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Abstract. A graph directed iterated function system, originally introduced to construct
deterministic fractals, serves here as a framework for a tiling theory. The tiling space in this

paper is the closure, in an appropriate metric space, of the set of self-similar tilings introduced

by W. Thurston. The method applies to most of the self-referential tiles that appear in the
literature.

1. Introduction

The tilings in this paper are tilings of Euclidean space by isometric copies of a finite set of
prototiles, in particular those that have global self-replicating properties. The mathematical
investigation of such tilings has a long history; consider, for example, the prescient 1619 “mon-
ster” tiling of Johannes Kepler in Figure 1. Research has been particularly robust since the
discovery of the Penrose tilings [13] in 1974 and quasicrystals in 1984. Although fascinating in
their own right, these tilings have connections to a myriad of areas such as symbolic dynamics,
β-numeration, and toral automorphism.

Figure 1. Kelpler’s monster

A dynamical systems approach to tiling has been actively investigated over the past three
decades, employing the action on the set of tilings by translations; see [14, 17] and references
therein. This paper instead takes a combinatorial perspective. It uses a graph directed iterated
function system (GIFS) as the basic tool rather than notions like inflation-deflation and substi-
tution. GIFSs have have been used previously in the study of tiles and tiling, for example in the
study of Rauzy fractals (see Section 9.2) and in the paper [1]. The goal of the current paper is
to simplify and extend tiling theory from the GIFS point of view. Because the paper is intended
to be self-contained, the presentation is a bit expository.

The concept of a GIFS originated in the construction of deterministic fractals [12] but is also
related to the notion of a rep-tile, the term coined by S. Golomb [3] and popularized by Martin
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2 A. VINCE

Gardner in 1963 in Scientific American [4]. A rep-tile was originally defined as a single polygon
that can be tiled by smaller similar and congruent copies of itself. If we generalize from a single
polygon to a finite prototile set Q such that each tile in Q is, in turn, tiled by smaller similar
copies of prototiles in Q, then we are close to the concept of a GIFS (see Proposition 3.1).

Formally, a GIFS F = (G,F ) in this paper consists of a finite directed graph (digraph) G,
each edge of which is labeled by a similarity transformation taking Euclidean space Rd onto
itself. The set F is the set of all such edge functions. If each similarity in F is a contraction,
then associated with the GIFS is an n-tuple A := (A1, A2, . . . , An) of compact sets, called the
attractor of F , where n is the order (number of vertices) of the digraph G. See Definition 3.1 for
a formal definition of a GIFS and its attractor. The functions in F explicitly indicate how each
attractor component is the union of smaller similar copies of components of A. Figure 2 shows,
in the top row, the three attractor components of the last GIFS in Example 9.1. The second
row of the figure illustrates that each attractor component is the union of smaller similar copies
of the attractor components. In this example, the boundary of each tile is a fractal.

Figure 2. Prototile set for the TGIFS of Example 9.1.

If the components of the attractor of a GIFS have nonempty interior, then tilings of Rd by
copies of the attractor components may be possible. The primary concepts in this paper are
that of a tiling-GIFS (TGIFS) (see Definition 4.1) and the associated TGIFS-tilings of Rd (see
Definition 4.2). More precisely, associated with any TGIFS F with attractor (A1, A2, . . . , An) is

• an uncoutable parameter space P := P(F),
• a tiling space T := T(F) consisting of a set of tiling of Rd, each with prototile set
Q(F) := {A1, A2, . . . , An}, and
• a tiling map T : P → T from the parameter space to the tiling space.

Both the parameter space and the tiling space are metric spaces, and the tiling map is continuous
with respect to these metrics. Given a TGIFS F , each tiling in T(F) will be referred to as an
F-tiling. For each parameter θ ∈ P, Definition 4.2 provides a systematic construction of the
corresponding tiling T (θ) ∈ T.

A tiling T can be either periodic or non-periodic, periodic if there is a translational symmetry
of T , otherwise non-periodic. Figure 3 shows two well known tilings, the twin dragon tiling
and the original Rauzy tiling [16]. The twin dragon tiling is periodic and the Rauzy tiling is
non-periodic. Both tilings can be obtained from our TGIFS method (see Section 9.2). The



A COMBINATORIAL APPROACH TO SELF-REP TILINGS OF EUCLIDEAN SPACE 3

two additional fractal TGIFS-tilings that appear in Figure 4 are also non-periodic and will be
discussed in Section 9.2.

Figure 3. Twin Dragon (periodic) and Rauzy (non-periodic) TGIFS-tilings.

The concept of a self-similar tiling was introduced by Thurston [19] in 1989. The main defining
property of a self-similar tiling T is the existence of an expanding similarity φ such that, for
each tile t ∈ T , the larger tile φ(t) is, in turn, tiled by tiles in T . See Definition 6.2 for a precise
definition of self-similar in the context of this paper. Not all TGIFS-tilings are self-similar. We
prove, however, that

• every self-similar tiling is a TGIFS-tiling (Theorem 6.1), and
• for a given TGIFS F , the set of self-similar tilings in T(F) is dense in T(F) (Proposi-

tion 8.1).

In a sense, the set of self-similar tilings in T is analogous to the set of rationals in R; see
Proposition 6.1.

Figure 4. TGIFS-tilings from Examples 9.1.

Locally, any two F-tilings look the same; they are locally isomorphic (Definition 4.4). For
a given TGIFS F , there may be an uncountable number of F-tilings, but a finite patch, as in
Figure 4, gives no clue as to which tiling it is. Global information about F-tilngs is reflected in

a certain dynamical system (T, Ŝ) (Definition 8.2). For a large class of TGIFS, including most
of those that give rise to non-periodic tilings, this dynamical system is topologically conjugate
to a subshift of finite type that depends only on the unlabeled digraph of F . This allows for the
application of certain dynamical system invariants to the study of the tilings (see Section 8.1).

The subject of this paper is the existence and properties of TGIF-tilings. The next section
provides an overview of results.
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2. Organization and Results

Section 3.
Basic notions about tiling of Euclidean space, about directed graphs and their adjacency ma-

trices, and about graph directed iterated function systems (GIFS) are discussed in Section 3.
Every GIFS (G,F ) for which the functions in F are constractions has a unique attractor con-
sisting of a set of compact subsets of Rd, one for each vertex of the digraph G of the GIFS. And
every self-replicating set Q as discussed in Section 1 is the attractor of a GIFS.

Section 4.
The subjects of this section are tiling-GIFSs (TGIFSs) (Definition 4.1) and their associated

TGIFS-tilings. The parameter space P(F) of a TGIFS F = (G,F ) is defined so that a tiling is
assigned to each member of the parameter space, the construction encapsulated in Definition 4.2.
The set of prototiles of a TGIFS-tiling is the set of attractor components of the TGIFS. Also
associated with F is the scaling ratio λ(F) which is the contraction constant λ(f) of all of the
similarity transformations in F . For a TGIFS F , the following tiling properties hold.

• The scaling ratio must be λ(F) = 1/ d
√
ρ, where d is the dimension of the Euclidean space

and ρ is the Perron-Frobenius eigenvalue of the adjacency matrix of the digraph G of F
(Proposition 4.1).

• Theorem 4.1 provides a sufficient condition for two F-tilings to be isometric (congruent).

• Every F-tiling is repetitive (quasiperiodic), and every pair of F-tilings are locally iso-
morphic (Theorems 4.1 and 7.2).

• The proportion of tiles of each prototile type in any F-tiling is given by the coordinates of
the normalized left Perron-Frobenius eigenvector of the adjacency matrix of the digraph
G of F (Theorem 4.2).

Section 5.
This section provides motivation for our definition of a TGIFS-tiling. Naturally associated

to a GIFS are finite patches of tiles that we call admissible patches. To avoid randomness in
the patches, we can restrict the admissible patches to be uniform (Definition 5.4). We prove the
following:

• Given a GIFS, if a tiling contains admissible patches of arbitrarily large cardinality, then
the GIFS must be commensurable (Definition 5.2 and Theorem 5.1).

• Any admissible patch of a commensurable GIFS is the admissible patch of a correspond-
ing “companion” TGIFS (Proposition 5.2).

• The nested union of uniform patches of a TGIFS F must be an F-tiling (Theorem 5.2).

Taken together, the above three results informally mean that any tiling that one may reasonable
consider self-replicating must be a TGIFS-tiling as defined in Section 4.

Section 6.
The notion of a self-similar tiling is slightly extended from tilings by translates of a set of

prototiles as formulated by Thurston and Kenyon [7, 19], to tilings by isometric copies. We show
that

• every self-similar tiling is a TGIFS tiling (Theorem 6.1), and
• if a parameter of a TGIFS is eventually periodic (see Section 4.3), then the associated

tiling is self-similar (Proposition 6.1).

Section 7.
A hierarchy for a TGIFS tiling T is a sequence of tilings T0 = T, T1, T2, . . . with the property

that, for every k, every tile in Tk+1 is tiled, in turn, by a patch of tiles in Tk. See Definition 7.1 for
the complete definition. It is proved in this section that every TGIFS-tiling possess a hierarchy
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(Theorem 7.1). The hierarchy is used in the proof that all TGIFS-tilings are quasiperiodic
(Theorem 7.2). If, for a given TGIFS F , each F-tiling has a unique hierarchy, then

• every F-tiling is non-periodic (Corollary 7.1) and

• there are an uncountable number of F-tilings (see Corollary 7.2 for the precise state-
ment).

Section 8.
The subject of this section is the tiling dynamical system (T, Ŝ) of a TGIFS as mentioned in

Section 1. The function Ŝ acts on the tiling space T by taking a tiling T ∈ T one level up (after
scaling) in its hierarchy (Definition 8.2). Theorem 8.1 states that, for a TGIFS F satisfying

natural assumptions, (T, Ŝ) is topologically conjugate to the discrete dynamical system (P, S),
where S is the shift map acting on the parameter space P (Definition 4.3). The section ends
with results on the global structure of TGIFS-tilings (Theorems 8.2 and 8.3), whose proofs rely
on dynamical system invariants, in particular on the topology entropy and on the Artin-Mazur
zeta function.

Section 9.
Although every contractive GIFS has an attractor, the attractor components may have empty

interior, rendering them inadmissible as tiles. This is not an issue in dimenion 1:

• For every strongly connected digraph G, not a directed cycle, there exists a TGIFS on
R whose digraph is G (Theorem 9.1).

In dimensions d ≥ 2, however, TGIFSs and their tilings are not as plentiful. Examples come
from tilings discovered over the past few decades including certain polygonal tilings [2], digit
tilings [21], crystallographic tilings [5], Rauzy tilings [16], and sporadic examples like the Penrose
tilings. All of these fit into the TGIFS framework. For a given strongly connected digraph G
and dimension d, we conjecture (Conjecture 9.1) that the set of TGIFSs is nowhere dense in a
space of all contractive GIFSs, which may help explain their scarsity. In Section 9 we show the
following.

• If F is a TGIFS on Rd, d ≥ 2, with scaling ratio λ := λ(F), then 1/λ is a weak-Perron
number. (Proposition 9.1).

• For every λ < 1 such that 1/λ is a Perron number, there exists a TGIFS on Rd with
scaling ratio λ (Theorem 9.2).

The section concludes with tiling examples based on two algebraic methods that produce TGIFSs,
digit sets and an elegant notion of GIFS duality due to Rao, Wen and Yang [15] that produces
Rauzy fractals.

3. Graph Directed Iterated Function System and the Attractor

3.1. Tilings of Euclidean Space. In this paper, a tile is a compact subset of Rd, and a tiling
of a set X ⊆ Rd is a set of pairwise non-overlapping tiles whose union is X. Non-overlapping
means that the intersection of any two distinct tiles has measure zero. Two tilings T and T ′

are isometric or congruent if there is an isometry of Rd taking one onto the other, and this is
denoted T ∼= T ′. Two tilings are equal, denoted T = T ′, if they are identical. A patch of a tiling
T is a finite subset of T . For a finite set Q of tiles, a Q-tiling T is a tiling of Rd in which each
tile is congruent to a tile in Q. The set Q is called a prototile set for T . A tile t that is congruent
to q ∈ Q will be referred to as a type q tile.

3.2. Directed Graphs and Adjacency Matrices. Let G = (V,E) be a finite, strongly con-
nected, directed graph (digraph) with vertex set V = {1, 2, . . . , n} and edge set E. A digraph
G is strongly connected if, for any two vertices i and j, there is a directed path from i to j. In
this paper, path always means a directed path, and a path can have repeated vertices and/or
edges. The digraph G may have loops and/or multiple edges. A strongly connected digraph G
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will be called primitive if the greatest common divisor of the lengths of all closed paths of G is
1. Equivalently, a strongly connected digraph is primitive if and only if, for k sufficiently large,
there is a path of length k joining any two vertices.

For an edge e = (i, j), directed from vertex i to vertex j, the vertex i is denoted e− and the
the vertex j is denoted e+. Let Ei denote the set of all edges e such that e− = i, i.e., the set of
vertices directed out of vertex i.

Associated to a digraph G is its adjacency matrix M := M(G) = (mi,j), where mi,j is the
number of edges from vertex i to vertex j. It is well known that G is strongly connected if and
only if the matrix M is irreducible, and G is primitive if and only if M is primitive. A square
non-negative matrix M is primitive if there is an integer k ≥ 0 such that all entries of Mk are
positive, and M is irreducible if for all i, j there is a k = k(i, j) such that Mk

i,j > 0. Clearly a
primitive matrix is irreducible.

3.3. Graph Directed Iterated Function Systems. To generalize the notion of a rep-tile as
mentioned in Section 1, call a finite multiset Q of tiles a rep-set if each tile in Q can be tiled
by smaller similar copies of tiles in Q. We allow distinct tiles in Q to be congruent to allow for
the same shape to be tiled by similar copies of tiles in Q in different ways. For example, a 2× 2
square can be tiled by four 1×1 squares or the 2×2 square can be tiled by two 1×1 squares and
a 1× 2 rectangle. Proposition 3.1 below shows that a graph directed iterated function captures
this notion of a rep-set.

Definition 3.1 (GIFS). A graph directed iterated function system (GIFS) on Rd is a pair
F = (G,F ), where G = (V,E) is a strongly connected digraph and

F = {fe : e ∈ E},

where each function fe : Rd → Rd is continuous. The function fe can be considered as a label
on the edge e.

Let H denote the set of nonempty compact subsets of Rd, and define F : Hn → Hn as follows.
If X = (X1, X2, . . . , Xn) ∈ Hn, then

F(X) =
(
F1(X), F2(X), . . . , Fn(X)

)
,

where, for i = 1, 2, . . . , n,

Fi(X) =
⋃
e∈Ei

fe(Xe+).

The following is a well-known result in the theory of graph iterated function systems, which is a
generalization of a fundamental result of Hutchinson [6]. In the theorem Fk denotes the k-fold
iteration of F.

Theorem 3.1 ([12]). If (G,F ) is a GIFS such that each function in F is a contraction, then
there exists a unique A = (A1, A2, ..., An) ∈ Hn such that

(3.1) A = F(A) and A = lim
k→∞

Fk(B)

independent of B ∈ Hn, where convergence is with respect to the Hausdorff metric on Hn.

Definition 3.2 (Attractor). The set A is called the attractor of the GIFS, and
{A1, A2, ..., An} is its set of attractor components, each of which is compact. The first condition
in Equation (3.1) can be restated as

(3.2) Ai =
⋃
e∈Ei

fe(Ae+)

for i ∈ {1, 2, . . . , n}. If, in Equation (3.2), each distinct pair fe(Ae+), fe′(Ae′+) is non-overlapping,
then Ai is called non-overlapping. In this case, {fe(Ae+) : e ∈ Ei} is a tiling of Ai. If every
attractor component is non-overlapping, then the GIFS is called non-overlapping.
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Remark 3.1. An ordinary iterated function system (IFS) is the special case of a GIFS whose
graph consists of a single vertex with loops and whose attractor consists of a single component.

Proposition 3.1. Every rep-set is the attractor of a GIFS.

Proof. Given a rep-set Q, let (G,F ) be the GIFS where the vertices of G are the elements of
Q. By the definition of a rep-set, each p ∈ Q is tiled by smaller similar copies of a muiti-subset
Qp ⊆ Q. Add an edge in G directed from p to each tile in Qp. For each such edge e directed
from p to q ∈ Qp, let the function fe be a similarity transformation such that p =

⋃
e∈Ep fe(q).

In view of Equation (3.2), the rep-set Q is the set of attractor components of the GIFS (G,F ).
Therefore, every rep-set is the attractor of a GIFS whose functions are contractive similarity
transformations. �

4. GIFS-Tilings

A method for obtaining tilings of Rd from a GIFS is provided in this section. Results in
Section 5 show that these are the tilings that satisfy conditions that one would expect of a tiling
based on a GIFS.

4.1. Tiling-GIFS. According to Theorem 3.1, any GIFS whose functions are contractions has
an attractor. An issue, however, is that an attractor component that has empty interior cannot
serve as a tile. Even if the attractor components have non-empty interior, it may occur that the
GIFS is overlapping (Definition 3.2), resulting in overlap in a tiling obtained from the GIFS.
The scaling ratio of a similarity transformation f : Rd → Rd is denote λ(f). The restiction on
the scaling ratios in condition (1) of the following definition is justified in Section 5.

Definition 4.1 (TGIFS). Call a GIFS F = (G,F ) a tiling-GIFS or simply a TGIFS if

(1) every function f ∈ F is a similarity transformation with λ(f) independent of f ∈ F , the
common value denoted λ(F) < 1;

(2) each component of the attractor of F has nonempty interior; and
(3) F is non-overlapping.

The set {A1, . . . , An} of attractor components of F will be called the prototile set of F , denoted
Q(F). Without loss of generality, it will be assumed throughout that the origin is contained in
the interior of each attractor component and, if two distinct attractor components are congruent,
then they are placed so as not to coincide.

For an irreducible non-negative matrix M with spectral radius ρ, in particular for the ad-
jacency matrix of a strongly connected digraph, implications of the Perron-Frobenius theorem
include:

• ρ is an eigenvalue of M , called the Perron-Frobenius eigenvalue;
• the left and right eignespaces corresponding to ρ are one-dimensional;
• ρ has a corresponding left and right eigenvector all of whose components are positive;

moreover the only eigenvectors of M that have all positive components are those corre-
sponding to ρ;

• if M is primitive, then |ζ| < ρ for all other eigenvalues ζ of M .

Proposition 4.1. Let F be a GIFS on Rd such that all of its functions have common scaling
ratio and all of its attractor components have nonempty interior. Then F is non-overlapping if
and only if λ(F) = 1/ d

√
ρ, where ρ is the Perron-Frobenius eigenvalue of M(G). In particular,

if F is a TGIFS, then λ(F) = 1/ d
√
ρ.

Proof. Assume that λ(f) = 1/ d
√
ρ for all f ∈ F . Denote by xi the Lebesgue measure of the

attractor component Ai, i = 1, 2, . . . , n, of F , and let x = (x1, . . . , xn)t, where t denotes the
transpose. The Lebesgue measure of fe(Ae+) is then (1/ρ)xi. If Ai is overlapping for some i,
then x < (1/ρ)Mx = x, a contradiction. Here the vector inequality x < y means that xi ≤ yi
for all i and xi < yi for at least one i.
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Conversely, assume that F = (G,F ) is non-overlapping. Then M(λd x) = x, where λ := λ(F)
and M = M(G) is the adjacency matrix of G. Equivalently the eigen-equation Mx = (1/λd)x
holds. Since x is positive, it must be an eigenvector corresponding to ρ. Therefore λ(F) =
1/ρ. �

4.2. Notation. Denote by Σ∗ := Σ∗(G) the set of paths of finite length in a digraph G = (V,E)
and Σ := Σ(G) the set of all infinite paths. An infinite path has a starting vertex but no terminal
vertex. A path σ = e1 e2 · · · will be written as its ordered string of edges ei ∈ E, i = 1, 2 . . . .
The starting vertex of a path σ will be denoted σ−, and the terminal vertex of a finite path
by σ+. The length of a finite path σ, i.e., the number of edges, will be denoted |σ|. A path
consisting of a single vertex has length zero.

For σ = e1e2 · · · ∈ Σ let

σ|k = e1e2 · · · ek ∈ Σ∗,

and σ|0 the path that is just the vertex σ−. For any edge e in G, let←−e be the oppositely directed
edge.

Let F = (G,F ) be a GIFS. For any function fe ∈ F define

f←−e := (fe)
−1.

Denote by
←−
G the digraph obtained from G by reversing the direction on all edges. Define←−

Σ ∗ :=
←−
Σ ∗(G) and

←−
Σ :=

←−
Σ (G) as the set of all finite and infinite paths, respectively, in

←−
G . For

σ = e1e2e3 · · · ek ∈ Σ∗, define

fσ := fe1 ◦ fe2 ◦ fe3 ◦ · · · ◦ fek .

For ←−σ =←−e1←−e2←−e3 · · ·←−ek ∈
←−
Σ ∗, let

f←−σ := f←−e1 ◦ f←−e2 ◦ f←−e3 ◦ · · · ◦ f←−ek = f−1e1 ◦ f
−1
e2 ◦ f

−1
e3 ◦ · · · ◦ f

−1
ek
.

4.3. The Parameter Space. Let F = (G,F ) be a TGIFS. Any path
←−
θ ∈

←−
Σ will be referred

to as a parameter of F . To simplify notation, denote the set of perameters by

P = P(F) :=
←−
Σ .

Define a metric d on P by

d(←−σ ,←−ω ) =

{
0 if←−σ =←−ω
2−k otherwise, where k is the first integer such that←−σ k 6=←−ω k

.

This makes (P, d) a compact metric space, which we call the parameter space of the TGIFS. A pa-

rameter
←−
θ ∈ P is eventually periodic if there exist

←−
θ 0,
←−
θ 1 ∈

←−
Σ ∗ such that

←−
θ =

←−
θ 0
←−
θ 1
←−
θ 1
←−
θ 1 · · · .

4.4. F-Tilings.

Definition 4.2 (TGIFS-tiling). Given a TGIFS F , for each parameter
←−
θ ∈ P, let

Xk = {σ ∈ Σ∗ : σ− = θ−k , |σ| = k}.

Thus Xk is the set of all paths of length k in the digraph of F that start at the last vertex of

the path
←−
θ |k. Define a tiling T (

←−
θ ) := T (F ,

←−
θ ) as follows. For σ ∈ Xk, k ≥ 1, let

(4.1)

(tile) T (
←−
θ , k, σ) = (f←−

θ |k ◦ fσ)(Aσ+)

(patch of tiles) T (
←−
θ , k) = {(f←−

θ |k ◦ fσ)(Aσ+) : σ ∈ Xk}

(tiling) T (
←−
θ ) =

∞⋃
k=0

T (
←−
θ , k).
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In Equation (4.1) the composition f←−
θ |k ◦ fσ is a homeomorphism that takes a prototile (at-

tractor component) to a tile in T (
←−
θ ). That T (

←−
θ , k) is a patch, i.e. non-overlapping, will become

clear in Section 5 (see Definition 5.1, Equation (5.2)), and it is routine to verify that T (
←−
θ ) is

the nested union of these patches. The tiling T (
←−
θ ) will be referred to as a TGIFS-tiling. For

a particular TGIFS F , the tiling T (
←−
θ ) will be referred to as an F-tiling. For each TGIFS F

there are potentially uncountably many tilings T (F ,
←−
θ ),
←−
θ ∈ P, although some, and possible

all, may coincide.
Almost all TGIFS-tilings fill the whole space Rd. More specifically, for all θ in a dense subset

of the parameter space P, the tiling T (
←−
θ ) covers Rd [1]. There are cases, however, where T (

←−
θ )

tiles a subset of Rd. For example, consider the TGIFS (G,F ) on R, where G consists of a single
vertex and two loops e1, e2 and F = {fe1 , fe2}, where fe1(x) = (1/2)x, fe2(x) = (1/2)x + 1/2,

and
←−
θ = ←−e 1

←−e 1 · · · . Then T (
←−
θ ) tiles the half line {x ∈ R : x ≥ 0}. We assume hereafter,

unless stated otherwise, that TGIFS-tiling means a tiling of the whole space.

Example 4.1 (Ammann Chair Tiling). We illustrate Definition 4.2 with the Ammann chair
tiling. The shape, called the A2 tile or sometimes the “golden bee”, was discovered by R.
Ammann in 1977 and is shown on the left in Figure 6. Figure 5 shows two digraphs. The
digraph on the left will be relevant in Section 5. Consider now only the digraph G on the right.
With s = 1/

√
τ , where τ = (1 +

√
5)/2 is the golden ratio, the functions are:

f1

(
x
y

)
=

(
0 −s
s 0

)(
x
y

)
+

(
s
0

)
, f2

(
x
y

)
=

(
s 0
0 −s

)(
x
y

)
+

(
0
1

)
, f3

(
x
y

)
=

(
s 0
0 s

)(
x
y

)
.

The respective scaling ratios are λ(f1) = λ(f2) = λ(f3) = s. The two attractor components,
shown in orange at the left in Figure 6 have nonempty interior. The GIFS (G,F ) is non-

overlapping. Therefore F = (G, {f1, f2, f3}) is a TGIFS. The patch T (
←−
θ , 2) and an F-tiling are

shown at the right in Figure 6.

Figure 5. A digraph of a GIFS and a digraph of a TGIFS.

Figure 6. Ammann chair tiling: prototiles, second level patch, TGIFS-tiling.
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4.5. Properties of F-Tilings.

Definition 4.3. The shift map S : P → P is defined by

(S
←−
θ )i = θi+1,

i.e., S(e1e2e3 · · · ) = e2e3 · · · , and Sk denotes its kth iterate.

Definition 4.4 (Repetitive, Local Isomorphism). A tiling T is repetitive, also called quasiperi-
odic, if, for every patch T0 of T , there is a real number R such that every ball of radius R contains
a patch congruent to T0. Two repetitive tilings are locally isomorphic if every patch in one also
occurs in the other.

Theorem 4.1. For a given TGIFS F with prototile set Q(F) and for every pair
←−
θ ,
←−
θ ′ ∈ P(F)

the following properties hold.

(1) Each tile in T (
←−
θ ) is congruent to a tile in Q(F),

(2) If F is primitive, then a congruent copy of each tile in Q(F) occurs in T (
←−
θ ).

(3) If Sk(
←−
θ ) = Sk(

←−
θ ′) for some k, then T (

←−
θ ) ∼= T (

←−
θ ′)

(4) T (
←−
θ ) is repetitive for all

←−
θ ∈ P.

(5) Every pair of F-tilings are locally isomorphic.

Proof. Concerning property (1), that each tile in T (
←−
θ ) is congruent to a tile in Q(F) follows

from Definition 4.2 because for all k

λ(f←−
θ |k ◦ fσ) = λ(f←−

θ |k)λ(fσ) =
( 1

λ(F)

)k (
λ(F)

)k
= 1.

Concerning property (2), primitivity implies that there is an positive integer k such that, for
every two vertices i and j in G, there is a path of length k from i to j. This implies that for

any parameter
←−
θ , patch T (

←−
θ , k), and therefore T (

←−
θ ), contains a congruent copy of each tile in

Q(F).

Concerning property (3), an isometry taking T (
←−
θ ) onto T (

←−
θ ′) is f←−

θ ′|k ◦ (f←−
θ |k)−1.

The proof of property (4) is deferred to Section 7, becasue the notion of a hierarchy is used
in the proof. The proof of property (5) is similar to the proof of property (3). �

Remark 4.1 (Necessity of primitivity in statement (2) of Theorem 4.1). The following is an ex-
ample where a prototile does not appear in a TGIFS-tiling. Let F = (G,F ) be the 1-dimensional
TGIFS with digraph given by its adjacency matrix M and F = {f1,2, f1,3, f2,1, f3,1} where

M =

1 1 0
1 0 0
1 0 0

 f1,2(x) =
x√
2

f1,3(x) =
x+ 1√

2

f2,1(x) = f3,1(x) =
x√
2
,

and fi,j denotes the function on the edge (i, j). The attractor components are intervals

{[0,
√

2], [0, 1], [0, 1]}, but T (
←−
θ ) is a tiling of the real line by intervals of just length

√
2 if

←−
θ = 1 2 1 2 · · · .

4.6. Tiling Frequencies. Let F = (G,F ) be a TGIF and T := T (
←−
θ ) an F-tiling. For a

prototile p ∈ Q(F) define Nk,θ and Nk,θ(p) as the number of tiles in T (
←−
θ , k) and the number

of tiles of type p in T (
←−
θ , k), respectively. Letting Q = Q(F) = {p1, p2, . . . , pn}, define the

frequency βθ(p) of prototile p ∈ Q in tiling T (
←−
θ ) and the frequence vector βθ(F) as

βθ(p) := lim
k→∞

Nk,θ(p)

Nk,θ
and βθ(F) :=

(
βθ(p1), βθ(p2), . . . , βθ(pn)

)
,

respectively.
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A vector x ∈ Rn is normalized if it is a unit vector with respect to the 1-norm, i.e., ‖x‖1 = 1.
Recall that the power method gives a normalized left eigenvector y of M(G) corresponding to
the Perron-Frobenius eigenvalue ρ(F) as the limit y = limk→∞ xMk/‖xMk‖, independent of x
as long as the component of x in the direction of y is non-zero. Let ei be the standard basis
vector whose ith coordinate is 1, all others 0.

Theorem 4.2. Let M(G) be the n×n adjacency matrix of a TGIFS F and let y(F) denote the
normalized positive left eigenvector corresponding to the Perron-Frobenius eigenvalue of M(G).
Assume that the component of standard basis vector ei in the direction of y(F) is non-zero for

i = 1, 2, . . . , n. If T (
←−
θ ) is an F-tiling, then βθ(F) = y(F), independent of the parameter

←−
θ ∈ P.

Proof. Denote the (i, j) entry of Mk by m
(k)
i,j , which is the number of paths in the digraph of F

of length k from vertex i t vertex j. For a fixed parameter
←−
θ , let i(k) = θ−k , i.e., the last vertex

in the path
←−
θ |k. For ease of notation, let Nk = Nk,θ and Nk(p) = Nk,θ(p). Referring to the

Definition 4.2 of an F-tiling we have

Nk(pj) = m
(k)
i(k),j and Nk =

n∑
j=1

m
(k)
i(k),j .

Noting that Nk = ‖
(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
‖1 we have(Nk(p1)

Nk
,
Nk(p2)

Nk
, . . . ,

Nk(pn)

Nk

)
=

(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
‖
(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
‖1

=
ei(k)M

k

‖ei(k)Mk‖1
.

Referring to the power method for finding an eigenvector correspoinding to the dominant eigen-
value of a square matrix, we have

lim
k→∞

eMk

‖eMk‖1
= y(F)

independent of the particular standard basis vector e. Therefore

βθ(F) = lim
k→∞

ei(k)M
k

‖ei(k)Mk‖1
= y(F).

Note that βθ(F) does not depend on the parameter θ. �

Example 4.2 (Tile Frequencies for the Ammann chair tiling of Example 4.1). The adjacency

matrix of the TGIFS digraph is

(
1 1
1 0

)
. The Perron-Frobenius eigenvalue is τ = (1+

√
5)/2, the

golden ratio. The normalized corresponding left eigenvector is (1/τ, 1/τ2). Therefore, asymp-
totically about 61.80% of the tiles in an Ammann chair tiling are the large prototile, and about
38.20% are the small prototile.

5. Every GIFS-Based Tiling is an F-Tiling

The scaling ratios of similarity functions in a GIFS can take different values. In our definition
of a TGIFS, however, the scaling ratios are equal. It may seem that this is excessively restrictive,
resulting in a less than universal set of tilings. In our definition of a TGIFS-tiling, it is assumed
that the lengths of all paths in Xk (see Definition 4.2) are equal. This may also seem restrictive.
In this section it will be shown that if a tiling is even loosely based on a GIFS, then there
is no loss of generality in assuming that the scaling ratios be equal and that the paths in Xk

have the same length, thus that the GIFS is a TGIFS and also that the associated tilings are
TGIFS-tilings.

We begin with a notion of what it means for a tiling to be based on a GIFS. We assume in
this section that every GIFS F is non-overlapping, that the attractor components have nonempty
interior.
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Definition 5.1 (Admissible Patch). For a GIFS F = (G,F ), let r be any vertex of G, referred
to as the root. Referring to Definition (3.2),

(5.1) Wr(F) := {fe(Ae+) : e ∈ Er}

is a tiling of the attractor component Ar. If Xr is a set of finite paths in G starting at r, then
by applying Equation (3.2) recursively we arrive at the fact that

(5.2) Wr(F , Xr) :=
{
fσ(Aσ+) : σ ∈ Xr ⊂ Σ∗

}
is a tiling of Ar if

(1) no proper subpath of a path in Xr lies in Xr, and
(2) if σ ∈ Xr and σ′ is any proper subpath of σ starting at vertex r, then σ′e is a subpath

(not necessarily proper) of a path in Xr for all edges e such that σ′+ = e−.

Call a set Xr of finite paths rooted at r and satisfying conditions (1) and (2) an admissible set of
paths. For any vertex r and any admissible set Xr of paths, call Wr(F , Xr) an admissible patch
or admissible F-patch. Note that Ar is itself an admissible patch (Xr being the single point path
r), and Wr(F) is an admissible patch (Xr being the set of all paths of length 1 starting at r). If
T is a tiling, call a patch T0 of T admissible if it is isometric to µWr(F , Xr) for some positive
real “scaling up” constant µ.

A minimal requirement for a tiling T to be based on a GIFS F is that

• T contain admissible F-patches of arbitrary large cardinality.

Consequences of this assumption appear in Section 5.1. To avoid randomness in the tilings, we
subsequently impose the stronger requirement that

• T be the nested union of admissible F-patches.

5.1. Commensurable GIFS.

Definition 5.2 (Commensurable GIFS). Let F be a set of similarity transformations from Rd
onto Rd. For f, g ∈ F , call f and g commensurable if

log
(
λ(f)

)
log
(
λ(g)

) ∈ Q.

Call F commensurable if every pair of functions in F is commensurable, and call a GIFS (G,F )
commensurable if F is commensurable.

Proposition 5.1. A set F of similarities is commensurable if and only if there is a real number
s > 0 and a set {bf ∈ N : f ∈ F} of positive integers such that λ(f) = sbf for f ∈ F .

Proof. The existence of a real s > 0 and a set {bf ∈ N : f ∈ F} of positive integers such that
λ(f) = sbf for all f ∈ F clearly implies that F is commensurable.

In the other direction, let

αf = logs
(
λ(f)

)
so that λ(f) = sαf .

Let f0 ∈ F . By the assumption that F is commensurable, there is a d ∈ N and bf ∈ N for all

f ∈ F such that αf/αf0 = bf/d. Let s′ = s
αf0
d . Then, for all f ∈ F ,

λ(f) = sαf =
(
s
αf0
d

)bf
= (s′)bf . �

Theorem 5.1. Let F be a primitive GIFS. If there exists a tiling T of Rd having a finite
prototile set and containing admissible F-patches of arbitrary large cardinality, then F must be
commensurable.
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Example 5.1 (Primitivity in Theorem 5.1 is necessary). The followig is a counterexample to
Theorem 5.1 if the assumption of primitivity is removed. Consider the GIFS F = (G,F ) on R,
where G is the graph consisting of two vertices r, r′, with edges e1, e2 from r to r′ and edges
e3, e4 from r′ to r. Note that G is not primitive; the lengths of all closed paths are divisible by 2.
Let F = {fe1 , fe2 , fe3 , fe4} where fe1(x) = 3/4x, fe2(x) = 3/4x+ 1/2, fe3(x) = 1/3x, fe4(x) =
1/3x+1/3. The attractor components of F are the intervals Ar = [0, 1], Ar′ = [0, 2/3]. Note that
the scaling ratios 3/4 and 1/3 are not commensurable; thus F is not commensurable. Let Xr(k)
be the set of all paths in G rooted at r of length 2k; this set of paths is admissible. It is routine
to check that the admissible patch W (F , Xr(k)) consists of the interval [0, 4k] subdivided into
4k unit intervals. Let T be the tiling of the line by unit intervals. Thus T contains admissible
patches of arbitrary large cardinality.

The following graph theoretic result will be used in the proof of Theorem 5.1. Let G be a
strongly connected digraph whose edges are colored using q colors, q ≥ 2. For an admissible set
Xr of paths rooted at a vertex r of G, call two paths equivalent if they contain the same number
of edges of each color, and let |Xr|≡ denote the number of equivalence classes.

Lemma 5.1. Let G be a strongly connected, primitive digraph whose edges are colored using q
colors, q ≥ 2. For every integer N there exists an M such that, if Xr is an admissible set of
paths rooted at vertex r with |Xr| ≥M , then |Xr|≡ ≥ N .

Proof. If the lemma holds for every 2-coloring, then it holds for every q-coloring. To see this,
let the colors be {1, 2, . . . , q}. For all edges colored 3, 4, . . . q, change the colors to color 2. The
number |Xr| does not change, and |Xr|≡ cannot increase.

We now prove the result for every 2-coloring (say red and blue) of its edge set. By way of
contradiction assume that there is a 2-coloring, a vertex r, a natural number N , and a sequence
(Xk)k≥1 of admissible paths rooted at r such that

(1) |Xk| → ∞ as k →∞, and
(2) |Xk|≡ ≤ N .

In particular, from (2) it follows that there must be a bound m, independent of k, such that
the set of lengths satisfies |{|σ| : σ ∈ Xk}| ≤ m. We claim that there is a sequence (Yk) of
admissible sets of paths satisfying properties (1) and (2) above and such that, for each k, all
paths in Yk have the same length. To prove the claim, denote the lengths of paths in Xk by
l1(k) > l2(k) > · · · > lm(k). We now prove the claim by induction on m, the number of distinct
lengths of paths in the Xk. The claim is triviially true for m = 1. Assume it true for m− 1 and
let the sequence (Xk)k≥1 have paths of m different lengths.

Let Yk be the set of paths obtained from Xk by replacing (pruning) each path σ of length
l1(k) by its subpath σ′ rooted at r and having length l2. Note that Yk remains a set of admissible
paths. We will show that the sequence (Yk) of sets of admissible paths satisfies conditions (1)
and (2). This will complete the induction argument because Yk has one less path length than
Xk.

Concerning condition (1), it follows from the definition of an admissible set of paths that, if
v is the second to last vertex of σ and v′ is the last vertex of σ′, then the outdegree in G of
all vertices on the path from v′ to v, including v′ but not including v, have outdegree 1. This
implies that |Yk| ≤ |Xk|/∆, where ∆ is the maximum outdegree of vertices in G. Therefore
|Yk| → ∞ as k →∞.

Concerning condition (2), first note that there cannot exist a cycle C in G such that the
outdegree of every vertex on C is 1. Otherwise there would exist an attractor component with
empty interior, which we are assuming in this section is not the case. Therefore, the longest
path γ such that every vertex, except the last, has outdegree 1 is less than n, the order of
G. Assume that, in going from Xk to Yk we prune just one prune just one length at a time,
obtaining a sequence X+k = X0

k , X
1
k , . . . , X

q
k = Yk, where q = l1(k)− l1(k) < n. Since adjoining

a single edge to a path can change the number of red edges (or blue edges) by at most 1, we
have |Xi+1

k |≡ ≤ 2|Xi
k|≡. Therefore |Yk|≡ ≤ 2n|Yk|≡ ≤ 2nN .
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It remains to prove a contradiction in the case that, for each k, all paths in Yk have the same
length n(k). If all paths in Yk have the same length, then by the definition of admissible path, Yk
is the set of all paths of length n(k) rooted at vertex r in G. There exists a closed path c1 in G
containing r that is not monochromatic (recall that both red and blue are used in the coloring).
Let L1 denote the length of c1. By primitivity of G, there exists another closed path c2 in G
containing r whose length L2 is relatively prime to L1. Any non-negative integer solution x, y
to the equation

xL1 + yL2 = n(k)

provides a path ck(x, y) in Yk obtained by winding x times around c1 followed by winding y
times around c2. Call such a path a (c1, c2)-path. For clarity we omit the index k in what
follows, i.e., k fixed and, for example, n = n(k). If n is sufficiently large, then from elementary
number theory there are positive integers x0, y0 such that x0L1 + y0L2 = n. It follows that
x = x0−jL2, y = y0 +jL1 is also a solution for any j ∈ Z. Since we seek non-negative solutions,
the condition

x0
L2
≥ j ≥ − y0

L1

must be satisfied, which implies that there are⌊ x0
L2

+
y0
L1

⌋
=
⌊ n

L1L2

⌋
−−−−→
n→∞

∞

solutions. In other words, the number of (c1, c2)-paths in Yk goes to infinity with k.
Denote by a1, a2 the number of red edges on L1 and L2, respectively. Two of the (c1, c2)-

paths in Yk are in the same color equivalence class if and only if they contain the same number
of red edges. Counting the number of red edges on the path corresponding to solution x, y, i.e.,
to each valid j, we obtain xa1 + ya2 = (x0 − ja2)a1 + (y0 + ja1)a2 red edges. Therefore, two
(c1, c2)-paths, which we denote by c(i) and d(j), are in the same equivalence class if and only if

(x0 − ja2)a1 + (y0 + ja1)a2 = (x0 − ia2)a1 + (y0 + ia1)a2

which simplifies to (i − j)(L1a2 − L2a1) = 0. If i = j, then c(i) = c(j). That L1a2 = L2a1 is
impossible since L1 and L2 are relatively prime and 0 < a1 < L1. We have shown that (c1, c2)-
path in Yk is in its own equivalence class. Since the number of (c1, c2)-path in Yk goes to infinity
with k, we have the desired contradiction to condition (2). �

Proof of Theorem 5.1. For a set W of tiles, let |W | denote the cardinality of W , and let
|W |≡ denote the number of tiles up to congruence. Because it is assumed that T has a finite
prototile set and contains admissible (scaled) F-patches of arbitrary large cardinality, there must
be a sequence {Wr(Xk)} of (unscaled) admissible patches such that |Wr(Xk)|≡ is bounded but
limk→∞ |Wr(Xk)| =∞.

By way of contradiction, assume that F is not commensurable. We will show that, for every
N there exists a k0 such that |Wr(Xk0)|≡ ≥ N , a contradiction.

Let λ1, λ2, . . . , λm be the scaling ratios of the functions in F . Let s = λ1, and define
αi, i = 1, 2, . . . ,m, by λi = sαi . Note that α1 = 1. The commensurable relation is an equivalence
relation. Partition the set {α1, . . . , αm} into equivalence classes, and call two edges of G equiv-
alent if the corresponding α′s are equivalent. Let the number of equivalence classes be q, which
is at least 2 by Proposition 5.1. Color the edges of G in q colors according to their equivalence
class. For an edge e, denote the color by α(e). For a path σ ∈ Σ∗(G), define α(σ) :=

∑
e∈σ α(e).

Let σ, ω ∈ Xk. Because a set of pairwise incommensurable numbers are linearly independent
over Q, we have that α(σ) = α(ω) if and only if, for every color, the number of occurences of
that color in σ equals the the number of occurences of that color in ω. Now λ(fσ) = λ(fω) if
and only if α(σ) = α(ω) if and only if σ and ω are in the same color equivalence class. Because
|Xk| = |Wr(Xk)| we have limk→∞ |Xk| = ∞. Call λ(fσ) the scaling ratio of the path σ. By
Lemma 5.1, for every N there exists a k0 such that if k ≥ k0, then |Xk|≡ ≥ N . Therefore,
for every N there exists a k0 such that if k ≥ k0, then there exists at least N paths in Xk

with pairwise different scaling ratios λ. For σ ∈ Xk, there are at most n (order of digraph G)
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possibilities for σ+, which implies that, for k ≥ k0, there are at least N/n distinct tiles fσ(Aσ+)
in Wk(Xk), i.e., |Wr(Xk0)|≡ ≥ N/n. �

5.2. Companion GIFS.

Definition 5.3 (Companion GIFS). Let F = (G,F ) be a commensurable GIFS. By Proposi-
tion 5.1 there is an s > 0 and a set {ae ∈ N : e ∈ E} of positive integers associated with each
edge e ∈ E of G such that λ(fe) = sae for all e ∈ E. Attach the label ae to each edge of G. Con-
stuct a new GIFS F ′ = (G′, F ′), called the companion to F , as follows. To obtain the graph G′,
consider each edge e = (u, v) of G with ae > 1. Replace e by a path σ(e) := e1e2 · · · eae from u
to v. Note that no vertex of G has been removed. Also note that G′ is strongly connected if and
only if G is strongly connected. It is not hard to see that there exist functions fe1 , fe2 , . . . , feae
on the respective new edges e1, e2, . . . , eae such that λ(fei) = s for i = 1, 2, . . . , ae and therefore
fσ(e) = fe. The graph G′ and function set F ′ is the result of the above alterations for all edges
e with ae > 1.

Example 5.2 (Companion GIFS). On the left in Figure 5 is the digraph of a GIFS F = (G,F )
where G has one vertex and two loops and F = {g1, g2}, where

g1

(
x
y

)
=

(
0 −s
s 0

)(
x
y

)
+

(
s
0

)
, g2

(
x
y

)
=

(
s2 0
0 −s2

)(
x
y

)
+

(
0
1

)
,

with s = 1/
√
τ , where τ is the golden ratio. By Proposition 5.1, F is commensurable, the

scaling ratios being λ(g1) = s, λ(g2) = s2. The attractor is the Ammann chair tile shown at
the left in Figure 6 (either orange polygon). Let F ′ = (G′, F ), where G′ is the graph on the
right in Figure 5 and F ′ = {f1, f2, f3} is as given in Example 4.1. The scaling ratios are equal:
λ(f1) = λ(f2) = λ(f3) = s. The two attractor components are the polygons in orange at the left
in Figure 6. The TGIFS F ′ is the companion of the GIFS F . Both F and F ′ have the same
admissible patches.

Proposition 5.2. The companion GIFS F ′ = (G′, F ′) of a commensurable GIFS F = (G,F )
satisfies the following properties:

(1) the scaling ratios of all functions in F ′ are equal, and
(2) every admissible patch of F is an admissible patch of F ′.

Proof. Concerning statement (1) and referring to Definition 5.3, λ(fe) = s for all edges in G′.
Therefore λ(F ′) = s.

Concerning statement (2), denote the set of vertices of G by {1, 2, . . . , n} and the set of
corresponding attractor components by {A1, A2, . . . , An}. Each edge e = (i, j) of G with ae > 1
is replaced in G by a path whose successive vertices we denote by u = u0, u1, u2, . . . , uk = v.
Note that the outdegree of ui is 1 for i = 0, 1, 2, . . . , k − 1. The sucsessive edges are e1 =
(u, u1) = (u0, u1), e2 = (u1, u2), . . . , ek = (uk−1, uk) = (uk−1, v). It is routine to check that
in F ′, the attractor component of an all vertices from G remain the same, namely A′i = Ai
for i = 1, 2, . . . , n. The attractor component A′ui of each new vertex is defined recursively by
A′uk = Auk and A′ui = fei(A

′
ui+1

) for i = k− 1, k− 2, . . . , 1. Note that the attractor components

A′u1
, A′u2

, . . . , A′uk = Av are all similar, each scaled down from its successor by a factor s.
Let Wr(F , Xr) be an admissible patch of F . Define an admissible patch Wr(F ′, X ′r) of F ′

as follows. For every path σ ∈ Xr, let σ′ ∈ X ′r be the path obtained by replacing edges e with
ae > 1 by paths as in the definition of the companion GIFS. Then X ′r = {σ′ : σ ∈ Xr} is
admissible and Wr(F ′, X ′r) = Wr(F , Xr). �

Theorem 5.1 and Proposition 5.2 justify condition (1) in the Defintition 4.1 of a TGIFS - that
all functions have the same scaling ratio. Therefore, for the remainder of this section, we assume
a TGIFS. To justify, in the Definition 4.2 of a TGIFS-tiling, that all paths in Xk have the same
length, first consider the following example.
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Example 5.3 (Admissible patches of a GIFS all of whose functions have the same scaling
ratio can still be quite irregular). Let F = (G,F ) be the following GIFS on R2 where G has
one vertex and four loops (an ordinary IFS). The functions in F are f1(x) = 1/2x, f2(x) =
1/2x+(1/2, 0), f3(x) = 1/2x+(0, 1/2), f4(x) = 1/2x+(1/2, 1/2). Clearly, all the scaling ratios
are equal to 1/2. The attractor of F is the unit square. Consider patches of the following form.
Let k be a power of 2 and let Wk be a patch formed by subdividing the unit square into k2

squares of side length 1/k in the usual way. Then choose a subset of these k2 small squares at
random and subdivide each of those into four equal smaller squares. It is routine to check that
Wk is an admissible patch of F . Moreover, Wk = W (F , Xk), where Xk is a set of admissible
paths whose lengths are either k or k + 1. Therefore F is a TGIFS that admits quite random
admissible patches.

The randomness in Example 5.3 can be avoided by requiring all admissible paths to have the
same length. This motivates the following defintion. In the definition, a “scaling” of a patch W
means an image of W under a similarity transformation.

Definition 5.4 (GIFS-Based Tiling). An admissible patch W (F , X) of a TGIFS is uniform if
all paths in X have the same length. A tiling T of Rd is GIFS-based if there is a GIFS F all
of whose functions have the same scaling ratio and such that T is the nested union of scaled
uniform patches.

Theorem 5.2. A tiling T of Rd is GIFS-based if and only if there is a TGIFS F such that T
is an F-tiling.

Proof. Assume that T = T (F ,
←−
θ ) for some TGIFS F and some parameter

←−
θ . The patch T (

←−
θ , k)

is isometric to λ(F)kW (F , Xk), where Xk is as in Definition 4.2 and W (F , Xk) is the corre-

sponding uniform patch. Therefore, by the definition of the tiling T (F ,
←−
θ ) in Equation (4.1), T

is the nested union of scaled uniform patches.
In the other direction, assume that F is GIFS-based. Clearly F is a TGIFS. Assume that T

is the nested union of scaled uniform patches. Let T0, T1, T2 . . . be a nested sequence of scaled
uniform patches whose union is T . Without loss of generality assume that T0 consists of a single
attractor component, say A0. Let t be an arbitrary tile in T , and assume that j is the least
integer such that t ∈ Tj . Each Ti, i = 1, 2, . . . , is a scaled copy of a patch of the form Wi(F , Xi)
in Equation (5.2), where each path in Xi has length ki for an increasing sequence {ki}. Note that
this patch Wi(F , Xi) is a tiling of attractor component Ai. Since the sequence of Ti is nested,
it is the case that there is a path ωi from vertex i to vertex i− 1 such that fωi(Ai−1) ⊂ Ai for

all i = 1, 2, . . . . Let
←−
θ ∈
←−
Σ be the concatenated path

←−
θ =←−ω 1

←−ω 2
←−ω 3 · · · . Then

f←−
θ |kj

= f−1ω1
◦ f−1ω2

◦ · · · ◦ f−1ωj = (fωj ◦ fωk−1
◦ · · · ◦ fω1)−1

maps the tiling Wj(F , Xj) of Aj onto Tj . Because each tile in Wj(F , Xj) is of the form fσ(Aσ+)
where σ− = j, |σ| = kj , we have

t = f←−
θ |kj
◦ fσ(Aσ+) where σ− = θ−kj , |σ| = kj .

But these are exactly the tiles in T (F ,
←−
θ , kj) as defined in Equation (4.1). �

6. Every Self-Similar Tiling is a TGIFS Tiling

This section concerns self-similar tilings as introduced by Thurston [19]. Basically, a self-
similar tiling T is a tiling of Rd for which there exists a similarity transformation φ : Rd → Rd
with scaling ratio λ(φ) > 1 such that, for all t ∈ T , the large tile φ(t) is tiled, in turn, by tiles in
T . The following example shows that an additional requirement is needed in a formal definition
of self-similar.

Example 6.1. Let Q consists of two intervals on the real line, I1 of length 1 and I2 of length
2. Let T be any tiling of R with prototile set Q such that
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(1) the origin is located at an endpoint of a tile, and
(2) the endpoints of each tile of length 2 are located at even coordinates on R.

Let φ(x) = 2x for all x ∈ R. Then for every tile t ∈ T , its image φ(t) is tiled by tiles in T for
all t ∈ T . The issue is that T can be quite random. For example, construct a tiling as follows.
Moving along the positive real line starting at the origin, place a random number of tiles of
length 2. Follow that by a random even number of tiles of length 1, and repeat in this fashion
moving in the positive direction; similarly on the negative real line.

To avoid the randomness in Example 6.1 and similar examples, we will require that, for any
tile t ∈ T , the tiling of φ(t) by tiles in T depends uniquely on the prototile type of t. To impose
this requirement formally we introduce the following notions.

Definition 6.1 (Induced Tiling). Let T be a tiling of Rd with prototile multiset Q, and let
φ : Rd → Rd be a similarity with scaling ratio λ(φ) > 1. We allow Q to be a multiset to allow
for multiple ways for φ(p), p ∈ Q, to be tiled. For each p ∈ Q, let Tp be a tiling of φ(p) by tiles
in Q. Call the set

{
Tp : p ∈ Q

}
of patches a φ-tiling rule. Let H := {ht : t ∈ T} be a set of

isometries, called tiling isometries, such that t = ht(p), where p ∈ Q is the type of tile t ∈ T . If
every p ∈ Q has trivial symmetry group, then H is uniquely determined. This is the case, for
example, in the Definition of self-similar in [7, 19] where the tilings are by copies of the prototiles
by translation rather than by isometry as is the case here.

For each t ∈ T , the isometry ĥt := φht φ
−1 maps φ(p) onto φ(t). Now

φ(t) = φ
(
ht(p)

)
= ĥt φ(p) =

⋃
q∈Tp

ĥt(q).

Note that p := pt in the equation above depends on t. Given the tiling T and tile t ∈ T , we now
obtain the induced tiling of φ(t) and the induced tiling of T defined by

Tφ(t) :=
{
ĥt(q) : q ∈ Tpt

}
and Tφ :=

⋃
t∈T

Tt.

The following definition is basically that of Thurston and Kenyon [7], removing the restriction
that the isometries in H be translations.

Definition 6.2 (Self-Similar). Given a prototile set Q, a Q-tiling T of Rd is self-similar if there
is a similarity φ, a φ-tiling rule, and a set H of tiling isometries such that Tφ = T . In particular,
the image φ(t) is tiled by tiles in T for all t ∈ T .

Call a similarity transformation φ proper with respect to a tiling T if the fixed point of φ lies
in the interior of a tile. As shown in Example 6.2 below, Theorem 6.1 may fail without this
condition.

Theorem 6.1. Every self-similar tiling with proper self-similarity φ is an F-tiling for some
TGIFS F .

Proof. Given a self-similar tiling T , define a TGIFS F(T ) = (G,F ) as follows. The vertex set
of G is Q := Q(F). The edge set E of G is defined by the φ-rule as follows. The φ-tiling rule
can be expressed as

(6.1) φ(p) =
⋃
q∈Tp

hp,q(q)

for some isometries hp,q. In G add an edge e directed from vertex p to vertex q and let fe =
φ−1hp,q. Note that λ(fe) = 1/λ(φ) < 1 for all e ∈ E. Equation (6.1) then becomes

p =
⋃
e∈Ep

fe(pe+),

corresponding to Equation (3.2) in the definition of a GIFS attractor. Take F = {fe : e ∈ E}.
Now F(T ) = (G,F ) is a TGIFS with scaling ratio 1/λ(φ). Note that the prototiles of Q are
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isometric copies of the attractor components of F(T ). It remains to shown that there exists a
←−
θ ∈
←−
Σ such that T = T (

←−
θ ).

Let t0 be the tile in the self-similar tiling T that contains the fixed point O of φ in its
interior. If t0 is of type p ∈ Q, then there is no loss of generality in assuming that t0 = p,
and consequently there is an edge (loop) e in G from p to p labeled fe = φ−1. Consider

the parameter
←−
θ := e e e · · · ∈

←−
Σ that winds infinitely many times around the loop e. Then

f←−
θ |k := fe ◦ fe ◦ · · · ◦ fe = φ−k for all non-negative integers k. We will show that T = T (

←−
θ ).

Let H be a set of tiling isometries for T such that Tθ = T . We claim that there a set
H ′ = {h′t : t ∈ T} of tiling isometries such that each h′t(pt) = ht(pt) for all t ∈ T , and each
h′t ∈ H ′ has the form

(6.2) h′t = φk ◦ fσ,

where σ ∈
←−
Σ ∗ and |σ| = k. If this is the case, then

t = (φk ◦ fσ)(p) ∈ T (
←−
θ , k),

where p = pσ+ ∈ Q. This is exactly as in Equation (4.1) in Definition (4.2), showing that T is
an F-tiling and completing the proof.

It only remains to prove the claim. Since the fixed point O lies interior to t0, any tile t ∈ T is
contained in Xk := φk(t0) for some integer k. Note that the sets Xk are nested. The existence
of such a set H ′ of tiling isometries of the form in Equation (6.2) is proved by induction on
k. If t ∈ X1 = φ(t0) = φ(p), then by Equation (6.1) we have t = hp,p1(p1) = φ fe(p1) for an
edge e directed from p to p1, where p1 is the type of tile t. Take h′t = hp,p1 = φ fe1 , which is
of the form in Equation (6.2). Assume that h′t has been defined in the form of Equation (6.2)
for all t ∈ Xk, and let t′ ∈ Xk+1. Then t′ ∈ φ(t) for some t ∈ Xk, where, by the induction
hypothesis, h′t = φk ◦ fσ holds, where |σ| = k and σ is a path from p to pt. By the requirement

that Tφ = T we have t′ = ĥt(q), where q ∈ Tφ(pt) is the type of tile t′, i.e., q = pt′ . By the tiling

rule q = hpt,pt′ (pt′) = (φ−1 ◦ fe)(pe+), where e is directed from pt to pt′ . Therefore

t′ = ĥt(q) = t′ =
(
φht (φ)−1

)(
φ fe(pe+)

)
=
(
φh′t (φ)−1

)(
φ fe(pe+)

)
= φ

(
φk ◦ fσ

)
fe(pe+) = φk+1 ◦ fσ′(pt′) = φk+1 ◦ fσ′(Aσ′+),

where σ′ = σ e. �

Example 6.2 (Counterexample to Theorem 6.1 when the similarity is not assumed to be proper).
For the Ammann chair TGIFS (G,F ) in Example 4.1, T := T (←−e 1

←−e 1, · · · ) tiles the first quan-
drant of the plane. The union of T and copies of T obtained by reflected in the x and y-axes and
by rotation by π about the origin tiles the plane and is self similar but is not a TGIFS-tiling.

Remark 6.1. In [7], it is part of the definition of a self-similar tiling T that T be repetitive
(see Definition 4.4). That every self-similar tiling with a proper self-similarity must be repetitive
follows from Theorem 6.1 and Theorem 7.2.

Proposition 6.1. For a TGIFS, if parameter
←−
θ is eventually periodic, then T (

←−
θ ) is self-

similar.

Proof. We must produce a similarity φ, a φ-tiling rule, and a set H of tiling isometries such that

Tφ = T . Since
←−
θ is eventually periodic, there exist

←−
θ0 ,
←−
θ1 ∈

←−
Σ ∗ such that

←−
θ =

←−
θ 0
←−
θ 1
←−
θ 1
←−
θ 1 · · · .

Let φ = f←−
θ 0
◦ f←−

θ 1
◦ (f←−

θ 0
)−1, which is a similarity. For t ∈ T (

←−
θ ) there is a least integer k such

that t ∈ T (
←−
θ , |
←−
θ 0|+k|

←−
θ 1|), in which case t = f←−

θ 0
◦ (f←−

θ 1
)k ◦ fσ(A+

σ ) for an appropriate σ ∈ Σ∗

with |σ| = k + 1. Let ht = f←−
θ 0
◦ (f←−

θ 1
)k ◦ fσ and H = {ht : t ∈ T} the set of tililng isometries.

Since each prototile (attractor component) p is tiled by {fe(pe+) : e ∈ Ep}, the φ-tiling rule is
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taken to be Tφ(p) = {φ ◦ fe(pe+) : e ∈ Ep : e ∈ Ep}. Now an arbitrary tile in the induced tiling
Tφ is of the form

t = ĥt φ fe(pe+) = φht φ
−1 φ fe(pe+) = φ f←−

θ 0
(f←−

θ 1
)k σ φ fe(pe+)

= f←−
θ 0

(f←−
θ 1

)k+1 σ φ fe(pe+) = f←−
θ 0

(f←−
θ 1

)k+1 σ′(pσ′+),

where σ′ = σε. The last expression in the equality is again a tile in T (
←−
θ ). �

7. Tiling Hierarchy

Definition 7.1. Let F be a TGIFS with prototile set Q := Q(F) and scaling ratio λ := λ(F).
A hierarchy for an F-tiling T is a sequence T0, T1, T2, . . . of tilings such that T0 = T and, for all
integers k ≥ 0, the following properties hold:

(1) Tk is a tiling with prototile set {(1/λ)k p : p ∈ Q}.
(2) Every tile in Tk is contained in a tile of Tk+1.

Call the tiling Tk the kth level in the hierarchy of T . According to Theorem 7.1 below, a hierarchy
exists for every TGIFS-tiling. A TGIFS F for which every F-tiling has exactly one hierarchy
is called uniquely hierarchical. The standard tiling of the plane by squares is an example of a
TGIFS-tiling that is not uniquely hierarchical.

Call two GIFSs F = (G,F ) and F ′ = (G,F ′) conjugate if there is a function g such that
F ′ = gFg−1 = {fg := gfg−1 : f ∈ F}. We will use the notation Fg for this conjugate of F . The
proof of the following lemma is routine.

Lemma 7.1. If F = (G,F ) is a TGIFS with attractor A = (A1, . . . , An) and g is a similarity
transformation, then the conjugate Fg is a TGIFS with attractor gA =

(
g(A1), . . . , g(An)

)
.

Moreover, T (Fg,
←−
θ ) = gT (F ,

←−
θ ) for all

←−
θ ∈ P(F).

Theorem 7.1. Let F be a TGIFS. Every F-tiling T has a hierarchy T = T0, T1, T2, . . . , such

that each Tk, k = 0, 1, 2, . . . , is a TGIFS tiling. Specifically, for T = T (
←−
θ ) and j ≥ k ≥ 0, a

hierarchy is given by

(7.1)

Tk =T (Ff←−
θ |k
, Sk
←−
θ )

=f←−
θ |kT (F , Sk

←−
θ )

=
{

(f←−
θ |j ◦ fσ)(Aσ+) : σ− = θ−j , |σ| = j − k

}
.

Proof. The second equality in Equation (7.1) follows from Lemma 7.1. The third equality follows
from the Definition 4.2 of an F-tiling.

It remains to show that T = T0, T1, T2, . . . is indeed a hierarchy. The set of attractor compon-
dentsQ = {A1, A2, . . . , An} is a prototile set for T . Every tile t ∈ Tk, as defined in Equation (7.1),
has the form

t := f←−
θ |k ◦ f

−1
θk+1
◦ · · · ◦ f−1θk+j ◦ fσ(Aσ+), where σ−1 = θ−j , |σ| = j − k.

Note that t is isometric to (1/λ)k(Aσ+). Therefore condition (1) in Definition 7.1 is satisfied.
It follows from the formula above for t and from Equation (3.2) that

t = f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj ◦ fσ

( ⋃
e∈Eσ+

fe(Ae+)
)

=
⋃{

f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj ◦ fσ ◦ fe(Ae+) : e ∈ Eσ+

}
⊂
⋃{

f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj ◦ fω(Aω+) : ω− = θk+j

−, |ω| = j − (k − 1)
}
.
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Because each f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj ◦ fω(Aω+) in the line above is a tile in Tk−1, each tile in

Tk is, in turn, tiled by a patch in Tk−1. This proves condition (2) in Definition 7.1. �

Remark 7.1. Theorem 7.1 can be extended to show that there is a two-sided hierarchy

. . . T−2, T−1, T0, T1, T2, . . .

of tilings such that T0 = T and that satisfies properties (1) and (2) in Definition 7.1 for all

k ∈ Z. To do this let · · ·
←−
θ −2
←−
θ −1
←−
θ 0
←−
θ 1
←−
θ 2 · · · be an arbitrary bi-infinite path that extends the

parameter
←−
θ1
←−
θ2 · · · ∈ P. For k ∈ Z, we extend the notation, which was previously defined for

k ∈ N. For
←−
θ = · · ·

←−
θ −2
←−
θ −1
←−
θ 0
←−
θ 1
←−
θ 2 · · · let

Sk(
←−
θ ) =

←−
θ k+1

←−
θ k+2 · · ·

f←−
θ |k =

{
f−1θ1 ◦ f

−1
θ2
◦ · · · ◦ f−1θk for k ≥ 1

fθ0 ◦ fθ−1
◦ · · · ◦ fθk+1

for k ≤ −1.

By convention f←−
θ |0 is the identity map. Then Theorem 7.1 and its proof go through without

change.

Corollary 7.1. If TGIFS F is uniquely hierarchical, then every F-tiling is non-periodic.

Proof. The proof that a F-tiling is non-periodic is a standard one. A translation of displacement
distance D that preserves the tiling T must, due to uniqueness, preserve the level k tiling Tk for
all k. If k is sufficiently large, however, the size of the tiles in Tk makes a displacement of fixed
distance D impossible. �

Theorem 7.2. If F is a TGIFS on Rd, then every F-tiling of Rd is repetitive.

Proof. Any patch X of an F-tiling T is contained in T (
←−
θ , k) for some k. Given n ≥ 1, there

exists a real number R such that every ball of radius R contains a tile of Tn(
←−
θ ), the nth level

of the hierarchy of Theorem 7.1. Therefore it suffices to show that there is an n such that every

tile of Tn(
←−
θ ) contains an isometric copy of T (

←−
θ , k).

Let m be the greatest common divisor of all closed paths in G. We claim that there exists
an M such that if n ≥ M and n ≡ 0 (modm) the following holds: for any vertex v of G
there is a circuit through v of length n. To prove the claim, let C be a circuit that contains
every vertex of G. There are circuits C1, C2, . . . , Ck of lengths mq1,mq2, . . . ,mqk such that that
gcd(q1, q2, . . . , qk) = 1. An elementary result in number theory states there exists an N such

that if integer s ≥ N , then there exists positive integers a1, a2, . . . , ak such that
∑k
i=1 aiqi = s.

Therefore, by traversing C with detours around the circuits C1, C2, . . . , Ck sufficiently many
times, for any vertex v, there is a circuit containing v of length ms + |C| = m(s + |C|/m), an
integer multiple of m. Taking M = mN + |C|, the claim is proved.

Given k, we now show that there is an integer n such that every tile of Tn(
←−
θ ) contains an

isometric copy of T (
←−
θ , k). Let D denote the diameter of G, i.e., the greatest directed distance

between any two vertices. Let n = M + k + D, where M is as in the paragraph above. Let

u = θ−k , i.e., the last vertex of
←−
θ |k in

←−
Σ . Let K ≥ n and let w = θ−K . A tile t of Tn(

←−
θ ) by

definition has the form

t = f←−
θ |K ◦ fσ(Aσ+) where |σ| = K − n, σ− = θ+K .

Let v = σ+. We claim that there exists a path γ from v to u in G of length n− k. Assume that
the claim is true, and consider the patch of tiles

T = {f←−
θ |K ◦ fσ ◦ fγ ◦ fω(Aω+) : |ω| = k, ω− = γ+}.
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Since |
←−
θ |K| = |K| = (K − n) + (n − k) + k = |σ| + |γ| + |ω|, each tile in T is a tile in T (

←−
θ ).

Moreover, since γ+ = u, the tiling T is an isometric copy of T (
←−
θ , k). It now only remains to

prove the claim.
Because G is strongly connected, there is a simple (no crossing) path γ̂ from v to u of length

at most D, and also a simple path δ from u to w. The concatenation of δ and the path
θK θk−1 · · · θk+1 form a cycle which implies that (K − k) + |δ| ≡ 0 (modm). Similarly, the
concatenation of the paths γ̂, δ and σ form a cycle which implies that (K − n) + |γ̂| + |δ| ≡
0 (modm). The two congruences yields n− k− |γ̂| ≡ 0 (modm). Therefore, by the definition of
M , there is a circuit β containing vertex v such that |β| = n−k−|γ̂| if n−k−|γ̂| ≥M = n−k−D,
which is equivalent to D ≥ |γ̂|, which is clearly true. Taking γ = β γ̂ we have

|γ| = |β|+ |γ̂| = (n− k − |γ̂|) + |γ̂| = n− k. �

Given a TGIFS F = (G,F ), consider the TGIFS F = (G′, F ′) obtained as follows. Let v be a
vertex of G. To obtain G′ add to G a new vertex; call it v′ with an edge (v′, i) for ever edge (v, i)
of G and an edge (i, v′) for ever edge (i, v) of G. To obtain F ′, let f(v′,i) = f(v,i) and f(i,v′) = f(i,v)
for all i. It is not hard to see that the set of F ′-tilings are exactly the set of F-tilings. The
new vertex v′ is redundant. This motivates the following definition. For a TGIFS (G,F ) and a
vertex r of G, recall the notation from Equation (5.1) Wi = Wi(F) =

{
fe(Ae+) : e ∈ Ei

}
for the

patch that tiles attractor component Ai.

Definition 7.2. Call a TGIFS F non-redundant if Wi(F) = Wj(F) if and only if i = j. Call
a TGIFS F asymmetric if, for all vertices i, the only symmetry of Ai that preserves its tiling
Wi(F) is the identity.

Theorem 7.3. Let F be a uniquely hierarchical TGIFS that is non-redundant and asymmetric.

If
←−
θ ,
←−
θ ′ ∈ P(F), then

(1) T (
←−
θ ) ∼= T (

←−
θ ′) if and only if Sj(

←−
θ ) = Sj(

←−
θ ′) for some integer j, and

(2) T (
←−
θ ) = T (

←−
θ ′) if and only if

←−
θ =

←−
θ ′.

Proof. Proof of statement (1):
One direction is statement (3) of Theorem 4.1.

In the other direction, we will show that if two tilings T (
←−
θ ) and T (

←−
θ ′) are congruent, then

there is an integer j such that Sj(
←−
θ ) = Sj(

←−
θ ′). Assume that T (

←−
θ ) ∼= T (

←−
θ ′). Let t0 be an

arbitrary tile in T0 = T (
←−
θ ) and t′0 the corresponding tile in T ′0 = T (

←−
θ ′) under the isometry;

call it h : Rd → Rd. In the hierarchy, let tk ∈ Tk(
←−
θ ) be such that tk ⊂ tk+1 for all k ≥ 0; define

t′k similarly.
Let j ≥ k be sufficiently large that t0 ∈ T (θ, j) and t′0 ∈ T (θ′, j). Because it is assumed that

F is uniqely hierarchical, the hierarchy must be the one provided in Theorem 7.1. Therefore,
for all j ≥ k ≥ 0, if t ∈ Tk and t′ ∈ Tk, then

tk = f←−
θ |jfσ(Aσ+) t′k = f←−

θ ′|jfω(Aω+),

where |σ| = j − k, σ− = (θj)
− and |ω| = j − k, ω− = (θ′j)

−. Let σ = σj−k σj−k−1 · · ·σ2 σ1
and ω = ωj−k ωj−k−1 · · ·ω2 ω1. Note that, for i = 1, 2, . . . , j − k, the function fσi gives the

embedding of ti−1 into ti. The same is true for t′k. If h is an isometry that takes T (
←−
θ ) onto

T (
←−
θ ′), then h takes tk+1 onto t′k+1 and the tiling of tk+1 by a patch in Tk onto the tiling of

t′k+1 by a patch in T ′k. By the assumption of non-redundancy and asymmetry, it is the case that
σi = ωi, i = 1, 2, . . . , j − k.

Now take any integer J > j, so that

tk = f←−
θ |Jfσ(Aσ+) where σ = θJ θJ−1 · · · θj+1 σj−k σj−k−1 · · ·σ2 σ1

t′k = f←−
θ ′|Jfω(Aω+) where ω = θ′J θ

′
J−1 · · · θ′j+1 ωj−k ωj−k−1 · · ·ω2 ω1.
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As above, we have θ′i = θi for all i > j.

Proof of statement (2):

Given parameters
←−
θ ,
←−
θ ′ ∈ P̂, we will show that T (

←−
θ ) = T (

←−
θ ′) implies

←−
θ =

←−
θ ′. Assume the

contrary, that
←−
θ 6=

←−
θ ′ and T (

←−
θ ) = T (

←−
θ ′). Let k be the greatest integer such that

←−
θ i =

←−
θ i
′
for

i ≤ k. By the assumption that F is uniquely hierarchical and by Theorem 7.1, T (
←−
θ ) = T (

←−
θ ′)

implies that T (Sk
←−
θ ) = T (Sk

←−
θ ′). Therefore we may assume, without loss of generality, that

←−
θ 1 6=

←−
θ ′1, i.e., θ1 6= θ′1. Let v1 = θ+1 , v2 = θ−1 , v

′
1 = θ′+1 , v′2 = θ′−1 . Since Av1 and Av′1 are both

tiles in T (
←−
θ ) = T (

←−
θ ′) containing 0, they must be equal (see Definition 4.1); therefore v1 = v′1.

Now

0 ∈ Av1 = Aθ+1
⊂ f−1θ1 (Av2) ∈ T1(

←−
θ ).

Because the same equation holds for θ′ we have

0 ∈ f−1θ′1 (Av′2) ∈ T1(
←−
θ ′).

However, because of the uniqueness of the hierarchy, T (
←−
θ ) = T (

←−
θ ′) implies T1(

←−
θ ) = T1(

←−
θ ′).

Therefore we have

f−1θ1 (Av2) = f−1θ′1
(Av′2).

By Theorem 7.1, f−1θ1 (Av2) ∈ T1(
←−
θ ) and f−1θ′1

(Av′2) ∈ T1(
←−
θ ′). By the uniqueness of the hierarcy

T1(
←−
θ ) = T1(

←−
θ ′). But f−1θ1 (Av2) is tiled by patch Wv2 = {f−1(θ1

◦ fe)(Ae+) : e ∈ Ev2} in T (
←−
θ )

and similarly f−1θ′1
(Av′2) is tiled by patch Wv′2

= {f−1(θ′1
◦ fe)(Ae+) : e ∈ Ev2} in T (

←−
θ ′). Since

T (
←−
θ ) = T (

←−
θ ′) and it is assumed that F is non-redundant, it must be the case that v2 = v′2.

Now the isometry f−1θ′1
fθ1 is a symmetry of Av2 taking the patch Wv2 onto Wv′2

. By the

assumption of asymmetry, fθ1 = fθ′1 . This implies that θ1 = θ′1; otherwise the patch Wv2 :={
fe(Ae+) : e ∈ Ev2

}
is overlapping. This contradicts

←−
θ 1 6=

←−
θ ′1.

�

Corollary 7.2. If F is uniquely hierarchical, non-redundant and asymmetric, then there are an
uncountable number of F-tilings.

Proof. The corollary follows from Theorem 7.3 because there are uncountably many parameters

such that Sj(
←−
θ ) 6= Sj(

←−
θ ′) for all j ≥ 0 for any distinct pair

←−
θ ,
←−
θ ′ of them. �

8. A Tiling Dynamical System

Definition 8.1. Let B(r) denote a ball of radius r centered at the origin. The tiling space
T = T(F) of a TGIFS F is the set of all F-tilings of Rd endowed with the following metric d:

d(T, T ′) = inf
{
ε : T and T ′ coincide on a patch covering B(1/ε)

}
.

The tiling map
T : P(F)→ T(F)

←−
θ 7→ T (

←−
θ )

is a continuous map from the parameter space P(F) onto the tiling space T.

Proposition 8.1. For a TGIFS F , the set of self-similar F-tilings in T(F) is dense in the tiling
space T(F).

Proof. Let T = T (
←−
θ ) ∈ T(F) be given. Let

←−
θ (k) ∈ P be chosen to have the property that

θ(k) is eventually periodic and such that the first k edges of
←−
θ (k) and

←−
θ are the same. By

the continuity of T , it follows from limk→∞
←−
θ (k) =

←−
θ that limk→∞ T

(←−
θ (k)

)
= T (

←−
θ ) = T .
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Because T
(←−
θ (k)

)
is self-similar by Theorem 4.1, the tiling T is in the closure of the set of

self-similar F-tilings. �

Definition 8.2 (F-dynamical system). For a TGIFS F , define the map H : T→ T by

H(T ) = fθ1 (T1)

for all T ∈ T. In other words, H is a map that takes a TGIFS tiling, up to a scaling down, to
the next level in its hierarchy.

Theorem 8.1. Let F be a non-redundant, asymmetric, uniquely hierarchical TGIFS. The two
dynamical systems (P, S) and (T, H) are topologically conjugate discrete dynamical systems, the
topological conjugation being the tiling map T . As a commuting diagram we have

S
P → P

T
y y T
T → T

H

Proof. Statement (2) of Theorem 7.3 states that the tiling map T is bijective. A bijective
continuous map on a metric space is a homeomorphism. Theorems 7.1 implies that

H
(
T (
←−
θ )
)

= fθ1T (
←−
θ ) = fθ1f

−1
θ1
T1(
←−
θ ) = T (S

←−
θ ). �

Remark 8.1. A tiling space T̃ = T̃(F) of a TGIFS F can alternatively be defined as the set of
all F-tilings of Rd up to isometry endowed with the metric

d̃(T, T ′) = inf
{
ε : T and h(T ′) coincide on a patch covering B(1/ε) for some isometry h

}
.

Call two parameters equivalent, denoted by
←−
θ ∼

←−
θ′ , if Sj

←−
θ = Sj

←−
θ′ for some j ≥ 0. If P̃ = P/ ∼,

then Theorem 7.3 implies that the tiling map

T̃ : P̃(F)→ T̃(F)

〈
←−
θ 〉 7→ 〈T (

←−
θ )〉,

is well defined, where 〈·〉 denotes the equivalence class. The tiling map T̃ is continuous with

respect to a metric on P̃ defined so that 〈
←−
θ 〉 and 〈

←−
θ ′〉 are close if, for some j there is a large k

such that Sj(
←−
θ |k) = Sj(

←−
θ ′|k), then T̃ . Define H̃ : T̃ → T̃ by H̃(T ) = λ(F)T . The topological

conjugacy is given by the following commuting diagram.

S̃
P → P

T̃
y y T̃
T̃ → T̃

H̃

8.1. Results using invariants. Let F be a TGIFS. Throughout this section, it is assumed
that F is non-redundant, asymmetric and uniquely hierarchical, or at least that the tiling map
T induces a topological conjugacy as in the diagram above.

Definition 8.3. Let pk := pk(F) denote the number of F-tilings T such that Hk(T ) = T . In
other words, pk is the number of F-tilings such that its nth-level hierarchical tiling Tk, scaled
down by a factor (f←−

θ |k)−1, is equal to the original tiling T . In this sense, pk counts the number

of F-tilings whose hierarchy T = T0, T1, T2 . . . cycles with period k.
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Theorem 8.2. For a TGIFS F as above, a generating function for the sequence {pk}∞n=1 is
given by

∞∑
k=1

pk
k
xk = log

( 1

det(I − xM)

)
,

where M is the adjacency matrix of the digraph of F .

Proof. An element in the parameter space P of F can be viewed as a one sided word in the

alphabet V , where V is the set of vertices of the digraph
←−
G . The parameter space P is clearly

shift invariant. In the terminology of symbolic dynamics, the dynamical system (P, S) is a 1-step
shift of finite type. This means that there is a finite set W of ordered pairs of elements of V ,

i.e. a set of edges in the complete digraph on V , such that P consists of all words (paths in
←−
G)

that do not contain an ordered pair (edge) in W .
The Artin-Mazur zeta function of a dynamical system (X, g) is defined by

ζ(x) = exp
( ∞∑
k=1

qk
k
xk
)
,

where qk is the number of points of period n of X under the action of g. (Note that a point
of period n is also a point of period any multiple of n.) For our shift of finite type (P, S), the

number qk is thus the number of parameters
←−
θ such that Sk

←−
θ =

←−
θ , equivalently the number

of closed paths in
←−
G of length k. The zeta function is a well-known invariant of topological

conjugacy and, for a shift of finite type, can be computed by the Bowen-Lanford formula:

ζ(x) =
1

det(I − xM t)
=

1

det(I − xM)
,

where M is the adjacency matrix of the digraph G and its transpose M t is the adjacency matrix

of the digraph
←−
G . For our shift of finite type (T, H), the number qk is thus the number of tilings

T ∈ T such that Hk(T ) = T , equivalently qk = pk.
According to Theorem 8.1, the two dynamical systems (T, H) and (P, S) are topologically

conjugate and therefore have the same zeta function. Hence

exp
( ∞∑
k=1

pk
k
xk
)

=
1

det(I − xM)

and Theorem 8.2 follows. �

Example 8.1. A simple computer calculation gives the following series for the Ammann chair
TGIFS of Example 4.1:

∞∑
k=1

pk
n
xk = x+

3x2

2
+

4x3

3
+

7x4

4
+

11x5

5
+

18x6

6
+

29x7

7
+

47x8

8
+

76x9

9
+ · · · .

For example, there are 4 Ammann chair tilings for which the hierarchy cylces with period 3.
Referring to the graph in the right panel of Figure 5, these correspond in (P, S), via topological
conjugacy, to the 4 parameters 111, 132, 213, 321, where the individual digits are shorthand for

the edges in
←−
G with those function subscripts, and the bar over the numbers means that the

three numbers repeat.

Lemma 8.1. Let F be a uniquely hierarchical TGIFS, and let
←−
θ ,
←−
θ ′ ∈ P. Then T (

←−
θ ) = T (

←−
θ ′)

if and only if T (θ, k) = T (θ′, k) for k = 0, 1, 2, . . . .

Proof. Since T (
←−
θ ) is the nested union of the T (θ, k), clearly T (θ, k) = T (θ′, k) for k = 0, 1, 2, . . .

implies that T (
←−
θ ) = T (

←−
θ ′).
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In the other direction, by Theorem 7.1, the union of the tiles in T (θ, k) is itself a tile tk ∈ Tk;

similarly T (θ′, k) is a tile t′k ∈ T ′k. Since 0 ∈ tk ∩ t′k and T := T (
←−
θ ) = T (

←−
θ ′) has a unique

hierarchy, it follows that T (θ, k) = T (θ′, k). �

Definition 8.4. For a uniquely hierarchical TGIFS F , let Nk := Nk(F) denote the number of

distinct (pairwise unequal) patches T (
←−
θ , k) over all

←−
θ ∈ P. In view of Lemma 8.1, the growth

of the sequence {Nk}∞k=1 is a measure of how fast F-tilings can be distinguished by looking at
these increasingly large finite patches.

Theorem 8.3. For a TGIFS F , let ρ := ρ(F) denote the Perron-Frobenius eigenvalue of the
adjacency matrix of the digraph of F . Then asymptotically

Nk ' ek log ρ, i.e.,

lim
k→∞

k
√
Nk = ρ.

Proof. Given a TGIFS F = (G,F ), the topological entropy of the shift of finite type (P, S) is
defined by

h(P) = lim
k→∞

1

k
log N̂k,

where N̂k is the number of paths of length k in the digraph
←−
G , which equals the number of

paths of length k in the digraph G. The same method used in the proof of statement (2) of

Theorem 7.3 shows that T (
←−
θ , k) = T (

←−
θ ′, k) if and only if

←−
θ |k =

←−
θ ′|k. Therefore Nk = N̂k for

all k.
For (P, S) (and more generally for any shift of finite type) it is well known that h(P) = ρ(F),

the Perron-Frobenius eigenvalue of M . Therefore

lim
k→∞

1

k
logNk = lim

k→∞

1

k
log N̂k = ρ,

which is equivalent to limk→∞
k
√
Nk = ρ. �

Example 8.2. Applying Theorem 8.3 to the Ammann chair TGIFS F of Example 4.1 yields

Nk ' τk ≈ e.4812n,
where τ is the golden ratio.

9. The Existence of TGIFSs

TGIFSs are plentiful and easy to construct in dimension 1; see Theorem 9.1 below. Polygonal
rep-sets in dimension 2, as defined in Section 3.3, have appeared in recreational websites as well
as mathematical journals. These were mostly discovered in an ad hoc manner, some very clever.
They include the Ammann chair tile in Example 4.1, Robinson’s triangle variant of the Penrose
tiles, and the pinwheel tile (the tile due to J. Conway, the tiling due to C. Radin). All of the above
examples give rise to a TGIFS and the associated tilings obtained by the method provided in
Section 4. According to Theorem 9.2 below, for every dimension d and for every Perron number
ρ, there exists a TGIFS on Rd whose scaling ratio is 1/ρ; the attractor components are boxes.

In general, however, families of non-polyhedral tilings in dimension d ≥ 2 with self-replicating
properties are hard to come by. As long as the functions in F are constractions, a GIFS (G,F )
has an attractor. The difficulty in finding GIFSs in dimensions d ≥ 2 whose attractor components
may serve as tiles may be explained by the following conjecture.

Conjecture 9.1. Given a strongly connected digraph G and dimension d, let G denote the set
of all GIFS (G,F ), where the functions in F are similarities taking Rd onto Rd. The topology
of compact convergence can be put on the set of all similarities f : Rd → Rd, and hence a
topology of compact convergence can be assigned to G via the product topology on F . Given a
connected digraph G, we conjecture that the set of GIFSs in G whose attractor components are
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non-overlapping and have nonempty interior is nowhere dense in G with respect to the topology
of compact convergence.

Two known algebraic constructions that do lead to TGIFS-tilings use digit sets and Rauzy
fractals. Examples based on these techniques appear in Section 9.2. Tilings of Rd by copies of
a single digit tile are typically periodic. Digit tiles received considerable attention starting the
1980’s; see [21] and references therein. Tilings using Rauzy fractals are typically non-periodic.
The Rauzy fractal and its generalizations, often called central tiles, are usually obtained from
symbolic dynamics or from numeration systems (β-expansions) and are also related to model
sets obtained by the cut-and-project method. Although a general discussion of Rauzy tilings
does not, the elegant GIFS approach due to Rao, Wen and Yang [15] does fall within the scope
of this paper.

9.1. Existence of TGIFs in terms of the scaling ratio and digraph. A real number
ρ > 1 is a Perron number if it is a real algebraic integer such that the moduli of all other Galois
conjugates (roots of the minimal polynomial of ρ) are less than |ρ|. Call a real algebraic integer
ρ > 1 a weak-Perron number if the moduli of all of its Galois conjugates are less than or equal to
|ρ|. A real number ρ > 1 is a Pisot number if it is a real algebraic integer such that the moduli
of all of its other Galois conjugates are less than 1. It is a unit pisot number if, in addition, the
constant term in its minimal polynomial is ±1.

Proposition 9.1. If F is a TGIFS on Rd with scaling ratio λ, then 1/λ is a weak-Perron
number.

Proof. Let ρ = 1/λ. By condition (2) in Definition 4.1, we know that ρd is the Perron-Frobenius
eigenvalue of M(G). If the characteristic polynomial of M(G) is p(x), then ρ is a root of
p̂(z) = p(zd), all of whose roots are less than or equal to ρ. �

Note that there exists no TGIFS whose digraph is a directed cycle.

Theorem 9.1. (1) For any 0 < λ < 1 such that 1/λ is a Perron number, there exists a
primitive TGIFS on R whose scaling ratio is λ.

(2) For every strongly connected digraph G = (V,E), not a directed cycle, there exists a
primitive TGIFS F = (G,F ) on R such that fe(x) = (1/ρ) (x+ de) for all e ∈ E, where
ρ is the Perron-Frobenius eigenvalue of the adjacency matrix M(G) of G and de ∈ Q(ρ).

Proof. Concerning statement (1), let 0 < λ < 1 and let ρ = 1/λ. The result [10, Theorem
1] states that if ρ is a Perron number, then there is a primitive non-negative integral matrix
M = (mi,j), i, j ∈ {1, 2, . . . , n} whose spectral radius is ρ. A TGIFS on R, whose adjacency
matrix is M , can be obtained as follows. Let the vertex set of G be V = {1, 2, . . . , n}. For
each pair (i, j) of vertices, add mi,j edges from vertex i to vertex j, and label edge e with a
function of the form fe(x) = (1/ρ)(x + de), where de is defined as follows. Let (x1, x2, . . . , xn)
be a positive right eigenvector corresponding to the eigenvalue ρ, which exists by the Perron-
Frobenius theorem. The set {x1, x2, . . . , xn} of coordinates is a solution to the linear system

xj =

n∑
i=1

λmj,i xi, j = 1, 2, . . . , n,

and hence can be chosen to lie in Q(ρ). Consider the intervals Ij = [0, xj ], j = 1, 2, . . . , n, on
the real line. From the system of linear equations above, the interval Ij can be tiled (often in
many different ways) by translated copies of the intervals [0, λ xi], i = 1, 2, . . . , n. The de are
the translation distances multiplied by ρ, which are sums of the xis. Therefore de ∈ Q(ρ) for all
e ∈ E.

The adjacency matrix M(G) determines the digraph G, so, as long as the Perron-Frobenius
eigenvalue of M(G) does not equal 1, the proof of statement (2) is as in the paragraph above.
Since M(G) is a non-negative, integral matrix, the Perron-Frobenius eigenvalue equals 1 if and
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only if M is orthogonal which can occur if and only if M(G) is a permuatation matrix if and
only if G is a directed cycle. �

Theorem 9.2. For any 0 < λ < 1 such that 1/λ is a Perron number, there exists a primitive
TGIFS on Rd whose scaling ratio is λ.

Proof. The case d = 1 is Theorem 9.1. So let F = (G,F ) be such a 1-dimensional TGIFS with
scaling ratio λ = 1/ρ and with attractor components Ij = [0, xj ], j = 1, 2, . . . , n, intervals on the
real line. Denote the vertex set of G by V = {1, 2, . . . n} and the edge set by E. In dimension
d, let Fd = (Gd, Fd) be the GIFS, where Gd = (Vd, Ed) is the digraph with vertex set Vd = V d

and edge set Ed = Ed. The edge e := (e1, e2, . . . , ed) ∈ Ed joins vertex i := (i1, i2, . . . , id) to
vertex j := (j1, j2, . . . , jd) where ek = (ik, jk) for k = 1, 2, . . . d. Label edge e with the function
fe(y1, y2, . . . yd) =

(
fe1(y1), fe2(y2), . . . , fed(yd)

)
to obtain Fd.

It is routine to check that F and Fd have the same scaling ratio. The GIFS Fd is primitive
for the following reason. Since G is primitive, there exists a positive integer m such that,
for any two vertices of G there is a directed path of length m from one to the other. Let
i := (i1, i2, . . . , id) and j := (j1, j2, . . . , jd) be two arbitrary vertices of Gd. For k = 1, 2, . . . , d,
let ek,1 ek,2 · · · ek,m be a path of length m in G from vertex ik to vertex jk. For q = 1, 2, . . . ,m,
let eq = (e1,q, e2,q, . . . , ed,q). Then e1 e2 · · · em is a path of length m from vertex i to vertex j in
Gd.

For each i := (i1, i2, . . . , id) ∈ Vd, let Bi = Ii1 × Ii2 × · · · × Iid , which is a box in Rd. We leave
it as an exercise to verify that

Bi =
⋃

e∈(Ed)i

fe(Be+)

for all i ∈ Vd and that the union is non-overlapping. This shows that {Bi : i ∈ Vd} is the set of
attractor components of Fd. �

Theorem 9.1 suggests the following questions.

Question 9.1. For which strongly connected digraphs G and integers d ≥ 2, does there exist a
TGIFS on Rd whose digraph is G?

Question 9.2. For the digraph G at the right in Figure 5, there exists two TGIFs on R2 whose
attractor components are polygons. In each case, the two attractor components are related
by a similarity transformation. In the first case, one of the attractor components is a right
triangles with side lengths 1,

√
τ , τ , where τ is the golden ratio. In the second case, the attractor

components are the Ammann chair tiles shown on the left in Figure 6. It is a consequence of
a result of Schmerl [18] that these are the only two TGIFSs with digraph G whose attractor
components are polygons. Does there exist a TGIF on R2 with non-polygonal attractor? On R,
the well-known Fibonacci tilings are the F-tilings for a TGIFS F with digraph G. In that sense
the Fibonacci tilings and the Ammann chair tilings are “siblings”, the TGIFS that generete
them having the same digraph G. Do there exist such siblings for G in all dimensions?

9.2. Two algebraic constructions of TGIFSs.

Digit Tiling

Let L be a d× d integer matrix such that all eigenvalues of L are greater than 1 in modulus.
Such a matrix L is called an expanding matrix. Let D denote a complete set of coset represen-
tatives of the quotient Zd/L(Zd) with 0 ∈ D. Such a set D is called a digit set. For each d ∈ D,
let fd(x) = L−1(x + d) and let F = {fd : d ∈ D}. Then F is an IFS. Note that it is also the
GIFS F(L,D) = (G,F ), where digraph G consists of a single vertex with |D| loops. For a proof
of the following theorem see, for example, [8, 20].

Theorem 9.3. If L is an expanding integer matrix and D is a digit set, then the attractor of
F(L,D) has nonempty interior and is non-overlapping. In particular, if L is a similarity, then
F(L,D) is a TGIFS.
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The attractor of F(L,D) is called a digit tile and the associated TGIFS-tilings are digit

tilings. The tiling on the left in Figure 3 is a digit tiling where L =

(
1 −1
1 1

)
and D =

{(0, 0), (1, 0)}. The digit tile in this case is often referred to as the “twin dragon”. Digit tilings
have natural generalizations: (1) from the lattice Zd to any d-dimensional lattice and (2) from
the d-dimensional crystallographic group generated by d linearly independent translations, i.e.,
a lattice, to any d-dimensional crystallographic group.

Rauzy Tiling

Definition 9.1 (Dual GIFS). A slightly more general definition of the following appers in [15].
Let G = (V,E) be a strongly connected digraph of order d + 1, not a cycle, and let ρ be the
Perron-Frobenius eignevalue of the adjacency matrix of G. According to Theorem 9.1, there is
a TGIFS F = (G,F ) on R (often many such TGIFSs) such that

fe(x) =
1

ρ

(
x+ de

)
,

where de ∈ Q(ρ) for all e ∈ E. Such 1-dimensional TGIFSs can be obtained explicitly and easily
using the method provided in the proof of Theorem 9.1. Call any such TGIFS a 1-dimensional
TGIFS or simply a d1-TGIFS.

Let F = (G,F ) be a d1-TGIFS. If ρ is a Pisot unit, then the dual GIFS F∗ = (
←−
G,F ∗)

of F is defined as follows. The reverse digraph
←−
G is exactly as defined in Section 4.2. Let

ρ = ρ0, ρ1, . . . , ρd be the Galois conjugates of ρ ordered as follows:

ρ > 1 > |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρd|,
where complex conjugates appear consecutively. Let

B′ = diag(ρ1, ρ2, . . . , ρd),

and replace each pair z, z of complex conjugates in B′ by the 2× 2 real block

(
Re z −Imz
Imz Re z

)
to obtain the matrix B. Since 1, ρ, ρ2, . . . , ρd is a basis for Q(ρ), we have x =

∑d
i=0 xiρ

i for any
x ∈ Q(ρ), where the xi ∈ Q. The dual of x is defined as

x∗ =

d∑
i=0

xi(ρ
i
1, . . . , ρ

i
d)
t ∈ Cd,

where pair z, z of complex conjugates is replaced with Re z, Imz. Equivalently, the star operator
is the unique linear map ∗ : Q(ρ) → Rd such that (ρ x)∗ = Bx∗ for all x ∈ Q(ρ). Now set

F ∗ = {f←−e (x) = Bx+ d∗e : e ∈ E}. The dual of F is F∗ := (
←−
G,F ∗), which is a GIFS on Rd.

The following theorem is essentially [15, Theorem 1.2].

Theorem 9.4. The dual of a d1-TGIFS F for which 1/λ(F) is a Pisot unit is also a TGIFS.

Remark 9.1 (on the Proof of Theorem 9.4). A GIFS satisfies the OSC if there exists open sets
U1, . . . , Un such that ⋃

e∈Ei

fe(Ue+) ⊂ Ui

for i = 1, 2, . . . , n, where n is the order of the digraph of the GIFS. Three results lead to the
proof of Theorem 9.4.

First, necessary and sufficient conditions for a GIFS to satisfy the OSC, in terms of certain
“digits” is given in [11].

Second, a result in [15], using the above necessary and sufficient conditions, immediately
implies that if d1-TGIFS F satisfies (1) the open set condition (OSC) and (2) that 1/λ(F)
is a Pisot number, then F∗ also satisfies the OSC. Concerning condition (1), the attractor
components of a d1-TGIFS are closed intervals; hence the OSC is satisfied by taking the Ui as
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the set of corresponding open intervals. Condition (2) is, by assumption, satisfied. Therefore
F∗ satisfies the OSC.

Third, a result in [9] immediately implies that if F∗ = (
←−
G,F ∗) is such that (1) the functions

in F ∗ are affine of the form fe(x) = B(x) + de for all e ∈ E, (2) F∗ satisfies the OSC, and

(3) 1/ρ∗ = |det(B)|, where ρ∗ is the Perron-Frobenius eigenvalue of M(
←−
G), then the attactor

components of F∗ have nonempty interior. Condition (1) is clearly true, and condition (2)
follows immediatly from the previous result from [11]. Concerning condition (3), we have

|det(B)| = |ρ1 · ρ2 · · · ρd| =
1

ρ
=

1

ρ∗
.

The second equality follows from the fact that ρ is a unit and the last equality from the fact

that M(
←−
G) is the transpose of M(G).

Therefore the attractor components of F∗ have nonempty interior. Moreover, because λ(F∗) =√
|det(B)| = 1/

√
ρ∗, Proposition 4.1 implies that F∗ is a TGIFS.

Example 9.1 (Rauzy tilings from a TGIFS). GIFS duality is used here to obtain fractal, non-
periodic TGIFS-tilings of R2. We start with an initial d1-TGIFS F = (G,F ) on R, where G is
an order 3 strongly connected digraph and the Perron-Frobenius eigenvalue ρ of the adjacency
matrix M(G) is a Pisot unit. It is not hard to find many such d1-TGIFSs as follows. Regarding
the 9 integer entries of M(G) as variables, it is easy to solve for values of these variables so that
(1) det(M(G)) = ±1, (2) the degree 3 characteristic polynomial of M(G) has a pair of complex
roots, and (3) G is strongly connected. That ρ > 1 together with condition (2) immediately
implies that ρ is a Pisot number. Condition (1) further implies that ρ is a unit. Because M(G) is
a 3×3 matrix, the dual F∗ is a TGIFS on R2. With the digraph G in hand, we use Theorem 9.1
(and its proof) to obtain possibilities for F and hence possibilities for the d1-TGIFS F . We then

use Theorem 9.4 to obtain F ∗ and hence F∗ = (
←−
G,F ∗). The tiling method of this paper is then

used to produce the F∗-tiling.
For each of the following examples we provide an adjacency matrix M = M(G), which

determines the digraph G, the characteristic polynomial p(x) of M , whose Perron-Frobenius
eigenvalue ρ is a Pisot unit and equals 1/λ(F), and the functions in F .

(1) The original Rauzy fractal is the non-overlapping union of three smaller similar copies
of itself. A tiling based on the Rauzy fractal appears on the right in Figure 3. This
TGIFS-tiling can be constructed from the dual of this d1-TGIFS:

M =

1 1 1
1 0 0
0 1 0

 p(x) = x3 − x2 − x− 1
f2,1(x) = f31(x) = f1,1(x) = (1/ρ)x

f1,2(x) = f2,3(x) = (x− 1)/ρ,

where fi,j is the function in F that is the label of edge (i, j).

(2) A tiling from the the dual of the data below appears on the left in Figure 7.

M =

1 0 1
1 0 0
0 1 0

 p(x) = x3 − x2 − 1
f2,1(x) = f3,2(x) = f1,1(x) = (1/ρ)x

f1,3(x) = (x− 1)/ρ

(3) The tilings on the left and right, respectively, in Figure 4 are from the duals of these
d1-TGIFSs:

M =

1 1 1
1 0 1
1 0 0

 p(x) = x3 − x2 − 2x− 1

f3,1(x) = f2,1(x) = f1,1(x) = (1/ρ)x

f1,3(x) = f2,3(x) = (x+ ρ)/ρ

f1,2(x) = (x+ ρ+ 1)/ρ
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Figure 7. Tilings from duals given in Example 9.1.

(4)

M =

1 1 1
1 1 0
0 1 0

 p(x) = x3 − 2x2 − x− 1

f2,3(x) = f3,1(x) = f1,1(x) = (1/ρ)x

f2,1(x) = (x− 1)/ρ

f1,2(x) = (x+ ρ)/ρ

f2,2(x) = (x+ ρ+ 1)/ρ

(5) The tiling on the right in Figure 7 is from the dual of the d1-TGIFS below. The three
prototiles also appear in Figure 2.

M =

1 1 1
1 1 0
0 1 1

 p(x) = x3 − 3x2 + 2x− 1

f2,3(x) = f3,3(x) = f1,1(x) = (1/ρ)x

f3,1(x) = f2,1(x) = (x− 1)ρ

f2,2(x) = (x+ ρ)/ρ

f1,2(x) = (x+ ρ− 1)/ρ
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