterval, a mapping from the unit interval to a filled triangle and

o the Koch curve, a mapping from a filled triangle to itself, and

he Hilbert’s space filling curve. 

Given two IFSs with non-overlapping attractors, with the same

umber of functions, a fractal transformation T FG acts naturally on

he set L 2 
F 

of square integrable complex valued functions on A F .

his provides a map 

U F G : L 2 F → L 2 G 

(U F G f )(x ) = f (T GF x ) 

or all f ∈ L 2 F and all x ∈ A F . Thus, for each ordinary function, there

s a fractal version of that function. 
The mapping U FG is the subject of Section 4 . The main result is

hat U FG and U GF are isometries and inverses of each other. In the

ase that A := A F = A G and the invariant measures on these spaces

re the same, the maps U FG and U GF are unitary transformations

ith adjoint U 

∗
F G = U GF . As a consequence, any classical orthonor-

al basis for L 2 
F 

(Fourier, Legendre, Haar) can be transformed into

N basis for L 2 
G 
, a fractal version of the original. In the Fourier case,

his leads to what we refer to as fractal Fourier analysis. Examples

re provided in Section 4 . 

. Fractal transformations and invariant measures 

This section introduces some essential concepts that run

hroughout the paper, including (1) the invariant measure of an

FS with probabilities, called a p -measure, and (2) fractal transfor-

ations from the attractor of one IFS to the attractor of another.

he main results needed in this paper are Theorem 2.2 which

tates that, if an attractor is not equal to its dynamical boundary,

hen all p -measures of the critical set, the dynamical boundary,

nd the inner boundary are zero; and Theorem 2.3 which states

hat a fractal transformation between non-overlapping attractors is

easurable and continuous almost everywhere with respect to ev-

ry p -measure, and that such a fractal transformation is p -measure

reserving. 

.1. Attractors and code space 

We recall definitions and basic facts which lead to the central

otion of non-overlapping attractor. Let N = { 1 , 2 , 3 , . . . } and N 0 =
 0 , 1 , 2 , . . . } . Throughout this paper we restrict attention to iterated

unction systems (IFSs) of the form 

 = { X ; f 1 , f 2 , . . . , f N } 
here N ∈ N is fixed, X is a complete metric space, and f i : X → X is

 contraction for all i ∈ I := { 1 , 2 , . . . , N} . By contraction we mean

here is λ ∈ [0 , 1) , such that d X ( f i (x ) , f i (y )) ≤ λd X (x, y ) for all x , y

 X , for all i ∈ I . 

For subsets U ⊂ X let 

 

−1 (U) = 

N ⋃ 

i =1 

f −1 
i 

(U ) and F (U ) = 

N ⋃ 

i =1 

f i (U) . 

his defines mappings F , F −1 on the family 2 X of all subsets of X .

et F −k mean F −1 composed with itself k times; let F k mean F

omposed with itself k times, for k ∈ N . Let F 0 = F −0 = I. 

H (X ) will denote the collection of nonempty compact subsets

f X . The classical Hutchinson operator F : H (X ) → H (X ) is just

he operator F above restricted to H (X ) . According to the basic

heory of contractive IFSs as developed in [16] , there is a unique

ttractor A ⊂ X of F . That is, A is the unique nonempty compact

ubset of X such that 

 = F (A ) , with the property A = lim 

k →∞ 

F k (B ) , 

here convergence is with respect to the Hausdorff metric and is

ndependent of B ∈ H (X ) . 

Since, in this paper, we are only interested in A itself, we usu-

lly take X = A . Throughout this paper the following assumptions

re made: 

• F = { A ; f 1 , f 2 , . . . , f N } is an IFS with attractor A such that each

of its functions is a contraction and is a homeomorphism onto

its image. 

Note that under this assumption f −1 
i 

◦ f i (B ) = B, but f i ◦ f −1 
i 

(B )

ften differs from B . 

Let I ∞ = { 1 , 2 , . . . , N} ∞ , referred to as the code space , be the

et of all infinite sequences θ = θ θ θ · · · with elements from
1 2 3 
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I . The shift operator S : I ∞ → I ∞ is defined by S(θ1 θ2 θ3 · · · ) =
θ2 θ3 θ4 · · · . Define a metric d on I ∞ = { 1 , 2 , . . . , N} ∞ so that, for θ ,

σ ∈ I ∞ with θ 	 = σ , the distance d(θ, σ ) = 2 −k , where k is the

least integer such that σ k 	 = θ k . The pair ( I ∞ , d ) is a compact met-

ric space. 

Example 2.1 (The code space IFS) . Consider the IFS Z =
{ I ∞ ; s 1 , s 2 , . . . , s N } , where s i : I 

∞ → I ∞ is defined by s i (σ ) = i σ . The

attractor of Z is I ∞ ; each s i is a contraction and a homeomorphism

onto its image. In particular, a contraction constant is λ = 

1 
2 , inde-

pendently of i . 

Definition 2.1. For any IFS F = { A ; f 1 , f 2 , . . . , f N } , the coding map

π : I ∞ → A is defined by 

π(σ ) = lim 

k →∞ 

f σ1 
◦ f σ2 

◦ · · · ◦ f σk 
(a ) , 

for a fixed a ∈ A , for all σ = σ1 σ2 · · · ∈ I ∞ . 

Under the assumption that the IFS is contractive, it is well

known that the limit is a single point, independent of a ∈ A , con-

vergence is uniform over I ∞ , and π is continuous and onto. The

sequence σ is called an address of the point x ∈ A if π(σ ) = x.

The map π is a conjugation between the code space IFS and the

given IFS F , in the sense that for all σ ∈ I ∞ and i = 1 , . . . , N

π(s i (σ )) = f i (π(σ )) and π(S(σ )) ∈ F −1 (π(σ )) . (2.1)

Thus the code space provides the archetypal IFS, and all other

IFS are obtained from Z by an appropriate projection. The map π
can be a homeomorphism but usually it will not be one-to-one. 

Definition 2.2. For the IFS F , the critical set or overlapping set of

the attractor A (w.r.t. F ) is 

 = 

⋃ 

i 	 = j 
f i (A ) ∩ f j (A ) . 

The inner boundary of the attractor A (w.r.t. F ) is ̂ 

 = 

⋃ 

k ∈ N 0 
F k (C) 

The inner boundary of A is the set of points with more than

one address: ̂ 

 = { x ∈ A : | π−1 (x ) | 	 = 1 } . 

2.2. The open set condition and non-overlapping attractors 

It is necessary in this paper to require that the critical set and

inner boundary of an attractor are not too large, so that the pieces

generated by the IFS can still be recognized. This is essential sincê 

 will be the exceptional set, where a fractal transformation may

not be continuous. In the classical case of an IFS consisting of

similitudes on X = R 

n , P.A.P. Moran [21] noted already in 1945 that

open sets can be used to show that C is small, and to construct an

appropriate Hausdorff measure on A . 

Definition 2.3. The IFS F = { X; f 1 , f 2 , . . . , f N } with attractor A ful-

fils the open set condition (OSC) if there exists a nonempty sub-

set O of X , such that f i ( O ) ⊂ O and f i (O ) ∩ f j (O ) = ∅ for i 	 = j , for all

i, j = 1 , 2 , . . . , N. 

Theorem 2.1 ( [21] , Theorem III, cf. [16] , [13] , Theorem 9.3) . If F =
{ R 

n ; f 1 , f 2 , . . . f N } consists of similitudes with scaling ratio of f i equal

to s i < 1, and F obeys the OSC, then the Hausdorff dimension D of

the attractor A is the unique positive solution to 
∑ N 

i =1 s 
D 
i 

= 1 . The D-

dimensional Hausdorff measure is positive and finite on A. Up to a

constant factor, it is the invariant measure μp with probabilities p i =
s D 

i 
. (See Definition 2.4 .) 
Since the proof uses Lebesgue measure on the open set O , it is

mportant to work on R 

n , not only on A itself. The open set con-

ition is often difficult to check although it can be formulated al-

ebraically in terms of the data of the IFS [2] . Schief proved that

or similitudes in complete metric spaces, the OSC with O ∩ A 	 = ∅
mplies the above equation for Hausdorff dimension, while on the

ther hand, positive finite D -dimensional Hausdorff measure of A

ields the OSC [24] . 

We are interested, not only in similitudes, but also in affine and

on-linear mappings. For this reason we use an internal condition

n the IFS and its attractor which was introduced by M. Morán

19] , see also Kigami [18] . The condition has a geometric flavor and

pplies to an IFS with arbitrary contractions in a complete metric

pace. Let U denote the closure of U ⊂ X and U 

o the interior. Since

 is compact, the closure of U ⊂ A within A is the same as in any

urrounding space X . 

efinition 2.4. The dynamical boundary of A (w.r.t. F ) is 

A = 

∞ ⋃ 

k =1 

F −k (C) ∩ A . 

efine A to be non-overlapping (w.r.t. F ) if 

 	 = ∂A . (2.2)

The topological boundary of a set U in a surrounding space X is

he set U ∩ X \ U . In particular, the topological boundary of U in U

s always empty. The following example shows that in general ∂A

iffers from the topological boundary of A in A as well as in X . 

xample 2.2. Let F = { [0 , 1] ; f 1 , f 2 } with Euclidean metric. The

opological boundary of [0, 1] in R is {0, 1}. If f 1 (x ) = 

1 
2 x, f 2 (x ) =

1 
2 x + 

1 
2 , then the dynamical boundary of the attractor A = [0 , 1] is

A = { 0 , 1 } . In this case, by definition, A is non-overlapping. On the

ther hand, if f 1 (x ) = 

2 
3 x, f 2 (x ) = 

2 
3 x + 

1 
3 , then again A = [0 , 1] ,

ut ∂A = [0 , 1] . In this case A is overlapping. 

If the OSC holds for an IFS on R 

n with similitudes, the open

et can be chosen so that O ∩ A 	 = ∅ [23] , in which case A is

on-overlapping because O cannot intersect ∂A , [19 , Theorem 2.3,

hrough the implications iii) ⇒ i) and i) ⇒ ii)]. Conversely, it is con-

ectured that the non-overlapping condition for similitudes on R 

n 

mplies the OSC. The proof of the statement [19 , Theorem 2.3,

i) ⇒ iii)] is wrong and the question is still open, cf. [3] . 

For similitudes on complete metric spaces, Morán [19, Theo-

em 2.3] proved that A is non-overlapping if and only if there ex-

sts a set O ⊂ A open in A which fulfils F ( O ) ⊂ O and F (O ) ∩ C = ∅ .
lso Kigami [18, p. 15] proved that every open O ⊂ A �∂A fulfils an

intrinsic open set condition”. For our purposes, it is important to

ote that inner and dynamical boundary of a non-overlapping at-

ractor are small in a topological sense. 

roposition 2.1 (cf. [19] , [17] ) . For a non-overlapping attractor, the

ets C , ∂A , and ̂ C do not contain interior points with respect to A . 

roof. If U ⊆ A is open in A , then there is a piece A σ =
f σ1 

· · · f σk 
(A ) at some level k in A which is contained in U ,

nd hence F −k (U) = A. Thus U ⊆ C would contradict the non-

verlapping property. The same argument shows that U ⊆ ∂A is not

ossible, since the definition of ∂ A implies F −k (∂ A ) = ∂A for k =
 , 2 , . . . [19] . Now 

̂ C is a countable union of closed nowhere dense

ets of the form f σ1 
· · · f σk 

(C) , and Baire’s category theorem shows

hat ̂ C cannot contain an interior point in the compact set A . �

To show below that the inner and dynamical boundaries are

lso small in a measure-theoretic sense, we state one more prop-

rty of non-overlapping attractors (cf. [11] ). A point ω ∈ I ∞ is

alled disjunctive if 
{

S k ω : k ∈ N 

}
is dense in I ∞ . 
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roposition 2.2. If a point x in a non-overlapping attractor has a

isjunctive address, it can neither belong to the dynamical nor to the

nner boundary. 

roof. If π(ω) = x, then π(S k (ω)) ∈ F −k (x ) by (2.1) . So if x is in

A , all of π ( S k ( ω)) belongs to ∂A . If x is in 

̂ C , then π ( S k ( ω)) will

e in C for k = k 0 and in ∂A for all k > k 0 . On the other hand, if

 is disjunctive then the π ( S k ( ω)) with k = 1 , 2 , . . . form a dense

et in A . Non-overlapping means that ∂A is not dense in A , so ω
isjunctive means that π ( ω) is not a boundary point. �

.3. Fractal Transformations 

The purpose of this subsection is to define the central notion of

 fractal transformation from one attractor to another. 

The code space I ∞ is equipped with the lexicographical order-

ng, so that θ > σ means θ 	 = σ and θ k > σ k where k is the least

ndex such that θ k 	 = σ k . Here 1 > 2 > 3 · · · > N − 1 > N. 

efinition 2.5. A section of the coding map π : I ∞ → A is a map

: A → I ∞ such that π◦τ is the identity. In other words τ is a map

hat assigns to each point in A an address in the code space. The

op section of π : I ∞ → A is the map τ : A → I ∞ given by 

(x ) = max π−1 (x ) 

or all x ∈ A , where the maximum is with respect to the lexico-

raphic ordering. The value τ ( x ) is well-defined because π−1 (x ) is

 closed subset of I ∞ . 

The technique of top sections was developed by Barnsley [5] , [6,

ection 4.11] . The top section is forward shift invariant in the sense

hat S(τ (A )) = τ (A ) . See [9] for a classification of all sections such

hat S ( τ ( A )) ⊆ τ ( A ). For the following definition see [7] and [8] . 

efinition 2.6. Let A F and A G be the attractors, respectively, of IFSs

 = { A F ; f 1 , f 2 , . . . , f N } and G = { A G ; g 1 , g 2 , . . . , g N } with the same

umber of functions. The fractal transformations T FG : A F → A G 

nd T GF : A G → A F are defined to be 

 F G = πG ◦ τF and T GF = πF ◦ τG , 

here τ F : A F → I ∞ and τG : A G → I ∞ are sections. If T FG is a home-

morphism, then it is called a fractal homeomorphism , and in

his case T GF = (T F G ) 
−1 . Except where otherwise implied, it is as-

umed that the top sections are used. 

The general notion of a fractal transformation using a shift in-

ariant section is discussed in [9] . The following proposition gives

 sufficient condition for when a fractal transformation is continu-

us and when it is a homeomorphism. When, in our examples, it

s claimed that a certain fractal transformation is continuous, it is

he condition in this proposition that is readily verified. 

roposition 2.3. Let the attractor A F of the IFS F be non-overlapping,

nd let P F = { π−1 
F 

(x ) : x ∈ A F } , which is a partition of the code space

 

∞ . For two non-overlapping attractors A F and A G , a fractal transfor-

ation T FG : A F → A G is continuous if P F is a finer partition than P G ,

.e., for each part S in P F there is a part T in P G such that S ⊆ T. If

 F = P G , then T FG is a homeomorphism. 

roof. Once we verify that τF (A F ) = I ∞ , the proposition follows

mmediately from [7, Theorem 1] ; see [8] , for references and sub-

ler results. 

To show that τF (A F ) = I ∞ , let D denote the set of disjunctive

equences in I ∞ . By Proposition 2.2 we have πF (D ) ⊆ A F \ ̂  C . Since

 F \ ̂  C is the set of points having a single address, the coding map

s bijective when restricted to this set; therefore, 

 ⊆ π−1 
F (A F \ ̂  C ) = I ∞ \ π−1 

F ( ̂  C ) ⊆ τF (A F ) , 

he last inclusion because unique addresses must lie in τ F ( A ). But it
∞ 
s well known [26] that D is dense in I . Therefore so is τ F ( A ). � i  
.4. Invariant Measures on an Attractor 

In this subsection we recall the definition of the invariant mea-

ures on an IFS with probabilities, also called p -measures, and de-

ermine that both the dynamical boundary of a non-overlapping

ttractor A and the inner boundary of A have measure zero. 

efinition 2.7 ( [16] , cf. [13] ) . Let p = (p 1 , p 2 , . . . , p N ) satisfy p 1 +
p 2 + · · · + p N = 1 and p i > 0 for i = 1 , 2 , . . . , N. Such a positive N -

uple P will be referred to as a probability vector . There is a

nique normalized positive Borel measure μ supported on A and

nvariant under F in the sense that 

(B ) = 

N ∑ 

i =1 

p i μ( f −1 
i 

(B )) (2.3)

or all Borel subsets B of X . We call μ the invariant measure of

 corresponding to the probability vector p and refer to it as the

 -measure (w.r.t. F ). To emphasize the dependence on p , we may

rite μp in place of μ. 

xample 2.3. This is a continuation of Example 2.1 , where Z =
 I ∞ ; s 1 , s 2 , . . . , s N } . For a probability vector p = (p 1 , p 2 , . . . , p N ) , the

orresponding p -measure is the Bernoulli measure νp where 

p ( [ σ1 σ2 · · ·σn ] ) = 

n ∏ 

i =1 

p σi 
, 

here [ σ 1 σ 2 ���σ n ] := { ω ∈ I ∞ : ω i = σi for i = 1 , 2 , .., N} denotes

 cylinder set, the collection of which generate the sigma algebra

f Borel sets of I ∞ . 

The Bernoulli product measures are the archetypes of self-

imilar measures: 

roposition 2.4 (Hutchinson [16] ) . If F is an IFS with probability

ector p , corresponding invariant measure μp , and Z is the IFS of

xample 2.3 with the same probability vector p and corresponding in-

ariant measure νp , then μp (B ) = νp (π−1 (B )) for all Borel sets B. 

We can now prove that dynamical and inner boundary of a

on-overlapping attractor are small in a measure-theoretic sense.

hey are zero sets with respect to all invariant measures. This

as stated by Graf [14, 3.4] and Morán and Rey [20, Theo-

em 2.1] for similitudes with the OSC on R 

n , by Patzschke in [22,

emma 4.2] for self-conformal sets with the OSC on a Riemannian

anifold, and by Kigami [18, Theorem 1.2.4] in a more abstract set-

ing. Disjunctive sequences provide a simple proof for contractions

n complete metric spaces. 

heorem 2.2. For a non-overlapping IFS, the sets C , ∂A , and ̂ C have

easure zero with respect to all invariant measures μp on A . 

roof. For a probability vector p , let νp the Bernoulli measure on

 

∞ , as above. Let D ⊂ I ∞ be the set of disjunctive sequences. It is

ot difficult to prove that νp (D ) = 1 for all probability vectors p ,

ee [26] . 

Proposition 2.2 says that A �∂A contains all points with disjunc-

ive addresses. That is, π−1 (A \ ∂A ) ⊇ D. Proposition 2.4 implies 

p (A \ ∂A ) = νp (π
−1 (A \ ∂A )) ≥ νp (D ) = 1 . 

ince μp is a probability measure, μp (A \ ∂A ) = 1 and μp (∂A ) =
 . The set C fulfils f −1 

i 
(C) ⊂ ∂A for i = 1 , . . . , N. So (2.3) yields

p (C) = 0 . The same argument is used to show that μp (F (C)) =
 , and, inductively, μp (F k (C)) = 0 for k = 2 , 3 , . . . Thus μp ( ̂  C ) =
 . �

Remark. Let F and G be two IFSs with the same number of

unctions and with A F non-overlapping. If T FG and T ′ 
F G 

are two frac-

al transformations from attractor A F to attractor A G correspond-

ng to two sections, then T F G = T ′ almost everywhere with respect

F G 
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to any invariant measure on A F , i.e., corresponding to any prob-

ability vector p for F . More specifically, T F G (x ) = T ′ F G (x ) for all x

except those x in the set ̂ C F of measure zero. This follows from

Theorem 2.2 because, if τ F and τ ′ 
F 

are the sections used to form

T FG and T ′ F G , respectively, then τ F and τ ′ 
F agree everywhere except

on 

̂ C F . 

2.5. Continuity and Measure Preserving Properties of Fractal 

Transformations 

The main results of this subsection are that fractal transforma-

tions between non-overlapping attractors are measurable, continu-

ous almost everywhere, and map p -measures to p -measures. 

Theorem 2.3 ( [6] , Theorem 4.11.5) . Let F = { A ; f 1 , f 2 , . . . , f N } be an

IFS with non-overlapping attractor A , probability vector p , and corre-

sponding invariant measure μ. The section τ : A → I ∞ is measurable

and continuous almost everywhere w.r.t. μp , for all p. 

Proof. The function τ is measurable because τ−1 [ σ1 . . . σn ] (cf.

Example 2.3 ) is a Borel set in A which is easily determined by a

recursive procedure [6, Section 4.11] . The proof given in [6] can

be simplified as follows. Since ̂ C , the set of points with multi-

ple addresses, has μp measure zero, it is enough to show that

the bijective map τ : A \ ̂  C → I ∞ is continuous. Take a sequence

with limit x n → x in A \ ̂  C , and let σ be an accumulation point of

τ ( x n ) which by compactness exists. Since π is continuous, we must

have x n = π(τ (x n )) → π(σ ) = x, by uniqueness of the limit. Thus

τ (x ) = σ, and this is the only accumulation point. The restricted τ
is continuous. �

For an IFS F , let 


F = π−1 
F ( ̂  C F ) . 

Consider two non-overlapping IFSs F and G with the same proba-

bility vector. With notation as in Definition 2.6 of fractal transfor-

mation, let 


{ F,G } = 
F ∪ 
G and �{ F,G } = I ∞ \ 
{ F,G } 
A 

1 
F = πF (�{ F,G } ) and A 

1 
G = πG (�{ F,G } ) 

A 

0 
F = A F \ A 

1 
F and A 

0 
G = A G \ A 

1 
G 

Note that A 

0 
F 

depends also on G and that A 

0 
G 

depends also on F ;

similarly for A 

1 
F 

and A 

1 
G 

. 

Proposition 2.5. Assume that both A F and A G are non-overlapping,

and let μF and μG be invariant measures associated with the same

probability vector. With notation as above 

1. μF (A 

1 
F 
) = μG (A 

1 
G 
) = 1 , 

2. The fractal transformation T FG maps A 

1 
F bijectively onto A 

1 
G , and

maps A 

0 
F 

into A 

0 
G 

. 

3. Restricted to A 

1 
F 

we have (T F G ) 
−1 = T GF ; hence (T F G ) 

−1 = T GF al-

most everywhere. 

Proof. Using Proposition 2.4 and Theorem 2.2 we have

ν(
F ) = ν(π−1 
F 

̂ C F ) = μF ( ̂  C F ) = 0 . This implies that ν(
{ F,G } ) = 0

or ν(�{ F,G } ) = 1 . Again using Proposition 2.4 we have

μF (A 

1 
F ) = μF (πF (�{ F,G } )) = ν(π−1 

F 
πF (�{ F,G } )) ≥ ν(�{ F,G } ) = 1 . 

This proves statement (1). 

Concerning statement (2), we know that π−1 
F 

= τF is single-

valued on A F \ ̂  C F ⊃ A 

1 
F 

. Now τ F takes A 

1 
F 

bijectively onto �{ F , G } and

πG takes �{ F , G } bijectively onto A 

1 
G . Similarly, τ F takes A 

0 
F 

into


{ F , G } ) and πG takes 
{ F , G } into A 

0 
G 

. 

Concerning statement (3), restricted to A 

1 
G we have T F G ◦ T GF =

πG ◦ (τF ◦ πF ) ◦ τG = πG ◦ τG = I, the identity. �

Theorem 2.4. Assume that both A F and A G are non-overlapping, and

let μF and μG be invariant measures associated with the same prob-

ability vector. Then 
1. T FG : A F → A G is measurable and continuous a.e. with respect to

μF ; 

2. μF ◦ T GF = μG and μG ◦ T F G = μF . 

roof. Since T F G = πG ◦ τF , statement (1) follows from the continu-

ty of πG : I 
∞ → A G and Theorem 2.3 . 

Concerning statement (2), let B be a Borel set in A G , and let

 

0 = B ∩ A 

0 
G 
, B 1 = B ∩ A 

1 
G 

. By Propositions 2.4 and 2.5 

G (B ) = μ(π−1 
G B ) = μ(π−1 

G (B 

0 ∪ B 

1 )) 

= μ(π−1 
G B 

0 ) + μ(π−1 
G B 

1 ) = μ(τG B 

1 ) , 

he last equality because π−1 
G 

(B 0 ) = τG (B 0 ) , which has measure

ero. 

By similar arguments 

F (T GF B ) = μF (T GF (B 

0 ∪ B 

1 )) = μF (T GF B 

0 ) + μF (T GF B 

1 ) 

= μ(π−1 
F ◦ πF ◦ τG (B 

1 )) = μ(τG B 1 ) , 

he second to last equality because T GF (B 0 ) ⊂ A 

0 
F 
, which has mea-

ure zero. �

For the special case of similitudes in R 

n with the OSC, we ob-

ain a correspondence between the normalized Hausdorff mea-

ures of Theorem 2.1 . 

roposition 2.6. Let F = { A F ⊂ R 

n ; f 1 , f 2 , . . . f N } and G = { A G ⊂
 

n ; g 1 , g 2 , . . . g N } be two IFS satisfying the open set condition and

onsisting of similitudes with scaling ratios s i , t i < 1 respectively. If

 

D F 
i 

= t 
D G 
i 

for all i , then 

F = μG ◦ T F G , 

here μF and μG are the normalized D F and D G -dimensional Haus-

orff measures on A F and A G , respectively, where the probabilities are

p i = s 
D F 
i 

= t 
D G 
i 

. 

. Examples 

xample 3.1 (Fractal homeomorphisms of an interval) . Consider

FSs F = { ([0 , 1] ; f 1 , f 2 } and G = { ([0 , 1] ; g 1 , g 2 } , with probabilities

 1 , p 2 , where 

f 1 (x ) = p 1 x , f 2 (x ) = p 2 x + p 1 

g 1 (x ) = r x, g 2 (x ) = (1 − r) x + r, 

nd 0 < r < 1. The OSC is fulfilled and we have only one critical

oint C F = { p 1 } , C G = { r} , with addresses 1 2 and 2 1 in both cases.

hus the fractal transformation T F G : [0 , 1] → [0 , 1] is a homeomor-

hism by Proposition 2.3 . By Theorem 2.1 , the invariant measure

or F is Lebesgue measure λ while G describes an arbitrary p -

easure μp . By Theorem 2.4 , T FG transforms λ to μp and T GF 

ransforms μp to λ. This example can be generalized from 2 to N

unctions. 

Thus each p -measure of such an IFS can be transformed to

ebesgue measure by a fractal homeomorphism. It is well known

hat each non-atomic probability measure μ on [0, 1] can be trans-

ormed into λ by a homeomorphism F , which is in fact the cumu-

ative distribution function of μ. In the case of a fractal homeomor-

hism, the piece structure is also preserved. This may be useful for

aar wavelets, as indicated in Section 4 . 

The next two examples deal with the special case of the binary

epresentation of [0, 1], 

 = 

{ 

[0 , 1] ; f 1 = 

x 

2 

, f 2 = 

x 

2 

+ 

1 

2 

} 

, p 1 = p 2 = 

1 

2 

. 

xample 3.2 (The Cantor function) . Consider the IFS G =
C; 1 x, 1 x + 

2 } with attractor equal to the standard Cantor set C
3 3 3 
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Fig. 2. Graph of the fractal transformation T FG 1 discussed in Example 3.3 . The trans- 

formation preserves Lebesgue measure on [0,1] and is continuous except for a dense 

countable set of discontinuities. The viewing window is slightly larger than [0,1] ×
[0,1]. 
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Fig. 3. Graph of the fractal transformation T FG 2 discussed in Section 3.3 . Unlike T FG 1 

in Fig. 2 , T FG 2 is its own inverse. 
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nd empty critical set, while the attractor of F is [0, 1] and the crit-

cal set is { 1 2 } . In this case T GF : C → [0 , 1] is continuous and essen-

ially the Cantor function, called “devil’s staircase” by Mandelbrot.

he Cantor function is usually defined as a function f : [0 , 1] →
0 , 1] so that if x is expressed in ternary notation as x = i 1 i 2 · · ·
here i k ∈ {0, 1, 2} for all k , then f (x ) = i ′ 

1 
i ′ 
2 

· · · expressed in

inary, where i ′ = 0 if i ∈ {0, 1} and i ′ = 1 if i = 2 . The function

 GF : C → [0 , 1] is the restriction of this function to C where i k = 1

s forbidden. The inverse T F G : [0 , 1] → C is discontinuous at 1 
2 and

oints of the form k /2 n . 

xample 3.3 (Self mappings of the interval) . Beside F , there are

hree other IFSs which fulfil the OSC and have the Lebesgue mea-

ure as invariant measure for p 1 = p 2 = 

1 
2 . 

 1 = 

{ 

[0 , 1] ; g 1 = − x 

2 

+ 

1 

2 

, g 2 = 

x 

2 

+ 

1 

2 

} 

, 

 2 = 

{ 

[0 , 1] ; g 1 = − x 

2 

+ 

1 

2 

, g 2 = − x 

2 

+ 1 

} 

, 

 3 = 

{ 

[0 , 1] ; g 1 = 

x 

2 

, g 2 = − x 

2 

+ 1 

} 

. 

hus A F = A G i 
= [0 , 1] for i = 1 , 2 , 3 . All four IFSs have the critical

et C = { 1 2 } and the inner boundary 

 

 = 

{
k 

2 

n 
: k = 0 , 1 , . . . , 2 

n ; n ∈ N 

}
. 

he three fractal transformations T F G i , i = 1 , 2 , 3 , are homeomor-

hism when restricted to [0 , 1] \ ̂  C . Due to the choice of the top

ection, the T F G i are continuous from the left at all points in (0,

]. For p 1 = p 2 = 

1 
2 , the p -measure is Lebesgue measure on [0, 1],

hich is preserved by the T F G i according to Proposition 2.6 . The

raph of the function T F G 1 appears in Fig. 2 , and the graph of T F G 2 
ppears in Fig. 3 . 

The fractal transformation T F G 2 is its own inverse, i.e., T F G 2 ◦
 F G 2 

= id, the identity, a.e. This can be verified using binary rep-

esentation: 

 = 

∞ ∑ 

n =1 

d n / 2 

n , d n ∈ { 0 , 1 } , implies T F G 2 (x ) = 

∞ ∑ 

n =1 

(−1) n −1 d n / 2 

n

xample 3.4 (Koch curves and space-filling curves) . For the IFS G 2 

bove, which we call G now, the two addresses of the critical point
1 
2 are 1 12 and 2 21 . Exactly the same identification of addresses can

e obtained in the complex plane when we replace the factor −0 . 5

y −0 . 5 ± αi with −0 . 5 < α < 0 . 5 . The attractor A G of 

 = F α = { C ; f 1 = (−0 . 5 − αi ) z, f 2 = (−0 . 5 + αi ) z + 1 . 5 − αi } 
s a fractal curve. See [4, Figures VIII.237 and VIII.238] where other

onstant terms were used. (Here we defined F so that the fixed

oints of f 1 , f 2 are 0 and 1 but the endpoints of the curve are

he fixed points of f 1 f 2 and f 2 f 1 .) The OSC is easy to verify. For

= 

√ 

3 / 6 the mappings involve a rotation around ± 150 o , so we

btain the classical Koch snowflake curve. Since C α is always a sin-

le point with addresses 1 12 and 2 21 , the fractal transformations

 GF , T FG are homeomorphisms between interval and Koch curve

ith T F G = T −1 
GF 

, by Proposition 2.3 . 

For p 1 = p 2 = 0 . 5 , the measure μG is Lebesgue measure on [0,

]. The pushfoward of μG to A F under T GF is the normalized Haus-

orff measure μF on the Koch curve A F , by Proposition 2.6 . (We

emark that the measure of any Borel subset B of A F may be com-

uted by, and thought of in terms of the chaos game algorithm on

 with equal probabilities, [12] .) The Hausdorff dimensions of A G 

nd A F are 1 and ln 2/ln 1/ r , where r = 

√ 

1 
4 + α2 is the ratio of f 1 

nd f 2 . Thus, a fractal transformation may change the dimension

f a set upon which it acts. 

Now consider the case α = 

1 
2 . The mappings f 1 , f 2 involve a ro-

ation around ± 135 o , and the attractor A F = � becomes a right-

ngled isosceles triangle, with dimension ln 2/ln 1/ r equal to 2. The

SC is still fulfilled, the addresses 1 12 and 2 21 are still identified.

owever, many new identifications arise. The critical set is an in-

erval - the altitude of � is the intersection of the pieces f 1 ( � ) and

 2 ( � ). According to Proposition 2.3 the transformation T GF remains

ontinuous, and describes a plane-filling curve. For p 1 = p 2 = 0 . 5

he one-dimensional Lebesgue measure μG on [0, 1] is transformed

nto the two-dimensional Lebesgue measure μF on � . Moreover,

 GF : � → [0 , 1] is continuous almost everywhere with respect to

wo-dimensional Lebesgue measure, with discontinuities located 

n a countable set of intervals. We have that T GF ◦ T F G (x ) = x for

ll x ∈ � , and T F G ◦ T GF (x ) = x for almost all x ∈ [0 , 1] , with respect

o one-dimensional Lebesgue measure. T FG ( � ) is not the whole in-

erval [0 , 1] but a dense subset of [0, 1]. 
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Fig. 4. Hilbert’s original design for a continuous map from [0,1] to [0,1] × [0,1]. 

Fig. 5. See Example 3.6 . 
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Example 3.5 (Hilbert’s space filling curve) . Space filling curves,

from the point of view of IFS theory, have been considered in [25] .

In [7] it is shown how, as follows, functions such as the Hilbert

mapping h : [0, 1] → [0, 1] 2 (see Fig. 4 ) are examples of fractal

transformations. 

Let A = A 1 = (0 , 0) , B = B 2 = (0 , 1) , C = C 3 = (1 , 1) , D = D 4 = (1 ,

0) , D 1 = A 2 = (0 , 0 . 5) , C 1 = D 2 = A 3 = B 4 = (0 . 5 , 0 . 5) , B 1 = C 4 =
(0 . 5 , 0) , C 2 = B 3 = (0 . 5 , 1) , and D 3 = A 4 = (1 , 0 . 5) . Let 

F = 

{
R ; f i = 

x + i − 1 

4 

, i = 1 , 2 , 3 , 4 

}
, 

G = 

{
R 

2 ; g i , i = 1 , 2 , 3 , 4 

}
where g i : R 

2 → R 

2 is the unique affine transformation such

that g i (ABCD ) = A i B i C i D i , by which we mean g i (A ) = A i , g i (B ) =
B i , g i (C) = C i , g i (D ) = D i for i = 1 , 2 , 3 , 4 . (Similar notation will be

used elsewhere in this paper.) In complex notation, we have the

explicit expressions 

g 1 (z) = 

i z 

2 

, g 2 (z) = 

(z + i ) 

2 

, g 3 (z) = 

(z + 1 + i ) 

2 

, 

g 4 (z) = 

(−i z + 2 + i ) 

2 

. 

The Hilbert mapping is h = T F G : [0 , 1] → [0 , 1] 2 . The functions in G

were chosen to conform to the orientations of Fig. 4 , which comes

from Hilbert’s paper [15] concerning Peano curves. That T FG is con-

tinuous follows from Proposition 2.3 . 

If p 1 = p 2 = p 3 = p 4 = 0 . 25 , then, by Proposition 2.1 , the as-

sociated invariant measure μF is the Lebesgue measure on [0, 1],

and μG is Lebesgue measure on [0, 1] 2 . The inverse of T −1 
F G 

is the

fractal transformation T GF : [0 , 1] 2 → [0 , 1] , which is continuous al-

most everywhere with respect to two dimensional Lebesgue mea-

sure. More precisely, T GF ◦ h (x ) = x for almost all x ∈ [0 , 1] (with re-

spect to Lebesgue measure), and h ◦ T GF (x ) = x for all x ∈ [0 , 1] 2 . If

0 ≤ α < β ≤ 1, then by Proposition 2.1 

λ( h ([ α, β]) ) = β − α, 
here λ is 2-dimensional Lebesgue measure. 

xample 3.6 (A family of fractal homeomorphisms of an equilat-

ral triangle) . Let � denote a filled equilateral triangle as illus-

rated in Fig. 5 . The IFS F r , 0 < r ≤ 1 
2 , on � consists of the four

ffine functions as illustrated in the figure on the left, where �
s mapped to the four smaller triangles so that points A , B , C are

apped, respectively, to points a , b , c . A probability vector is asso-

iated with F such that the probability is proportional to the area

f the corresponding triangle. The IFS G r is defined in exactly the

ame way, but according to the figure on the right. The attractor

f each IFS is � . (Although subtle, there exists a metric, equivalent

o the Euclidean metric on R 

2 , such that both IFSs are contrac-

ive, see [1] .) Because the functions in F r and G r are affine func-

ions rather than similitudes, Theorem 2.1 does not hold. Never-

heless, the corresponding invariant measures μF and μG are both

-dimensional Lebesgue measure, because the invariant measure

s unique and Lebesgue measure satisfies the defining Eq. (2.3) .

y Proposition 2.3 and Theorem 2.4 , the fractal transformation T r 
F G 

s an area-preserving homeomorphism of � for all 0 < r ≤ 1 
2 . This

xample seems to be the simplest example of an area preserving

ractal homeomorphism in R 

2 . 

. Isometries between Hilbert Spaces 

Given an IFS F with attractor A F and an invariant measure μF ,

he Hilbert space L 2 
F 

= L 2 (A F , μF ) of complex-valued functions on

 F that are square integrable w.r.t. μF are endowed with the inner

roduct 〈·, ·〉 F defined by 

 ψ F , ϕ F 〉 F = 

∫ 
A F 

ψ F ϕ F dμF , 

or all ψ F , ϕ F ∈ L 2 
F 

. Functions that are equivalent , i.e., equal almost

verywhere, are considered to be the same function in L 2 F . 

efinition 4.1. Given two IFSs F and G with the same number of

unctions, with the same probabilities, with attractors A and A 
F G 
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Fig. 6. The sine functions e n = sin (nπx ) for n = 1, 2, 3, for comparison with the 

fractal sine functions shown in Fig. 7 . 

Fig. 7. The fractally transformed sine functions, ̂  e n = sin (nπT G 1 F (x )) , n = 1 (black), 

2 (red), 3 (green). The viewing window is [0,1] × [-1,1]. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 8. For comparison with Fig. 9 , this shows the Fourier sine series approxima- 

tions to a constant function on [0, 1] using k = 10 (red), 50 (green) and 100 (black) 

significant terms. Note the well-known end effects at the edges of the interval. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 9. Fractal sine series approximations to a constant function on the interval [0, 

1]. The number of terms used here are 10 (red), 50 (green) and 100 (black). Com- 

pare with Fig. 8 . The r.m.s. errors are the same as for the approximation to the 

same constant function using a sine series with the same number of terms. Notice 

that the edge effect has been shifted from 0 to 1/3. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
nd invariant measures μF and μG , respectively, let T FG and T GF be

he fractal transformations. The induced isometries U F G : L 
2 
F → L 2 G 

nd U GF : L 2 
G 

→ L 2 
F 

are given by 

(U F G ϕ F )(y ) = ϕ F (T GF (y )) 

(U GF ϕ G )(x ) = ϕ G (T F G (x )) 

or all ϕ F ∈ L 2 
F 

and all ψ F ∈ L 2 
G 
, for all x ∈ A F and all y ∈ A G . That

hese linear operators are indeed isometries is proved as part of

heorem 4.1 below. 

heorem 4.1. Under the conditions of Definition 4.1 , 

1. U F G : L 
2 
F → L 2 G and U GF : L 2 G → L 2 F are isometries; 

2. U F G ◦ U GF = id F and U GF ◦ U F G = id G , the identity maps on L 2 
F 

and

L 2 
G 

respectively; 

3. 〈 ψ G , U F G ϕ F 〉 G = 〈 U GF ψ G , ϕ F 〉 F for all ψ G ∈ L 2 G , ϕ F ∈ L 2 F . 

roof. (1) To show that the linear operators are isometries: 

 

U F G ϕ F ‖ 

2 
G = 

∫ 
A G 

| U F G ϕ F | 2 dμG 

= 

∫ 
A G 

| ϕ F ◦ T GF | 2 dμG 

= 

∫ 
A F 

| ϕ F | 2 d(μG ◦ T F G ) 

= 

∫ 
A F 

| ϕ F | 2 dμF = ‖ 

ϕ F ‖ 

2 
F , 

he third equality from the change of variable formula and

roposition 2.5 , the fourth equality from statement (2) of

heorem 2.4 . 

(2) From the definition of the induced isometries 

(U GF U F G (ϕ F ))(x ) = ϕ F (T GF T F G (x )) . 

ut by Proposition 2.5 , the fractal transformations T GF and T FG are

nverses of each other almost everywhere. Therefore the functions

 GF U FG ( ϕ F ) and ϕ F are equal for almost all x ∈ A F . 

(3) This is an exercise in change of variables, similar to the

roof of (1). �

Let F and G be IFSs with the same number of functions, the

ame probability vectors, and corresponding invariant measures μF 

nd μG . If { e n } is an orthonormal basis for L 2 
F 
, then by Theorem 4.1 ,

he set { ̂  e n } = { U F G e n } is an orthonormal basis for L 2 
G 

. For example,

f IFSs F and G have the same attractor A F = A G = [0 , 1] , and the

nvariant measures are both Lebesgue measure, then the Fourier

rthonormal basis { e 2 π inx } ∞ 

n = −∞ 

of L 2 ([0, 1]) is transformed under

 FG to a “fractalized” orthonormal basis of L 2 ([0, 1]). Therefore, ev-

ry function in L 2 ([0, 1]) has, not only a Fourier series, but also a

orresponding (via T FG ) fractal Fourier series. 

.1. Fractal Fourier sine series 

Consider the IFSs F , G 1 , G 2 of Example 3.3 with probabili-

ies p 1 = p 2 = 0 . 5 . In this case μF , μG 1 
and μG 2 

are all Lebesgue

easure on [0, 1]. Consider the orthonormal Fourier sine ba-

is { √ 

2 e n } ∞ 

n =1 for L 2 [0, 1], where e n = sin (nπx ) . For the fractal

ransformations T F G i , i = 1 , 2 , the fractally transformed orthonor-

al bases for L 2 [0, 1] are { √ 

2 ̂  e n } ∞ 

n =1 
and { √ 

2 ̃  e n } ∞ 

n =1 
, where 

̂ e n (x ) := sin (nπT G 1 F (x )) , ˜ e n (x ) := sin (nπT G 2 F (x )) 

or all n ∈ N . Fig. 7 illustrates ̂ e n , n = 1 , 2 , 3 , in colors black, red,

nd green, respectively. For comparison, Fig. 6 illustrates the corre-

ponding sine functions e n = sin (nπx ) for n = 1 , 2 , 3 . 
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Fig. 10. Sum of the first 100 (green) and 500 (black) terms in the Fourier sine 

series for a step function. The viewing window is [0,1] × [-0.1,1.5]. Compare with 

Figs. 11 and 12 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. Sum of the first 100 (green) and 500 (black) terms in a fractal Fourier sine 

series (using ̂  e n functions) for a step function. Compare with Figs. 10 and 12 . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

Fig. 12. Sum of the first 100 (green) and 500 (black) terms in a fractal Fourier sine 

series (using ̃  e n functions) for a step function. Compare with Figs. 10 and 11 . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 13. See Example 4.3 . Fourier sine series approximants to a tent function and 

fractal counterparts. 
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Example 4.1 (Constant function) . Fig. 8 illustrates the standard

sine series Fourier approximation to a constant function on the in-

terval [0, 1]. Fig. 9 illustrates three fractal Fourier sine series ap-

proximations. The respective Fourier series are 

∞ ∑ 

n =1 

e 2 n −1 (x ) 

2 n − 1 

and 

∞ ∑ 

n =1 

̂ e 2 n −1 (x ) 

2 n − 1 

. 

The calculation, in the fractal case, of the Fourier coefficients, uses

the change of variables formula, the fact from Example 3.3 that μF 

and μG are Lebesgue measure, and statement 2 of Theorem 2.4 . 

Example 4.2 (Step function) . Figs. 10 –12 illustrate the Fourier ap-

proximations of a step function for 100 (green) and 500 (black)

terms, where the orthogonal basis functions are e n , ̂ e n and ̃

 e n , re-
pectively. The respective Fourier series are 

2 

π

∞ ∑ 

n =1 

1 − cos (nπ/ 2) 

n 

f n (x ) , 

here f n is e n , ̂ e n and 

˜ e n , respectively. Note that the jump in the

tep function at x = 0 . 5 is cleanly approximated in both the frac-

al series, in contrast to the well-known edge effect (Gibbs phe-

omenon) in the classical case. The price that is paid is that the

ractal approximants have greater pointwise errors at some other

alues of x in [0, 1]. The analysis of where this occurs and proof

hat the mean square error is the same for all three schemes, is

mitted here. 

xample 4.3 (Tent function) . In Fig. 13 partial sums of the Fourier

ine series and their fractal counterparts are compared, for the tent

unction f (x ) = min { x, 1 − x } on the unit interval. The figure shows

ourier approximations to the tent function using orthogonal func-

ions e n , and fractal approximations to the fractally transformed
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Fig. 14. See Example 4.4 . The approximants converge to T G 1 F (x ) in L 2 [0 , 1] as the 

number of terms in series approaches infinity. 
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Fig. 15. See Example 4.4 . This illustrates the sum of the first thousand terms of a 

fractal sine series for T FG 2 (x ) on [0, 1]. Compare with Fig. 3 . Note the “fractal Gibbs 

effect 8” that has resulted in the vertical line. 

Fig. 16. Legendre polynomials and their fractal counterparts corresponding to T FG 1 . 

Both sets of functions form orthogonal basis sets with respect to Lebesgue measure 

on the interval [ −1 , 1] . See also Fig. 17 . 
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ent function using fractal orthogonal functions ̃  e n . The approxima-

ions use 3 (red), 5 (green), 7 (blue), 20 (black) terms. The Fourier

eries are (up to a normalization constant) 

k ∑ 

n =1 

2 sin (πn/ 2) − sin (πn ) 

n 

2 
e n (x ) 

and 

k ∑ 

n =1 

2 sin (πn/ 2) − sin (πn ) 

n 

2 
˜ e n (x ) . 

xample 4.4 (Function with a dense set of discontinu-

ties) . Consider the following approximation of a function with

 dense set of discontinuities. Let ψ ∈ L 2 [0, 1] be defined by

(x ) = x for all x ∈ [0 , 1] . Then φi = U F G i 
ψ, i = 1 , 2 , is given by

i (x ) = (U F G i 
ψ)(x ) = ψ(T G i F (x )) = T G i F (x ) , which has a dense

et of discontinuities (see Example 3.3 ). It follows, by a short

alculation using statement 2 of Theorem 2.4 , that the coefficients

n the ̂  e n and ̃

 e n Fourier series expansion of φi are the same as the

oefficients in the e n expansion for ψ . Therefore the fractal Fourier

eries expansions for φi , i = 1 , 2 , are 

2 

π

∞ ∑ 

n =1 

− cos (πn ) 

n 

̂ e n (x ) , and 

2 

π

k ∑ 

n =1 

− cos (πn ) 

n 

˜ e n (x ) , 

espectively. Sums with 10, 30, and 100 terms are shown in red,

reen, and blue, respectively, in Fig. 14 for φ1 , and in Fig. 15 for

2 , using the first 10 0 0 terms of the series. 

.2. Legendre polynomials. 

The Legendre polynomials are the result of applying Gram-

chmidt orthogonalization to { 1 , x, x 2 , . . . } , with respect to

ebesgue measure on [ −1 , 1] . Denote the Legendre polynomials

hifted to the interval [0, 1] by { P n (x ) } ∞ 

n =0 
. They form a complete

rthogonal basis for L 2 [0, 1], where the inner product is 

 ψ , ϕ〉 = 

∫ 1 

0 

ψ (x ) ϕ(x ) dx . 

In this case each of the unitary transformations U F G i 
, i = 1 , 2 as-

ociated with Example 3.3 maps L 2 [0, 1] to itself, and we obtain

he fractal Legendre polynomials 

 

F G i (x ) = P n (T GF (x )) . 
n 
igs. 16 and 17 illustrate the Legendre polynomials and their frac-

al counterparts. Fig. 16 shows the fractal Legendre polynomials

 

F G 1 
n (x ) and Fig. 17 shows the fractal Legendre polynomials P 

F G 2 
n (x ) .

.3. The action of the unitary operator on Haar wavelets. 

With F , G 2 and T = T F G 2 : [ 0 , 1] → [0 , 1] as previously defined,

et U = U F G 2 
: L 2 [0 , 1] → L 2 [0 , 1] be the associated (self-adjoint)

nitary transformation. Let I ∅ = [0 , 1] and H ∅ : R → R be the Haar

other wavelet defined by 

 ∅ (x ) = 

{ +1 if x ∈ [0 , 0 . 5) , 
−1 if x ∈ [0 . 5 , 1) , 
0 otherwise. 

or σ ∈ { 0 , 1 } k , k ∈ N , write σ = σ1 σ2 . . . σk and | σ | = k . If | σ | = 0

hen σ = ∅ , the empty string. Also let I σ = h σ1 
◦ h σ2 

◦ · · · ◦ h σk 
(I ∅ ) ,

here h = f and h = f , and let A σ : R → R be the unique affine
0 1 1 2 
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Fig. 17. Legendre polynomials and their fractal counterparts corresponding to T FG 2 . 

See also Fig. 16 . 
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Fig. 18. See Section 4.4 . 

Fig. 19. The bottom band shows the graph of sin ( πx ) with function values repre- 

sented by shades of grey. The top band shows the graph of h ( sin ( πx )), where h is 

the Hilbert function. 

Fig. 20. The top image illustrates the graph of f (x, y ) = sin (πx ) for x, y ∈ [0 , 1] 2 . 

The band at the bottom illustrates the graph of the pull-back f ◦ h : [0 , 1] → [ −1 , 1] , 

which is continuous, in contrast to the situations in Fig. 18 . 
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map such that A σ (I ∅ ) = I σ . With this notation, the standard Haar

basis , a complete orthonormal basis for L 2 [0, 1], is 

{ H σ : σ ∈ { 0 , 1 } k , k ∈ N } ∪ { H ∅ (x ) } ∪ { 1 } , 
where 1 is the characteristic function of [0, 1) and H σ : [0 , 1) → R

is defined by 

H σ (x ) = 2 

| σ | / 2 H ∅ (A 

−1 
σ (x )) . 

There is an interesting action of U = U F G 2 
on Haar wavelets.

The operator U permutes pairs of Haar wavelets at each level and

flips signs of those at odd levels, as follows. By calculation, for

σ ∈ ∪ k ∈ N { 0 , 1 } k , 
H σ = (−1) | σ | H σ ′ 

where | σ | = 

∣∣σ ′ ∣∣ and σ ′ 
l 

= (−1) l+1 σl + (1 + (−1) k ) / 2 for all l =
1 , 2 , . . . , 

∣∣σ ′ ∣∣, UH ∅ = H ∅ , and U1 = 1 . It follows that if f ∈ L 2 [0, 1]

is of the special form 

f = a ∅ H ∅ + 

∑ 

σ∈∪ k ∈ N { 0 , 1 } 2 k 
c σ (H σ + H σ ′ ) , 

then U f = f and f ◦ T = f . Such signals are invariant under U . It

also follows that if P is the projection operator that maps L 2 [0, 1]

onto the span of all Haar wavelets down to a fixed depth, then

 

−1 P U = P . 

4.4. Unitary transformations from the Hilbert mapping and its inverse

This continues Example 3.5 , where the fractal transformations

h := T FG and h −1 := T GF are the Hilbert mapping and its in-

verse, both of which preserve Lebesgue measure and are map-

pings between one and two dimensions. The unitary transforma-

tions U FG : L 
2 ([0, 1]) → L 2 ([0, 1] 2 ) and U GF : L 

2 ([0, 1] 2 ) → L 2 ([0, 1])

are given by 

 F G ( f ) = f ◦ h 

−1 , U GF ( f ) = f ◦ h. 

A picture can be considered as a function f : [0 , 1] 2 → R , where

the image of a point x in R 

2 gives a gray scale value. Three such

functions (or one function f : [0 , 1] 2 → R 

3 ) can be combined to

give RGB colors. The top image of Fig. 18 is such a picture given

by a function f : [0 , 1] 2 → R 

3 . The bottom image is the function

(picture) U f = f ◦ h transformed by the unitary operator. 
GF 
Since the Hilbert map h : [0 , 1] → [0 , 1] 2 is continuous, if f :

0 , 1] 2 → R is also continuous, then so is the pull-back U GF ( f ) =
f ◦ h : [0 , 1] → R 

1 . Therefore, any orthonormal basis { ψ n : [0, 1] 2 →
 } on [0, 1] consisting of continuous functions is mapped, via the

nitary operator U GF , to an orthonormal basis { ψ n ◦ h : [0 , 1] → R }
onsisting of continuous functions. In the other direction, the im-

ge under U FG of an orthonormal basis consisting of continuous

unctions on [0, 1] may not comprise continuous functions on [0,

] 2 . Figs. 19 and 20 illustrate this. 

In Fig. 21 , the right image represents the function f : [0 , 1] 2 →
 −1 , 1] defined by f (x, y ) = sin (πx ) sin (πy ) . The left image rep-

esents the function g : [0 , 1] → [ −1 , 1] defined by the continu-

us function g(x, y ) = U GF ( f ) = f ◦ h (x ) where h : [0 , 1] → [0 , 1] 2 is

he Hilbert function. The set of functions in the orthogonal ba-

is { sin (nπx ) sin (mπy ) : n, m ∈ N } for L 2 ([0, 1] 2 ) (w.r.t. Lebesgue

wo-dimensional measure) is fractally transformed via the Hilbert

apping to an othogonal basis for L 2 [0, 1] (w.r.t. Lebesgue one-

imensional measure). In contrast to the situation in Section 4.1 ,

hese fractal sine functions are continuous. 
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Fig. 21. The right image represents the graph of f : [0 , 1] 2 → [ −1 , 1] defined 

by f (x, y ) = sin (πx ) sin (πy ) . The left image represents the graph of g : [0 , 1] 2 → 

[ −1 , 1] defined by the continuous function g(x, y ) = U GF ( f ) = f ◦ h (x ) where h : 

[0 , 1] → [0 , 1] 2 is the Hilbert function. 

A

 

W  

C  

b  

W

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

 

[  

[  

[  

[

[  

 

 

cknowlegements 

We thank an anonymous referee for some helpful corrections.

e acknowledge support for this work by Australian Research

ouncil grant DP130101738 . This work was also partially supported

y a grant from the Simons Foundation (322515 to Andrew Vince).

e thank Louisa Barnsley for her help with this paper. 

eferences 

[1] Atkins R , Barnsley MF , Vince A , Wilson D . A characterization of hyperbolic
affine iterated function systems. Topology proceedings 2010;36:189–211 . 

[2] Bandt C , Graf S . Self-similar sets 7. a characterization of self-similar fractals
with positive hausdorff measure. Proc Am Math Soc 1992;114:995–1001 . 

[3] Bandt C , Hung NV , Rao H . On the open set condition for self-similar fractals.

Proc Am Math Soc 2005;134:1369–74 . 
[4] Barnsley MF . Fractals everywhere. 2nd ed. Cambridge, MA: Academic Press;

1993 . 
[5] Barnsley MF . Theory and applications of fractal tops. In: Fractals in engineer-

ing: new trends in theory and applications. Springer-Verlag; 2005. p. 3–20 . 
[6] Barnsley MF . Superfractals. Cambridge University Press; 2006 . 
[7] Barnsley MF . Transformations between self-referential sets. Math Monthly

2009:291–304 . 
[8] Barnsley MF , Harding B , Igudesman K . How to transform and filter images us-

ing iterated function systems. SIAM J Imaging Sci 2011;4(4):1001–28 . 
[9] Barnsley MF , Vince A . Fractal homeomorphism for bi-affine iterated function

sytems. Int J Appl Nonlinear Sci 2012;1:3–19 . 
[10] Barnsley MF , Vince A . Developments in fractal geometry. Bull Math Sci

2013;3:299–348 . 

[11] Barnsley MF , Vince A . Symbolic iterated function systems, fast basins and frac-
tal manifolds. SIGMA 2015;11:21 . 084 

[12] Elton JH . An ergodic theorem for iterated maps. Ergodic Theor Dynam Syst
1987;7:481–8 . 

[13] Falconer K . Fractal geometry: mathematical foundations and applications. John
Wiley & Sons; 1990 . 

[14] Graf S . On bandt’s tangential distribution for self-similar measures. Monatsh

Math 1995;120:223–46 . 
[15] Hilbert D . Über die stetige abbildung einer linie auf ein flächenstück. Mathe-

matiche Annalen 1891;38:459–60 . 
[16] Hutchinson J . Fractals and self-similarity. Indiana Univ Math J 1981;30:713–47 .

[17] Kigami J . Analysis on fractals. Cambridge University Press; 2001 . 
[18] Kigami J . Volume doubling measures and heat kernel estimates on self-similar

sets. Memoirs Am Math Soc 2009;199.932:1–94 . 

[19] Morán M . Dynamical boundary of a self-similar set. Fundamenta Mathematicae
1999;160:1–14 . 

20] Morán M , Rey J . Singularity of self-similar measures with respect to hausdorff
measures. Trans Amer Math Soc 1998;350:2297–310 . 

[21] Moran PAP . Additive functions of intervals and hausdorff measure. Math Proc
Cambridge Phil Soc 1946;42:15–23 . 

22] Patzschke N . Self-conformal multifractal measures. Adv Appl Math

1997;19:486–513 . 
23] Schief A . Separation properties for self-similar sets. Proc Am Math Soc

1994;122:111–15 . 
24] Schief A . Self-similar sets in complete metric spaces. Proc Am Math Soc

1996;124:481–90 . 
25] Sagan H . Space-filling curves. Universitext. New York: Springer-Verlag; 1994 . 

26] Staiger L . How large is the set of disjunctive sequences. In: Combinatorics,

computability and logic. In: Discrete mathematics and theoretical computer
science; 2001. p. 215–25 . 

[27] Strichartz RS . Differential equations on fractals. New Jersey: Princeton Univer-
sity Press; 2006 . 

http://dx.doi.org/10.13039/501100000923
http://dx.doi.org/10.13039/100000893
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0002
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0002
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0002
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0004
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0004
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0005
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0005
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0007
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0007
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0012
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0012
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0013
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0013
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0014
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0014
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0015
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0015
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0016
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0016
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0017
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0017
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0018
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0018
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0019
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0019
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0021
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0021
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0022
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0022
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0024
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0024
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0025
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0025
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0026
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0026
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0027
http://refhub.elsevier.com/S0960-0779(16)30229-6/sbref0027

	Old wine in fractal bottles I: Orthogonal expansions on self-referential spaces via fractal transformations
	1 Introduction
	2 Fractal transformations and invariant measures
	2.1 Attractors and code space
	2.2 The open set condition and non-overlapping attractors
	2.3 Fractal Transformations
	2.4 Invariant Measures on an Attractor
	2.5 Continuity and Measure Preserving Properties of Fractal Transformations

	3 Examples
	4 Isometries between Hilbert Spaces
	4.1 Fractal Fourier sine series
	4.2 Legendre polynomials.
	4.3 The action of the unitary operator on Haar wavelets.
	4.4 Unitary transformations from the Hilbert mapping and its inverse

	 Acknowlegements
	 References


