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Abstract. An approach to tiling Euclidean space using a graph iterated function system

(GIFS) was introduced by Barnsely and Vince [5]. The main concept in this paper is called a
self-similar GIFS in which all the similarity mappings in the GIFS have the same scaling ratio.

Despite the simplification, the tilings associated with a self-similar GIFS have properties that
are expected of a self-similar tiling. Any GIFS based tiling by congruent copies of a finite set of

prototiles that may reasonably be considered self-similar must be one of our self-similar GIFS-

tiling. Moveover, the space of tilings in this paper is the closure, in an appropriate metric
space, of the self-similar tilings of W. Thurston [39], generalized from tiling by translated

copies of a set of prototiles to tilings by congruent copies of a set of prototiles.

1. Introduction

The tilings in this paper are tilings of Euclidean space by congruent copies of a finite set of
prototiles, in particular those that have self-replicating properties. The mathematical investi-
gation of such tilings has a long history. Consider, for example, the prescient 1619 “monster”
tiling of Johannes Kepler in Figure 1. Research has been particularly robust since the discovery
of the Penrose tilings [29] in 1974 and quasicrystals in 1984.

⟨fig:mon⟩

Figure 1. Kelpler’s monster

Tilings with self-referential properties has a vast litereature, the subject approached from
geometric, topological, analytic, and dynamical points of view. Such tilings, for example, appear
early on in work of Mandelbrot [25], Bedford [6], Thurston [39], Kenyon [20] and from a dynamical
systems point of view in, for example [30, 33, 37]. Rauzy type tilings appear in [32] and surveys
by Berthè and Siegel [8] and by Siegel and Thuswaldner [36], both containing well over 100
references.

The goal of this paper is to provide a unifying overview of this fascinating theory from a
graph interated function system (GIFS) point of view. A GIFS is a generealization of an iterated
function system (IFS). The concept of a GIFS originated in the construction of deterministic
fractals [26] but is implicit in the concept of a Bratteli diagram [10] introduced in 1972 in the
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2 A. VINCE

context of operator algebras. A GIFS is related to the earlier notion of a rep-tile, the term
coined by S. Golomb [14] and popularized by Martin Gardner in 1963 in Scientific American
[12]. A rep-tile was originally defined as a single polygon that can be tiled by smaller similar
and congruent copies of itself. If we generalize from a single polygon to a finite prototile set Q
such that each tile in Q is, in turn, tiled by smaller similar copies of prototiles in Q, then we
are close to the concept of a GIFS (see Remark 3.2). Systematic use of an IFS in tiling theory
gained traction in the early 1990s with the construction of lattice and crysallographic tilings by
copies of a single, usually fractal, tile; see for example [4, 13, 15, 21, 22, 38, 40]. The use of a
GIFS expands the possibilities to tilings by various shapes and to non-periodic tilings. It makes
precise the notion of a geometric substitution tiling; see the survey by Frank [11] and the many
references therein.

A GIFS F = (G,F ) consists of a digraph G and a set F of functions assigned to the edges
of G. Every GIFS for which the functions are constractions has a unique attractor consisting of
a set (A1, A2, . . . , An) of compact subsets of Rd, one for each vertex of G. The functions in F
explicitly indicate how each attractor component is the union of smaller copies of components
of A. Formal definitions are provided in Section 3. Figure 2 shows, in the top row, the three
attractor components of the last GIFS in Example 9.1. The second row of the figure illustrates
that each attractor component is the union of smaller similar copies of the attractor components.
In this example, the boundary of each attractor component is a fractal.

Figure 2. Prototile set for the self-similar GIFS of Example 9.1.
⟨fig:r1⟩

The main object in this paper is a self-similar GIFS F and the associated self-similar GIFS-
tilings. Associated with any self-similar GIFS F with attractor (A1, A2, . . . , An) is

• an uncoutable parameter space P := P(F),
• a tiling space T := T(F) consisting of a set of tilings of Rd, each with prototile set
{A1, A2, . . . , An}, and
• a tiling map T : P → T from the parameter space to the tiling space.

Given a self-similar GIFS F , each tiling in T(F) will be referred to as an F-tiling. Both the
parameter space and the tiling space are metric spaces, and the tiling map is continuous with
respect to these metrics. Via the tiling map there are potentially infinitely many tilings that can
be obtained from asingle given self-similar GIFS.

The tilings in Barnsley and Vince [5] use a GIFS, but are very general, including tilings that
are somewhat arbitrary. The self-similar GIFS-tilings in this paper are at once a specialization
and a simplification - a simplification in that every similarity in the GIFS has the same scaling
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ratio. Nevertheless, it is shown in Section 6 that any GIFS based tiling by congruent copies of
a finite set of prototiles that may reasonably be considered self-similar must be a self-similar
GIFS-tiling. Moreover, the self-similar tilings of Thurston and Kenyon [20, 39], generalized from
trilings by translation to tilings by congruent copies, are self-similar GIFS-tilings.

A tiling T can be either periodic or non-periodic, periodic if there is a translational symmetry
of T , otherwise non-periodic. Figure 3 shows two well known tilings, the twin dragon tiling
and the original Rauzy tiling [32]. The twin dragon tiling is periodic and the Rauzy tiling is
non-periodic. Both tilings can be obtained from our systematic method for the constuction
of self-similar GIFS-tilings. The two additional fractal self-similar GIFS-tilings that appear in
Figure 4 are also non-periodic and will be discussed in Section 9.1.

Figure 3. Twin Dragon (periodic) and Rauzy (non-periodic) self-similar GIFS-tilings.
⟨fig:fb⟩

Figure 4. self-similar GIFS-tilings from Examples 9.1.
⟨fig:rr1⟩

Since the paper is intended to be self contained and we touch on topics that have appeared
previously in some form, not necessarily GIFS related, this paper is, to some extent, expository.
In Section 2 we give the organization of the paper and indicate results that are new.

2. Organization and Results
⟨sec:O⟩

Basic notions about tiling Euclidean space, about rep-tiles and rep-sets, and about graph
directed iterated function systems are covered in Section 3.

Self-similar GIFS and the associated self-similar GIFS-tilings are defined in Section 4. In
particular, the parameter space, tiling space, and the tiling map are defined.
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Basic properties of self-similar GIFS-tilings are covered in Theorem 5.1 of Section 5. These
involve familiar notions in tiling theory like tile frequency, quasiperiodicity, hierarchy, and peri-
odicilty. Proofs that are new in a GIFS setting are included.

Requiring the scaling ratios of all similarity functions in a self-similar GIFS to be equal may
seem excessively restrictive. Theorem 6.1 in Section 6, however, essentially states that any
GIFS-tiling whose prototile set consists of components of the attractor of the GIFS must be a
self-similar GIFS-tiling.

The notion of a self-similar tiling by translates of a set of prototiles was formulated, without
reference to a GIFS, by Thurston and Kenyon [20, 39]. Theirs is a global self-similarity. Basically,
a tiling T of Rd is self-similar in their terminogy if there exists a similarity transformation
ϕ : Rd → Rd with scaling ratio greater than 1 such that, for all t ∈ T , the large tile ϕ(t) is tiled,
in turn, by tiles in T . In Section 7 Thurston and Kenyon’s concept is extended from tilings by
translation to tilings by isometric (congruent) copies of a set of prototiles. Calling such a tiling
globally self-similar we show that:

• Every globally self-similar tiling is a self-similar GIFS-tiling (Theorem 7.1).
• If the parameter of a self-simlilar GIFS-tiling is eventually periodic, then the associated
self-similar GIFS-tiling is globally self-similar (Theorem 7.2).
• For a given self-similar GIFS F , the set of globally self-similar tilings in the tiling space
T(F) is dense in T(F) (Theorem 7.3).

Thus, for a given self-similar GIFS F , the subset of globally self-similar tilings in the set of all
self-similar GIFS-tilings play a role analogous to the subset of rational number in the reals.

The subject of Section 8 is a tiling dynamical system (T, H) of a self-similar GIFS. The
function H acts on the tiling space T by taking a tiling T ∈ T one level up, after scaling, in its
hierarchy. Theorem 8.1 states that, for a self-similar GIFS F satisfying natural assumptions,
(T, H) is topologically conjugate to the discrete dynamical system (P, S), where S is the shift
map acting on the parameter space P. The section ends with Theorems 8.2 and 8.3, applying
the notions of topological entropy and the Artin-Masur zeta function.

If a GIFS is non-overlapping and has attractor components with nonempty interior, then
there are potentially infinitely many associated tilings. In dimensions d ≥ 2, however, GIFSs
with these properties are hard to come by. Section 9 concerns the existence of such self-similar
GIFSs. We conclude with a short exposition of an elegant construction, due to Rao, Wen and
Yang [31], of Rauzy type tilings using a dual GIFS.

3. Graph Iterated Function System
⟨sec:defs⟩

3.1. Tilings, Prototile Sets, and Rep-Sets. In this paper, a tile is a compact subset of Rd,
and a tiling of a set X ⊆ Rd is a set of pairwise non-overlapping tiles whose union is X. Non-
overlapping means that the intersection of any two distinct tiles has measure zero. Two tilings
T and T ′ are isometric or congruent if there is an isometry of Rd taking one onto the other, and
this is denoted T ∼= T ′. Two tilings T and T ′ are equal denoted T = T ′ if they are identical.

For a finite set Q of tiles, a Q-tiling T is a tiling of Rd in which each tile is congruent to a
tile in Q. The set Q is called a prototile set for T . A tile t that is congruent to q ∈ Q will be
referred to as a type q tile.

A rep-set is a finite multiset Q of tiles in Rd, each tiled by smaller similar copies of tiles in
Q. In the recreational literature, these are referred to as irreptiles. We allow multiple copies of
tiles to allow for the same shape to be tiled by similar copies of tiles in Q in different ways. For
example, a 2×2 square can be tiled by four 1×1 squares or the 2×2 square can be tiled by two
1 × 1 squares and a 1 × 2 rectangle. How a GIFS captures the notion of a rep-set is explained
in Remark 3.2.
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3.2. Directed Graphs and Adjacency Matrices. Let G = (V,E) be a finite, strongly con-
nected, directed graph (digraph) with vertex set V = {1, 2, . . . , n} and edge set E. A digraph
G is strongly connected if, for any two vertices i and j, there is a directed path from i to j. In
this paper, path always means a directed path, and a path can have repeated vertices and/or
edges. The digraph G may have loops and/or multiple edges. A strongly connected digraph G
will be called primitive if the greatest common divisor of the lengths of all closed paths of G is
1. Equivalently, a strongly connected digraph is primitive if and only if, for k sufficiently large,
there is a path of length k joining any two vertices.

For an edge e = (i, j), directed from vertex i to vertex j, the vertex i is denoted e− and the
the vertex j is denoted e+. Let Ei denote the set of all edges e such that e− = i, i.e., the set of
vertices directed out of vertex i.

Associated to a digraph G is its adjacency matrix M := M(G) = (mi,j), where mi,j is the
number of edges from vertex i to vertex j. It is well known that G is strongly connected if and
only if the matrix M is irreducible, and G is primitive if and only if M is primitive. A square
non-negative matrix M is primitive if there is an integer k ≥ 0 such that all entries of Mk are
positive, and M is irreducible if for all i, j there is a k = k(i, j) such that Mk

i,j > 0. Clearly a
primitive matrix is irreducible.

The spectral radius ofM(G), denoted ρ(M), is an eigenvalue ofM called the Perron-Frobenius
eigenvalue. The corresponding left and right eigenspaces are 1-dimensional, and ρ(M) has left
and right eigenvectors all of whose coordinates are positive.

3.3. Graph Directed Iterated Function System.

Definition 3.1 (GIFS). A graph directed iterated function system (GIFS) on Rd is a pair
F = (G,F ), where G = (V,E) is a strongly connected digraph and

F = {fe : e ∈ E},
where each function fe : Rd → Rd is a similarity transformation with λ(fe) < 1. . The function
fe can be considered as a label on the edge e.

Let H denote the set of nonempty compact subsets of Rd, and define F : Hn → Hn as follows.
If X = (X1, X2, . . . , Xn) ∈ Hn, then

F(X) =
(
F1(X), F2(X), . . . , Fn(X)

)
,

where, for i = 1, 2, . . . , n,

Fi(X) =
⋃

e∈Ei

fe(Xe+).

The following is a well-known result in the theory of graph iterated function systems, which is a
generalization of a fundamental result of Hutchinson [17]. In the theorem Fk denotes the k-fold
iteration of F.

⟨thm:john⟩
Theorem 3.1 ([26]). If (G,F ) is a GIFS such that each function in F is a contraction, then
there exists a unique A = (A1, A2, ..., An) ∈ Hn such that

(3.1) eq:aa A = F(A) and A = lim
k→∞

Fk(B)

independent of B ∈ Hn, where convergence is with respect to the Hausdorff metric on Hn.

⟨def:no⟩Definition 3.2 (Attractor). The set A is called the attractor of the GIFS, and
{A1, A2, ..., An} is its set of attractor components, each of which is compact. The first condition
in Equation (3.1) can be restated as

(3.2) eq:decomp Ai =
⋃

e∈Ei

fe(Ae+)

for i ∈ {1, 2, . . . , n}. If, in Equation (3.2), each distinct pair fe(Ae+), fe′(Ae′+) is non-overlapping,
then Ai is called non-overlapping. In this case, {fe(Ae+) : e ∈ Ei} is a tiling of Ai. If every
attractor component is non-overlapping, then the GIFS is called non-overlapping.
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Although generally not required of a GIFS (G,F ), from here on in this paper all function in
F are assumed to be similarity transformations. The scaling ratio of a similarity f : Rd → Rd is
denoted λ(f).

Remark 3.1. An ordinary iterated function system (IFS) is the special case of a GIFS whose
graph consists of a single vertex with loops and whose attractor consists of a single component.

⟨rem:MG⟩Remark 3.2 (Every rep-set is the attractor of a GIFS). FS ven a rep-set Q, let (G,F ) be the
GIFS where the vertices of G are the elements of Q. Each p ∈ Q is tiled by smaller similar
copies of tiles in Q. If one of those tiles is a smaller similar copy of p′ ∈ Q, let f(p,p′) ∈ F be a
similarity transformation taking p′ onto p. Then

p =
⋃

e∈Ep

fe(pe+),

in accordance with Equation (3.2). Conversely, if the attractor components of a GIFS (G,F )
have non-empty interior, the GIFS is non-overlapping, and the functions in F are similarities,
then the attractor A of (G,F ) is a rep-set.

3.4. Admissible Patch. It is assumed in this section that all GIFSs are non-overlapping and
that all components of the attractor have nonempty interior. Naturally associated to any GIFS
are finite patches of tiles that we call admissible patches. These are natural subdivisions of the
attractor components of the GIFS. For a GIFS F = (G,F ), let r be any vertex of G, referred to
as a root. Referring to Definition (3.2),

Wr(F) := {fe(Ae+) : e ∈ Er}

is a tiling of the attractor component Ar.

Definition 3.3 (Admissible Patch). A set Xr of finite directed paths in G starting at r is called
admissible if

(1) no proper subpath of a path in Xr lies in Xr, and
(2) if σ ∈ Xr and σ′ is any proper subpath of σ starting at vertex r, then σ′e is a subpath

(not necessarily proper) of a path in Xr for all edges e such that σ′+ = e−.

Applying Equation (3.2) recursively we arrive at the fact that

Wr(F , Xr) :=
{
fσ(Aσ+) : σ ∈ Xr

}
is a tiling of Ar. An admissible patch is any patch that is, a possibly scaled, copy of Wr(F , Xr)
for some GIFS F = (G,F ), some verrtex r of G, and some admissible set Xr of paths.

4. Self-Similar GIFS-Tiling
⟨sec:GT⟩

4.1. Notation. Denote by Σ∗ := Σ∗(G) the set of paths of finite length in a digraph G = (V,E)
and Σ := Σ(G) the set of all infinite paths. An infinite path has a starting vertex but no terminal
vertex. A path σ = e1 e2 · · · will be written as its ordered string of edges ei ∈ E, i = 1, 2 . . . .
The starting vertex of a path σ will be denoted σ−, and the terminal vertex of a finite path
by σ+. The length of a finite path σ, i.e., the number of edges, will be denoted |σ|. A path
consisting of a single vertex has length zero.

For σ = e1e2 · · · ∈ Σ let

σ|k = e1e2 · · · ek ∈ Σ∗,

and σ|0 the path that is just the vertex σ−. For any edge e in G, let←−e be the oppositely directed
edge.

Let F = (G,F ) be a GIFS. For any function fe ∈ F define

f←−e := (fe)
−1.
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Denote by
←−
G the digraph obtained from G by reversing the direction on all edges. Define←−

Σ ∗ :=
←−
Σ ∗(G) and

←−
Σ :=

←−
Σ(G) as the set of all finite and infinite paths, respectively, in

←−
G . For

σ = e1e2e3 · · · ek ∈ Σ∗, define

fσ := fe1 ◦ fe2 ◦ fe3 ◦ · · · ◦ fek .

For ←−σ =←−e1←−e2←−e3 · · ·←−ek ∈
←−
Σ ∗, let

f←−σ := f←−e1 ◦ f←−e2 ◦ f←−e3 ◦ · · · ◦ f←−ek = f−1e1 ◦ f
−1
e2 ◦ f

−1
e3 ◦ · · · ◦ f

−1
ek

.

4.2. The Parameter Space. Let F = (G,F ) be a GIFS. Any path
←−
θ ∈
←−
Σ will be referred to

as a parameter of F . To simplify notation, denote the set of perameters by

P = P(F) :=
←−
Σ .

Define a metric d on P by

d(←−σ ,←−ω ) =

{
0 if←−σ =←−ω
2−k otherwise, where k is the first integer such that←−σ k ̸=←−ω k

.

This makes (P, d) a compact metric space, which we call the parameter space of the self-similar

GIFS. A parameter
←−
θ ∈ P is eventually periodic if there exist

←−
θ 0,
←−
θ 1 ∈

←−
Σ ∗ such that

←−
θ =←−

θ 0
←−
θ 1
←−
θ 1
←−
θ 1 · · · .

4.3. GIFS-Tilings. According to Theorem 3.1, any GIFS whose functions are contractions has
an attractor. An issue, however, is that an attractor component that has empty interior cannot
serve as a tile. Even if the attractor components have non-empty interior, it may occur that the
GIFS is overlapping (Definition 3.2), resulting in overlap in a tiling obtained from the GIFS.
Therefore it is assumed in the following definition that all GIFSs are non-overlapping and that
the attractor components have nonempty iinterior.

⟨def:Tgifs⟩
Definition 4.1 (GIFS-Tiling). Given a GIFS F = (G,F ) and a parameter

←−
θ =

←−
θ 0
←−
θ 1
←−
θ 2 · · · ∈

P, let Xk be an admissible set of paths rooted at θ−k such that

(4.1) eq:nest {θk σ : σ ∈ Xk−1} ⊂ Xk for k = 1, 2, . . . .

Let X = X←−
θ
= {Xk, k = 1, 2, . . . }. Define a tiling T (F ,

←−
θ ,X ) as follows.

(4.2) eq:tiling

(patch of tiles) T (
←−
θ , k) = {f←−

θ |k(t) : t ∈W (F , Xk)}

(tiling) T (F ,
←−
θ ,X ) =

∞⋃
k=0

T (
←−
θ , k).

The tiling T (F ,
←−
θ ,X ) will be referred to as a GIFS-tiling or, more generally, an F-tiling.

Notation aside, the idea is simple. We are just blowing up admissible patches W (F , Xk)

along the vertices of the path
←−
θ that is the parameter. That these patches are nested, i.e,

T (
←−
θ , k) ⊂ T (

←−
θ , k + 1) follows from Equation 4.1. Their union gives the tiling T (F ,

←−
θ ).

4.4. Self-Similar GIFS-Tilings. GIFS-tilings are very general and can be quite varied and
irregular. Although a GIFS-tiling can have at most finitely many tile shapes up to similarilty, it
can have infinitely many tile shapes up to congruence. For example, there are GIFS-tilings of the
plane into squares of arbitrarily large size or arbitrarily small size. And there are GIFS-tilings of
the plane into squares of two sizes, but the small squares are at arbitrary positions in the tiling.
Definition 4.3 below places a strong restrictioin of the kinds of tilings in Definition 4.1.

Definition 4.2 (Self-Similar GIFS). Call a GIFS F = (G,F ) a self-similar GIFS if

(1) every function f ∈ F is a similarity transformation with λ(f) independent of f ∈ F , the
common value denoted λ(F) < 1;
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(2) F is non-overlapping and each component of the attractor of F has nonempty interior.

The set {A1, . . . , An} of attractor components of F will be called the prototile set of F , denoted
Q(F).

⟨def:TG⟩Definition 4.3 (Self-Similar GIFS-Tiling). Given a self-similar GIFS F , for each parameter
←−
θ ∈ P, the collection Y = {Yk : k ≥ 1} of admissible sets of paths

Yk = {σ ∈ Σ∗ : σ− = θ−k , |σ| = k},

satisfies inclusion property (4.1). In words, the path σ starts where the path
←−
θ |k ends. Referring

to Equations (4.2), let T (F ,
←−
θ ,Y) be the tiling for the above particular choice Y and the corre-

sponding admissible sets W (F , Yk), k = 1, 2, . . . , of patches. Since Y is completely determined

by the parameter
←−
θ , we may write T (F ,

←−
θ ) instead of T (F ,

←−
θ ,Y). The tiling T (F ,

←−
θ ) will be

called a self-similar GIFS-tiling and will be referred to as an F-tiling. If the self-similar GIFS

F is understood, we may write T (
←−
θ ) instead of T (F ,

←−
θ ).

Definition 4.4 (Tiling Space). The tiling space T = T(F) of a self-similar GIFS F is the set of
all F-tilings of Rd endowed with the following metric d:

d(T, T ′) = inf
{
ϵ : T and T ′ coincide on a patch covering B(1/ϵ)

}
.

The tiling map
T : P(F)→ T(F)

←−
θ 7→ T (F ,

←−
θ )

is a continuous map from the parameter space P(F) onto the tiling space T. For each self-similar
GIFS there are potentially uncountably many self-similar GIFS-tilings, one for each parameter,
although some, and possible all, may coincide.

Remark 4.1. Almost all self-similar GIFS-tilings fill the whole space Rd. More specifically, for

all θ in a dense subset of the parameter space P, the tiling T (F ,
←−
θ ) covers Rd [5]. There are

cases, however, where T (F ,
←−
θ ) tiles a subset of Rd. For example, consider the self-similar GIFS

(G,F ) on R, where G consists of a single vertex and two loops e1, e2 and F = {fe1 , fe2}, where
fe1(x) = (1/2)x, fe2(x) = (1/2)x+ 1/2, and

←−
θ =←−e 1

←−e 1 · · · . Then T (F ,
←−
θ ) tiles the half line

{x ∈ R : x ≥ 0}. We assume hereafter, unless stated otherwise, that self-similar GIFS-tiling
means a tiling of the whole Euclidean space. See also [19] for Kellendonk’s related notion of
“forcing the border of a supertile”.

Figure 5. A digraph of a GIFS and the digraph of the companion self-similar GIFS.
⟨fig:gg⟩

⟨ex:gb⟩Example 4.1 (Ammann Chair Tiling). We illustrate Definition 4.3 with the Ammann chair
tiling. The shape, called the A2 tile or sometimes the “golden bee”, was discovered by R.
Ammann in 1977 and is shown on the left in Figure 6. Figure 5 shows two digraphs. The
digraph on the left will be relevant in Section 6. Consider now only the digraph G on the right.
With s = 1/

√
τ , where τ = (1 +

√
5)/2 is the golden ratio, the functions are:

f1

(
x
y

)
=

(
0 −s
s 0

)(
x
y

)
+

(
s
0

)
, f2

(
x
y

)
=

(
s 0
0 −s

)(
x
y

)
+

(
0
1

)
, f3

(
x
y

)
=

(
s 0
0 s

)(
x
y

)
.



SELF-SIMILAR GIFS TILINGS OF EUCLIDEAN SPACE 9

Figure 6. Ammann chair tiling: prototiles, second level patch, self-similar
GIFS-tiling.

⟨fig:gg2⟩

The respective scaling ratios are λ(f1) = λ(f2) = λ(f3) = s. The two attractor components,
shown in orange at the left in Figure 6 have nonempty interior. The GIFS (G,F ) is non-

overlapping. Therefore F = (G, {f1, f2, f3}) is a self-similar GIFS. A patch T (
←−
θ , 2) for some

←−
θ ∈ P and part of larger patch of a self-similar GIFS-tiling T (F ,

←−
θ ) are shown at the right in

Figure 6.

5. Properties of Self-Similar GIFS Tilings
⟨sec:P⟩

Theorem 5.1 below lists nine properties of self-similar GIFS-tilings. Some of the proofs are
omitted because the methods are standard. Statement 3 follows immediatelu from Lemma 5.1.
The proofs of statements 4, 5, 6, and 7 are more involved and are included. We start with the
definitions of the concepts involved.

Definition 5.1 (Shift Map). The shift map S : P → P on the parameter space of a GIFS is

defined by (S
←−
θ )i = θi+1, i.e., S(e1e2e3 · · · ) = e2e3 · · · , and Sk denotes its kth iterate.

That certain tilings have a hierarchical structure has been known at least since Berger’s 1966
proof that his set of prototiles is aperiodic [7].

⟨def:h⟩Definition 5.2 (Hierarchy). A hierarchy for a self-similar GIFS-tiling T with prototile set Q is
a sequence T0, T1, T2, . . . of tilings such that T0 = T and, for all integers k ≥ 0, the following
properties hold:

(1) Tk is a tiling with prototile set {(1/λ)k p : p ∈ Q}, up to isometry.
(2) Every tile in Tk is contained in a tile of Tk+1.

Call the tiling Tk the kth level in the hierarchy of T . A self-similar GIFS F for which every
F-tiling has exactly one hierarchy is called uniquely hierarchical. The standard tiling of the
plane by squares is an example of a self-similar GIFS-tiling that has many hierarchies.

Definition 5.3 (Tile Frequencies). It has been long known that in any Penrose tiling there are
τ ≈ 1.618 times as many kites as darts; see [16]. In general, for a prototile p ∈ Q(F) define

Nk,θ and Nk,θ(p) as the number of tiles in the patch T (
←−
θ , k) and the number of tiles of type

p in T (
←−
θ , k), respectively. Letting Q = Q(F) = {p1, p2, . . . , pn}, define the frequency βθ(p) of

prototile p ∈ Q in tiling T (F ,
←−
θ ) and the frequence vector βθ(F) as

βθ(p) := lim
k→∞

Nk,θ(p)

Nk,θ
and βθ(F) :=

(
βθ(p1), βθ(p2), . . . , βθ(pn)

)
,

respectively.

A tiling T is repetitive, also called quasiperiodic, if, for every patch T0 of T , there is a real
number R such that every ball of radius R contains a patch congruent to T0.
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Call a self-similar GIFS F redundant if Wi(F) = Wj(F) for some vertices i ̸= j. Call a
self-similar GIFS F asymmetric if, for all vertices i, the only symmetry of Ai that preserves the
tiling of the admissible patch Wi(F) is the identity.

⟨lem:sr⟩Lemma 5.1. Let F be a GIFS on Rd such that all of its functions have common scaling ratio
and all of its attractor components have nonempty interior. Then F is non-overlapping if and
only if λ(F) = 1/ d

√
ρ, where ρ is the Perron-Frobenius eigenvalue of M(G).

Proof. Assume that λ(f) = 1/ d
√
ρ for all f ∈ F . Denote by xi the Lebesgue measure of the

attractor component Ai, i = 1, 2, . . . , n, of F , and let x = (x1, . . . , xn)
t, where t denotes the

transpose. The Lebesgue measure of fe(Ae+) is then (1/ρ)xi. If Ai is overlapping for some i,
then x < (1/ρ)Mx = x, a contradiction. Here the vector inequality x < y means that xi ≤ yi
for all i and xi < yi for at least one i.

Conversely, assume that F = (G,F ) is non-overlapping. Then M(λd x) = x, where λ := λ(F)
and M = M(G) is the adjacency matrix of G. Equivalently the eigen-equation Mx = (1/λd)x
holds. Since x is positive, it must be an eigenvector corresponding to ρ. Therefore λ(F) =
1/ρ. □

⟨thm:pp⟩Theorem 5.1. For a given self-similar GIFS F = (G,F ) on Rd with prototile set Q(F) and for

every pair
←−
θ ,
←−
θ ′ ∈ P(F) the following properties hold for the self-similar GIFS-tiling T (F ,

←−
θ ).

(1) Each tile in T (F ,
←−
θ ) is congruent to a tile in Q(F).

(2) If F is primitive, then a congruent copy of each tile in Q(F) occurs in T (F ,
←−
θ ).

(3) λ(F) = 1/ d
√
ρ(F), where ρ(F) is the Perron-Frobenius eigenvalue of the adjacency ma-

trix of G.

(4) βθ(F) is equal to the normalized (unit vector with respect to the 1-norm) positive left
eigenvector corresponding to the Perron-Frobenius eigenvalue of F , independent of the
parameter

←−
θ ∈ P.

(5) Every F-tiling T has a hierarchy T = T0, T1, T2, . . . , such that each Tk, k = 0, 1, 2, . . . , is

a self-similar GIFS-tiling. Moreover, Tk = f←−
θ |kT (F , S

k←−θ ) provides such a hierearchy.

(6) If Sk(
←−
θ ) = Sk(

←−
θ ′) for some k, then T (

←−
θ ) ∼= T (

←−
θ ′). Moreover, if F is uniquely

hierarchical, asymmetric and not redundant, then T (
←−
θ ) ∼= T (

←−
θ ′) if and only if Sk(

←−
θ ) =

Sk(
←−
θ ′) for some k.

(7) T (F ,
←−
θ ) is repetitive for all

←−
θ ∈ P.

(8) If F is uniquely hierarchical, tben every F-tiling is non-periodic.

(9) If F is uniquely hierarchical, asymmetric, and not redundant, then there are uncountable
many F-tilings up to congruence.

Remark 5.1 (Primitivity is needed in statement 2 of Theorem 5.1). The following is an example
of a self-similar GIFS that is not primitive for which a prototile does not appear in a self-similar
GIFS-tiling. Let F = (G,F ) be the 1-dimensional self-similar GIFS with digraph given by its
adjacency matrix M and F = {f1,2, f1,3, f2,1, f3,1} where

M =

0 1 1
1 0 0
1 0 0

 f1,2(x) =
x√
2

f1,3(x) =
x+ 1√

2

f2,1(x) = f3,1(x) =
x√
2
,

and fi,j denotes the function on the edge (i, j). The attractor components are intervals

{[0,
√
2], [0, 1], [0, 1]}, but T (F ,

←−
θ ) is a tiling of the real line by intervals of just length

√
2 if

←−
θ = 12 1 2 · · · .
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Example 5.1 (Tile Frequencies for the Ammann chair tiling of Example 4.1). The adjacency

matrix of the self-similar GIFS digraph is

(
1 1
1 0

)
. The Perron-Frobenius eigenvalue is τ =

(1 +
√
5)/2, the golden ratio. The normalized corresponding left eigenvector is (1/τ, 1/τ2).

Therefore, asymptotically about 61.80% of the tiles in an Ammann chair tiling are the large
prototile, and about 38.20% are the small prototile.

Proof of Properety 4. Denote the (i, j) entry of Mk by m
(k)
i,j , which is the number of paths in

the digraph of F of length k from vertex i t vertex j. For a fixed parameter
←−
θ , let i(k) = θ−k ,

i.e., the last vertex in the path
←−
θ |k. For ease of notation, let Nk = Nk,θ and Nk(p) = Nk,θ(p).

Referring to the Definition 4.3 of an F-tiling we have

Nk(pj) = m
(k)
i(k),j and Nk =

n∑
j=1

m
(k)
i(k),j .

Noting that Nk = ∥
(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
∥1 we have(Nk(p1)

Nk
,
Nk(p2)

Nk
, . . . ,

Nk(pn)

Nk

)
=

(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
∥
(
Nk(p1), Nk(p2), . . . , Nk(pn)

)
∥1

=
ei(k) ·Mk

∥ei(k) ·Mk∥1
.

A known consequence [27] of the Perron-Frobenius theorem, with Perron-Frobenius eigenvalue
ρ, is

lim
k→∞

Mk

ρk
= vt · w,

where v is the right and w is the left positive eigenvector of M corresponding to eigenvalue ρ
and normalized so that w · vt = 1. In fact, we may assume that ∥w∥1 = 1. For any matrix
B, let Bi denote the ith row of B. Then ei(k) · (M/ρ)k = [(M/ρ)k]i. As k → ∞, the sequence(
ei(k) · (M/ρ)k

)
of vectors gets close to the sequence of vectors whose terms are

ei(k) · (vt · w) = (ei(k) · vt) · w = ckw,

where ck is a constant depending on k that can take on at most n values. Upon normalization
we have

βθ(F) = lim
k→∞

ei(k) ·Mk

∥ei(k) ·Mk∥1
= lim

k→∞

ei(k) · (Mρ )k

∥ei(k) · (Mρ )k∥1
= w,

independent of the particular standard basis vector independ of the parameter
←−
θ . □

Proof of Property 5. The set of attractor components Q = {A1, A2, . . . , An} is a prototile set for
T . Every tile t ∈ Tk, as defined explicitly in statement 5 of Theorem 5.1 has the form

t := f←−
θ |k ◦ f

−1
θk+1
◦ · · · ◦ f−1θk+j

◦ fσ(Aσ+), where σ−1 = θ−j , |σ| = j − k.

Note that t is isometric to (1/λ)k(Aσ+). Therefore condition (1) in Definition 5.2 is satisfied.
It follows from the formula above for t and from Equation (3.2) that

t = f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj

◦ fσ
( ⋃

e∈Eσ+

fe(Ae+)
)

=
⋃{

f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj

◦ fσ ◦ fe(Ae+) : e ∈ Eσ+

}
⊂

⋃{
f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj

◦ fω(Aω+) : ω− = θk+j
−, |ω| = j − (k − 1)

}
.

Because each f←−
θ |k−1 ◦ f

−1
θk
◦ · · · ◦ f−1θj

◦ fω(Aω+) in the line above is a tile in Tk−1, each tile in

Tk is, in turn, tiled by a patch in Tk−1. This proves condition (2) in Definition 5.2. Therefore
T = T0, T1, T2, . . . is indeed a hierarchy. □
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Proof of Property 6. If Sk(
←−
θ ) = Sk(

←−
θ ′) for some k, then an isometry taking T (

←−
θ ) onto T (

←−
θ ′)

is f←−
θ ′|k ◦ (f←−θ |k)

−1.

In the other direction, we will show, under the conditions assumed in the statement, that if

two tilings T (
←−
θ ) and T (

←−
θ ′) are congruent, then there is an integer j such that Sj(

←−
θ ) = Sj(

←−
θ ′).

Assume that T (
←−
θ ) ∼= T (

←−
θ ′). Let t0 be an arbitrary tile in T0 = T (

←−
θ ) and t′0 the corresponding

tile in T ′0 = T (
←−
θ ′) under the isometry; call it h : Rd → Rd. In the hierarchy, let tk ∈ Tk(

←−
θ ) be

such that tk ⊂ tk+1 for all k ≥ 0; define t′k similarly.
Let j ≥ k be sufficiently large that t0 ∈ T (θ, j) and t′0 ∈ T (θ′, j). Because it is assumed that

F is uniqely hierarchical, the hierarchy must be the one provided in Theorem ??. Therefore, for
all j ≥ k ≥ 0, if t ∈ Tk and t′ ∈ Tk, then

tk = f←−
θ |jfσ(Aσ+) t′k = f←−

θ ′|jfω(Aω+),

where |σ| = j − k, σ− = (θj)
− and |ω| = j − k, ω− = (θ′j)

−. Let σ = σj−k σj−k−1 · · ·σ2 σ1

and ω = ωj−k ωj−k−1 · · ·ω2 ω1. Note that, for i = 1, 2, . . . , j − k, the function fσi
gives the

embedding of ti−1 into ti. The same is true for t′k. If h is an isometry that takes T (
←−
θ ) onto

T (
←−
θ ′), then h takes tk+1 onto t′k+1 and the tiling of tk+1 by a patch in Tk onto the tiling of

t′k+1 by a patch in T ′k. By the assumption of non-redundancy and asymmetry, it is the case that
σi = ωi, i = 1, 2, . . . , j − k.

Now take any integer J > j, so that

tk = f←−
θ |Jfσ(Aσ+) where σ = θJ θJ−1 · · · θj+1 σj−k σj−k−1 · · ·σ2 σ1

t′k = f←−
θ ′|Jfω(Aω+) where ω = θ′J θ′J−1 · · · θ′j+1 ωj−k ωj−k−1 · · ·ω2 ω1.

As above, we have θ′i = θi for all i > j. □

Proof of Property 7. We use Property 5 of Theorem 5.1 in this proof. Any patchX of an F-tiling
T is contained in patch T (

←−
θ , k) for some k. Given n ≥ 1, there exists a real number R such

that every ball of radius R contains a tile of Tn(
←−
θ ) = Tn(F ,

←−
θ ), the nth level of the hierarchy of

T (
←−
θ ) = T (F ,

←−
θ ). Therefore it suffices to show that there is an n such that every tile of Tn(

←−
θ )

contains an isometric copy of T (
←−
θ , k).

Let m be the greatest common divisor of all closed paths in G. We claim that there exists
an M such that if n ≥ M and n ≡ 0 (modm) the following holds: for any vertex v of G
there is a circuit through v of length n. To prove the claim, let C be a circuit that contains
every vertex of G. There are circuits C1, C2, . . . , Ck of lengths mq1,mq2, . . . ,mqk such that that
gcd(q1, q2, . . . , qk) = 1. An elementary result in number theory states there exists an N such

that if integer s ≥ N , then there exists positive integers a1, a2, . . . , ak such that
∑k

i=1 aiqi = s.
Therefore, by traversing C with detours around the circuits C1, C2, . . . , Ck sufficiently many
times, for any vertex v, there is a circuit containing v of length ms + |C| = m(s + |C|/m), an
integer multiple of m. Taking M = mN + |C|, the claim is proved.

Given k, we now show that there is an integer n such that every tile of Tn(
←−
θ ) contains an

isometric copy of T (
←−
θ , k). Let D denote the diameter of G, i.e., the greatest directed distance

between any two vertices. Let n = M + k + D, where M is as in the paragraph above. Let

u = θ−k , i.e., the last vertex of
←−
θ |k in

←−
Σ. Let K ≥ n and let w = θ−K . A tile t of Tn(

←−
θ ) by

definition has the form

t = f←−
θ |K ◦ fσ(Aσ+) where |σ| = K − n, σ− = θ+K .

Let v = σ+. We claim that there exists a path γ from v to u in G of length n− k. Assume that
the claim is true, and consider the patch of tiles

T = {f←−
θ |K ◦ fσ ◦ fγ ◦ fω(Aω+) : |ω| = k, ω− = γ+}.
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Since |
←−
θ |K| = |K| = (K − n) + (n − k) + k = |σ| + |γ| + |ω|, each tile in T is a tile in T (

←−
θ ).

Moreover, since γ+ = u, the tiling T is an isometric copy of T (
←−
θ , k). It now only remains to

prove the claim.
Because G is strongly connected, there is a simple (no crossing) path γ̂ from v to u of length

at most D, and also a simple path δ from u to w. The concatenation of δ and the path
θK θk−1 · · · θk+1 form a cycle which implies that (K − k) + |δ| ≡ 0 (modm). Similarly, the
concatenation of the paths γ̂, δ and σ form a cycle which implies that (K − n) + |γ̂| + |δ| ≡
0 (modm). The two congruences yields n− k− |γ̂| ≡ 0 (modm). Therefore, by the definition of
M , there is a circuit β containing vertex v such that |β| = n−k−|γ̂| if n−k−|γ̂| ≥M = n−k−D,
which is equivalent to D ≥ |γ̂|, which is clearly true. Taking γ = β γ̂ we have

|γ| = |β|+ |γ̂| = (n− k − |γ̂|) + |γ̂| = n− k. □

6. Every GIFS-Based Tiling is a Self-Similar GIFS-Tiling
⟨sec:J⟩

The main result of this section is as follows.

⟨thm:F⟩
Theorem 6.1. Let F be a primitive GIFS with no two attractor components that are similar
but not congruent. Any F-tiling T (Definition 4.1) whose prototile set is the set of components
of the attractor of F must be a self-similar F-tiling (Definition 4.3).

Remark 6.1. The necessity of assumeing F primitive is explained in Remark 6.2 below. The
reason for the assumption on the components of the attractor of F is as follows. Assume that
there exist attractor components p, p′ of self-similar GIFS F that are similar but not congruent
with λ(p) > λ(p′). Assume further that T is a self-similar F-tiling as in Definition 4.3. In T it
is possible that there exists a (possibly infinite) set T ′ of tiles congruent to p in the first level
hierarcy of T . Take any arbitrary subset T ′′ of tiles in T ′ and remove from each tile in T ′′ the
tiles in T that it contains. What results is still an F-tiling, but a type of tiling that we eliminate
from consideration due to its arbitrary nature.

The proof of Theorem 6.1 hinges on the concept of commensurability and on several lemmas.
The notion of commensurability in the context of tiling arose as early as 1976 in a paper of
Kakutani [18] and in Sadun’s 1998 generalization of the pinwheel tiling [34].

Definition 6.1 (Commensurable GIFS). Let F be a set of similarity transformations from Rd

onto Rd. For f, g ∈ F , call f and g commensurable if

log
(
λ(f)

)
log

(
λ(g)

) ∈ Q.

Call F commensurable if every pair of functions in F is commensurable, and call a GIFS (G,F )
commensurable if F is commensurable.

⟨prop:C⟩
Proposition 6.1. A set F of similarities is commensurable if and only if there is a real number
s > 0 and a set {bf ∈ N : f ∈ F} of positive integers such that λ(f) = sbf for f ∈ F .

Proof. The existence of a real s > 0 and a set {bf ∈ N : f ∈ F} of positive integers such that
λ(f) = sbf for all f ∈ F clearly implies that F is commensurable.

In the other direction, let

αf = logs
(
λ(f)

)
so that λ(f) = sαf .

Let f0 ∈ F . By the assumption that F is commensurable, there is a d ∈ N and bf ∈ N for all

f ∈ F such that αf/αf0 = bf/d. Let s
′ = s

αf0
d . Then, for all f ∈ F ,

λ(f) = sαf =
(
s

αf0
d

)bf
= (s′)bf . □
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Let G be a strongly connected digraph whose edges are colored using q colors, q ≥ 2. For an
admissible set Xr of paths rooted at a vertex r of G, call two paths equivalent if they contain
the same number of edges of each color, and let |Xr|≡ denote the number of equivalence classes.

⟨lem:inf⟩Lemma 6.1. Let G be a strongly connected, primitive digraph whose edges are colored using q
colors, q ≥ 2. For every integer N there exists an M such that, if Xr is an admissible set of
paths rooted at vertex r with |Xr| ≥M , then |Xr|≡ ≥ N .

Proof. If the lemma holds for every 2-coloring, then it holds for every q-coloring. To see this,
let the colors be {1, 2, . . . , q}. For all edges colored 3, 4, . . . q, change the colors to color 2. The
number |Xr| does not change, and |Xr|≡ cannot increase.

We now prove the result for every 2-coloring (say red and blue) of its edge set. By way of
contradiction assume that there is a 2-coloring, a vertex r, a natural number N , and a sequence
(Xk)k≥1 of admissible paths rooted at r such that

(1) |Xk| → ∞ as k →∞, and
(2) |Xk|≡ ≤ N .

In particular, from (2) it follows that there must be a bound m, independent of k, such that
the set of lengths satisfies |{|σ| : σ ∈ Xk}| ≤ m. We claim that there is a sequence (Yk) of
admissible sets of paths satisfying properties (1) and (2) above and such that, for each k, all
paths in Yk have the same length. To prove the claim, denote the lengths of paths in Xk by
l1(k) > l2(k) > · · · > lm(k). We now prove the claim by induction on m, the number of distinct
lengths of paths in the Xk. The claim is triviially true for m = 1. Assume it true for m− 1 and
let the sequence (Xk)k≥1 have paths of m different lengths.

Let Yk be the set of paths obtained from Xk by replacing (pruning) each path σ of length
l1(k) by its subpath σ′ rooted at r and having length l2. Note that Yk remains a set of admissible
paths. We will show that the sequence (Yk) of sets of admissible paths satisfies conditions (1)
and (2). This will complete the induction argument because Yk has one less path length than
Xk.

Concerning condition (1), it follows from the definition of an admissible set of paths that, if
v is the second to last vertex of σ and v′ is the last vertex of σ′, then the outdegree in G of
all vertices on the path from v′ to v, including v′ but not including v, have outdegree 1. This
implies that |Yk| ≤ |Xk|/∆, where ∆ is the maximum outdegree of vertices in G. Therefore
|Yk| → ∞ as k →∞.

Concerning condition (2), first note that there cannot exist a cycle C in G such that the
outdegree of every vertex on C is 1. Otherwise there would exist an attractor component with
empty interior, which we are assuming in this section is not the case. Therefore, the longest
path γ such that every vertex, except the last, has outdegree 1 is less than n, the order of
G. Assume that, in going from Xk to Yk we prune just one prune just one length at a time,
obtaining a sequence X+k = X0

k , X
1
k , . . . , X

q
k = Yk, where q = l1(k)− l1(k) < n. Since adjoining

a single edge to a path can change the number of red edges (or blue edges) by at most 1, we
have |Xi+1

k |≡ ≤ 2|Xi
k|≡. Therefore |Yk|≡ ≤ 2n|Yk|≡ ≤ 2nN .

It remains to prove a contradiction in the case that, for each k, all paths in Yk have the same
length n(k). If all paths in Yk have the same length, then by the definition of admissible path, Yk

is the set of all paths of length n(k) rooted at vertex r in G. There exists a closed path c1 in G
containing r that is not monochromatic (recall that both red and blue are used in the coloring).
Let L1 denote the length of c1. By primitivity of G, there exists another closed path c2 in G
containing r whose length L2 is relatively prime to L1. Any non-negative integer solution x, y
to the equation

xL1 + yL2 = n(k)

provides a path ck(x, y) in Yk obtained by winding x times around c1 followed by winding y
times around c2. Call such a path a (c1, c2)-path. For clarity we omit the index k in what
follows, i.e., k fixed and, for example, n = n(k). If n is sufficiently large, then from elementary
number theory there are positive integers x0, y0 such that x0L1 + y0L2 = n. It follows that
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x = x0−jL2, y = y0+jL1 is also a solution for any j ∈ Z. Since we seek non-negative solutions,
the condition

x0

L2
≥ j ≥ − y0

L1

must be satisfied, which implies that there are⌊ x0

L2
+

y0
L1

⌋
=

⌊ n

L1L2

⌋
−−−−→
n→∞

∞

solutions. In other words, the number of (c1, c2)-paths in Yk goes to infinity with k.
Denote by a1, a2 the number of red edges on L1 and L2, respectively. Two of the (c1, c2)-

paths in Yk are in the same color equivalence class if and only if they contain the same number
of red edges. Counting the number of red edges on the path corresponding to solution x, y, i.e.,
to each valid j, we obtain xa1 + ya2 = (x0 − ja2)a1 + (y0 + ja1)a2 red edges. Therefore, two
(c1, c2)-paths, which we denote by c(i) and d(j), are in the same equivalence class if and only if

(x0 − ja2)a1 + (y0 + ja1)a2 = (x0 − ia2)a1 + (y0 + ia1)a2

which simplifies to (i − j)(L1a2 − L2a1) = 0. If i = j, then c(i) = c(j). That L1a2 = L2a1 is
impossible since L1 and L2 are relatively prime and 0 < a1 < L1. We have shown that (c1, c2)-
path in Yk is in its own equivalence class. Since the number of (c1, c2)-path in Yk goes to infinity
with k, we have the desired contradiction to condition (2). □

⟨lem:nc⟩Lemma 6.2. Let F be a primitive GIFS. If there exists a tiling T of Rd (not necessarily a
GIFS-tiling) having a finite prototile set and containing admissible F-patches of arbitrary large
cardinality, then F must be commensurable.

Proof. For a set W of tiles, let |W | denote the cardinality of W , and let |W |≡ denote the number
of tiles up to congruence. Because it is assumed that T has a finite prototile set and contains
admissible (scaled) F-patches of arbitrary large cardinality, there must be a sequence {Wr(Xk)}
of (unscaled) admissible patches such that |Wr(Xk)|≡ is bounded but limk→∞ |Wr(Xk)| =∞.

By way of contradiction, assume that F is not commensurable. We will show that, for every
N there exists a k0 such that |Wr(Xk0)|≡ ≥ N , a contradiction.

Let λ1, λ2, . . . , λm be the scaling ratios of the functions in F . Let s = λ1, and define
αi, i = 1, 2, . . . ,m, by λi = sαi . Note that α1 = 1. The commensurable relation is an equivalence
relation. Partition the set {α1, . . . , αm} into equivalence classes, and call two edges of G equiv-
alent if the corresponding α′s are equivalent. Let the number of equivalence classes be q, which
is at least 2 by Proposition 6.1. Color the edges of G in q colors according to their equivalence
class. For an edge e, denote the color by α(e). For a path σ ∈ Σ∗(G), define α(σ) :=

∑
e∈σ α(e).

Let σ, ω ∈ Xk. Because a set of pairwise incommensurable numbers are linearly independent
over Q, we have that α(σ) = α(ω) if and only if, for every color, the number of occurences of
that color in σ equals the the number of occurences of that color in ω. Now λ(fσ) = λ(fω) if
and only if α(σ) = α(ω) if and only if σ and ω are in the same color equivalence class. Because
|Xk| = |Wr(Xk)| we have limk→∞ |Xk| = ∞. Call λ(fσ) the scaling ratio of the path σ. By
Lemma 6.1, for every N there exists a k0 such that if k ≥ k0, then |Xk|≡ ≥ N . Therefore,
for every N there exists a k0 such that if k ≥ k0, then there exists at least N paths in Xk

with pairwise different scaling ratios λ. For σ ∈ Xk, there are at most n (order of digraph G)
possibilities for σ+, which implies that, for k ≥ k0, there are at least N/n distinct tiles fσ(Aσ+)
in Wk(Xk), i.e., |Wr(Xk0)|≡ ≥ N/n. □

⟨rem:prim⟩Remark 6.2 (Primitivity in Theorem 6.2 is necessary). The following is a counterexample to
Lemma 6.2 if the assumption of primitivity is removed. Consider the GIFS F = (G,F ) on R,
where G is the graph consisting of two vertices r, r′, with edges e1, e2 from r to r′ and edges
e3, e4 from r′ to r. Note that G is not primitive; the lengths of all closed paths are divisible by 2.
Let F = {fe1 , fe2 , fe3 , fe4} where fe1(x) = 3/4x, fe2(x) = 3/4x+ 1/2, fe3(x) = 1/3x, fe4(x) =
1/3x+1/3. The attractor components of F are the intervals Ar = [0, 1], Ar′ = [0, 2/3]. Note that
the scaling ratios 3/4 and 1/3 are not commensurable; thus F is not commensurable. Let Xr(k)
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be the set of all paths in G rooted at r of length 2k; this set of paths is admissible. It is routine
to check that the admissible patch W (F , Xr(k)) consists of the interval [0, 4k] subdivided into
4k unit intervals. Let T be the tiling of the line by unit intervals. Thus T contains admissible
patches of arbitrary large cardinality.

⟨def:companion⟩Definition 6.2 (Companion GIFS). Let F = (G,F ) be a commensurable GIFS. By Proposi-
tion 6.1 there is an s > 0 and a set {ae ∈ N : e ∈ E} of positive integers associated with each
edge e ∈ E of G such that λ(fe) = sae for all e ∈ E. Attach the label ae to each edge of G. Con-
stuct a new GIFS F ′ = (G′, F ′), called the companion of F , as follows. To obtain the graph G′,
consider each edge e = (u, v) of G with ae > 1. Replace e by a path σ(e) := e1e2 · · · eae

from u
to v. Note that no vertex of G has been removed. Also note that G′ is strongly connected if and
only if G is strongly connected. It is not hard to see that there exist functions fe1 , fe2 , . . . , feae

on the respective new edges e1, e2, . . . , eae
such that λ(fei) = s for i = 1, 2, . . . , ae and therefore

fσ(e) = fe. The graph G′ and function set F ′ is the result of the above alterations for all edges
e with ae > 1.

Example 6.1 (Companion GIFS). On the left in Figure 5 is the digraph of a GIFS F = (G,F )
where G has one vertex and two loops and F = {g1, g2}, where

g1

(
x
y

)
=

(
0 −s
s 0

)(
x
y

)
+

(
s
0

)
, g2

(
x
y

)
=

(
s2 0
0 −s2

)(
x
y

)
+

(
0
1

)
,

with s = 1/
√
τ , where τ is the golden ratio. By Proposition 6.1, F is commensurable, the scaling

ratios being λ(g1) = s, λ(g2) = s2. The attractor is the Ammann chair tile shown at the left
in Figure 6 (either orange polygon). Let F ′ = (G′, F ), where G′ is the graph on the right in
Figure 5 and F ′ = {f1, f2, f3} is as given in Example 4.1. This is the companion of F . The
scaling ratios are equal: λ(f1) = λ(f2) = λ(f3) = s; F is a self-similar GIFS. The two attractor
components of F ′ are the polygons in orange at the left in Figure 6. The self-similar GIFS F ′

is the companion of the GIFS F . Every F-tiling T (
←−
θ ) with prototile set consisting of the two

orange polygons on the left in Figure 6 is also a self-similar F ′-tiling T (
←−
θ ′) for an appropriate

parameter
←−
θ ′ as constructed in the proof of Lemma 6.3.

⟨lem:adm⟩Lemma 6.3. The companion GIFS F ′ = (G′, F ′) of a commensurable GIFS F = (G,F ) satisfies
the following properties:

(1) F ′ is a self-similar GIFS, and
(2) every F-tiling is a F ′-tiling.

Proof. Concerning statement (1) and referring to Definition 6.2, λ(fe) = s for all edges in G′.
Therefore λ(F ′) = s.

Concerning statement (2), denote the set of vertices of G by {1, 2, . . . , n} and the set of
corresponding attractor components by {A1, A2, . . . , An}. Each edge e = (i, j) of G with ae > 1
is replaced in G′ by a path whose successive vertices we denote by u = u0, u1, u2, . . . , uk = v.
Note that the outdegree of ui is 1 for i = 0, 1, 2, . . . , k − 1. The sucsessive edges are e1 =
(u, u1) = (u0, u1), e2 = (u1, u2), . . . , ek = (uk−1, uk) = (uk−1, v). It is routine to check that
in F ′, the attractor component of all vertices from G remain the same, namely A′i = Ai for
i = 1, 2, . . . , n. The attractor component A′ui

of each new vertex is defined recursively by
A′uk

= Auk
and A′ui

= fei(A
′
ui+1

) for i = k− 1, k− 2, . . . , 1. Note that the attractor components

A′u1
, A′u2

, . . . , A′uk
= Av are all similar, each scaled down from its successor by a factor s.

Let
←−
θ ∈ P(F) and X = {X1, X2, . . . } a corresponding collection of admissible sest of paths

for k = 1, 2, . . . . Let T (F ,
←−
θ ,X ) be the associated GIFS-tiling. Define

←−
θ
′
∈ P(F ′) by replacing

edges e in
←−
θ with ae > 1 by paths as in the definition of the companion GIFS. On vertices u of

←−
θ
′
that correspond to vertices of

←−
θ retain the admissible set Xu of paths. On each new vertex

ui, 1 ≤ i < k, define the admissible set Xui
of paths by ei ei−1, . . . e1 followed by the admissible

set Xu of paths at u. It is now routine that statement (2) of Lemma 6.3 holds. □
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Proof of Theorem 6.1. Theorem 6.1 follows from Lemma 6.2 and Lemma 6.3 and the following.
For a GIFS-tiling to be a self-similar GIFS-tiling it is required in Definition 4.3 that if σ ∈ Y (k),
then |σ| = k, i.e., the length of the admissible path σ must equal the length k of the initial path

of the parameter
←−
θ . This is insursed by the assumption that no two attractor components of

the original GIFS are similar but not congruent. Those attractor components introduced in a
companion GIFS are not relevant since the introduced vertices of the graph G of the GIFS have
outdegree 1. □

7. Every Globally Self-Similar Tiling is a Self-Similar GIFS-Tiling
⟨sec:GSS⟩

This section concerns the self-similar tilings introduced by Thurston [39] in the context of
tilings by translation of a set of prototiles. Basically, a self-similar tiling T is a tiling of Rd for
which there exists a similarity transformation ϕ : Rd → Rd with scaling ratio λ(ϕ) > 1 such
that, for all t ∈ T , the large tile ϕ(t) is tiled, in turn, by tiles in T . The following example shows
that an additional requirement is needed in a formal definition of self-similar.

⟨ex:ss⟩Example 7.1. Let Q consists of two intervals on the real line, I1 of length 1 and I2 of length
2. Let T be any tiling of R with prototile set Q such that

(1) the origin is located at an endpoint of a tile, and
(2) the endpoints of each tile of length 2 are located at even coordinates on R.

Let ϕ(x) = 2x for all x ∈ R. Then for every tile t ∈ T , its image ϕ(t) is tiled by tiles in T for
all t ∈ T . The issue is that T can be quite random. For example, construct a tiling as follows.
Moving along the positive real line starting at the origin, place a random number of tiles of
length 2. Follow that by a random even number of tiles of length 1, and repeat in this fashion
moving in the positive direction; similarly on the negative real line.

To avoid the randomness in Example 7.1 and similar examples and to extend from tilings
by translation to tilings by isometric images of the prototiles, we will require that, for any tile
t ∈ T , the tiling of ϕ(t) by tiles in T depends uniquely on the prototile type of t. To impose this
requirement rigorously requires additional notation.

Definition 7.1 (Induced Tiling). Let T be a tiling of Rd with prototile multiset Q, and let
ϕ : Rd → Rd be a similarity with scaling ratio λ(ϕ) > 1. We allow Q to be a multiset to allow
for multiple ways for ϕ(p), p ∈ Q, to be tiled. For each p ∈ Q, let Tp be a tiling of ϕ(p) by
tiles in Q. Call the set

{
Tp : p ∈ Q

}
of patches a ϕ-tiling rule. Let H := {ht : t ∈ T} be a

set of isometries, called tiling isometries, such that t = ht(p), where p ∈ Q is the type of tile
t ∈ T . If every p ∈ Q has trivial symmetry group, then H is uniquely determined. This is the
case, for example, in the definition of self-similar in [20, 39] where the tilings are by copies of
the prototiles by translation rather than by isometry as is the case here.

For each t ∈ T , the isometry ĥt := ϕht ϕ
−1 maps ϕ(p) onto ϕ(t). Now

ϕ(t) = ϕ
(
ht(p)

)
= ĥt ϕ(p) =

⋃
q∈Tp

ĥt(q).

Note that p := pt in the equation above depends on t. Given the tiling T and tile t ∈ T , we now
obtain the induced tiling of ϕ(t) and the induced tiling of T defined by

Tϕ(t) :=
{
ĥt(q) : q ∈ Tpt

}
and Tϕ :=

⋃
t∈T

Tt.

The following definition is basically that of Thurston and Kenyon [20], removing the restriction
that the isometries in H be translations.

Definition 7.2 (Global Self-Similarity). Given a prototile set Q, a Q-tiling T of Rd is globally
self-similar if there is a similarity ϕ, a ϕ-tiling rule, and a set H of tiling isometries such that
Tϕ = T . In particular, the image ϕ(t) is tiled by tiles in T for all t ∈ T .
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Call a similarity transformation ϕ proper with respect to a tiling T if the fixed point of ϕ lies
in the interior of a tile. As shown in Example 7.1 below, Theorem 7.1 may fail without this
condition.

⟨thm:Gtiling⟩
Theorem 7.1. Every globally self-similar tiling with proper self-similarity ϕ is a sefl-simlar
GIFS-tiling.

Proof. Given a self-similar tiling T , define a self-similar GIFS F(T ) = (G,F ) as follows. The
vertex set of G is Q := Q(F). The edge set E of G is defined by the ϕ-rule as follows. The
ϕ-tiling rule can be expressed as

(7.1) eq:c1 ϕ(p) =
⋃

q∈Tp

hp,q(q)

for some isometries hp,q. In G add an edge e directed from vertex p to vertex q and let fe =
ϕ−1hp,q. Note that λ(fe) = 1/λ(ϕ) < 1 for all e ∈ E. Equation (7.1) then becomes

p =
⋃

e∈Ep

fe(pe+),

corresponding to Equation (3.2) in the definition of a GIFS attractor. Take F = {fe : e ∈ E}.
Now F(T ) = (G,F ) is a self-similar GIFS with scaling ratio 1/λ(ϕ). Note that the prototiles
of Q are isometric copies of the attractor components of F(T ). It remains to shown that there

exists a
←−
θ ∈
←−
Σ such that T = T (

←−
θ ).

Let t0 be the tile in the self-similar tiling T that contains the fixed point O of ϕ in its
interior. If t0 is of type p ∈ Q, then there is no loss of generality in assuming that t0 = p,
and consequently there is an edge (loop) e in G from p to p labeled fe = ϕ−1. Consider

the parameter
←−
θ := e e e · · · ∈

←−
Σ that winds infinitely many times around the loop e. Then

f←−
θ |k := fe ◦ fe ◦ · · · ◦ fe = ϕ−k for all non-negative integers k. We will show that T = T (

←−
θ ).

Let H be a set of tiling isometries for T such that Tθ = T . We claim that there a set
H ′ = {h′t : t ∈ T} of tiling isometries such that each h′t(pt) = ht(pt) for all t ∈ T , and each
h′t ∈ H ′ has the form

(7.2) eq:proof0 h′t = ϕk ◦ fσ,

where σ ∈
←−
Σ ∗ and |σ| = k. If this is the case, then

t = (ϕk ◦ fσ)(p) ∈ T (
←−
θ , k),

where p = pσ+ ∈ Q. This is exactly as in Equation (4.2) in Definition (4.1), showing that T is
an F-tiling and completing the proof.

It only remains to prove the claim. Since the fixed point O lies interior to t0, any tile t ∈ T is
contained in Xk := ϕk(t0) for some integer k. Note that the sets Xk are nested. The existence
of such a set H ′ of tiling isometries of the form in Equation (7.2) is proved by induction on
k. If t ∈ X1 = ϕ(t0) = ϕ(p), then by Equation (7.1) we have t = hp,p1

(p1) = ϕ fe(p1) for an
edge e directed from p to p1, where p1 is the type of tile t. Take h′t = hp,p1

= ϕ fe1 , which is
of the form in Equation (7.2). Assume that h′t has been defined in the form of Equation (7.2)
for all t ∈ Xk, and let t′ ∈ Xk+1. Then t′ ∈ ϕ(t) for some t ∈ Xk, where, by the induction
hypothesis, h′t = ϕk ◦ fσ holds, where |σ| = k and σ is a path from p to pt. By the requirement

that Tϕ = T we have t′ = ĥt(q), where q ∈ Tϕ(pt) is the type of tile t′, i.e., q = pt′ . By the tiling

rule q = hpt,pt′ (pt′) = (ϕ−1 ◦ fe)(pe+), where e is directed from pt to pt′ . Therefore

t′ = ĥt(q) = t′ =
(
ϕht (ϕ)

−1)(ϕ fe(pe+)
)
=

(
ϕh′t (ϕ)

−1)(ϕ fe(pe+)
)

= ϕ
(
ϕk ◦ fσ

)
fe(pe+) = ϕk+1 ◦ fσ′(pt′) = ϕk+1 ◦ fσ′(Aσ′+),

where σ′ = σ e. □
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⟨ex:quarters⟩
Remark 7.1 (Theorem 7.1 may not hold when the self-similarity is not proper). For the Am-
mann chair self-similar GIFS (G,F ) in Example 4.1, T := T (←−e 1

←−e 1, · · · ) tiles the first quandrant
of the plane. The union of T and copies of T obtained by reflected in the x and y-axes and
by rotation by π about the origin tiles the plane and is self-similar but is not a self-similar
GIFS-tiling.

Remark 7.2. In [20], it is part of the definition of a self-similar tiling T that T be repeti-
tive. That every self-similar tiling with a proper self-similarity must be repetitive follows from
Theorem 7.1 and statement (7) of Theorem 5.1.

⟨thm:R⟩
Theorem 7.2. For a self-simlar GIFS-tiling T (F ,

←−
θ ), if the parameter

←−
θ is eventually periodic,

then T (F ,
←−
θ ) is globally self-similar.

Proof. We must produce a similarity ϕ, a ϕ-tiling rule, and a set H of tiling isometries such that

Tϕ = T . Since
←−
θ is eventually periodic, there exist

←−
θ0 ,
←−
θ1 ∈

←−
Σ ∗ such that

←−
θ =

←−
θ 0
←−
θ 1
←−
θ 1
←−
θ 1 · · · .

Let ϕ = f←−
θ 0
◦f←−

θ 1
◦(f←−

θ 0
)−1, which is a similarity. For t ∈ T (F ,

←−
θ ) there is a least integer k such

that t ∈ T (
←−
θ , |
←−
θ 0|+k|

←−
θ 1|), in which case t = f←−

θ 0
◦ (f←−

θ 1
)k ◦ fσ(A+

σ ) for an appropriate σ ∈ Σ∗

with |σ| = k + 1. Let ht = f←−
θ 0
◦ (f←−

θ 1
)k ◦ fσ and H = {ht : t ∈ T} the set of tiling isometries.

Since each prototile (attractor component) p is tiled by {fe(pe+) : e ∈ Ep}, the ϕ-tiling rule is
taken to be Tϕ(p) = {ϕ ◦ fe(pe+) : e ∈ Ep : e ∈ Ep}. Now an arbitrary tile in the induced tiling
Tϕ is of the form

t = ĥt ϕ fe(pe+) = ϕht ϕ
−1 ϕ fe(pe+) = ϕ f←−

θ 0
(f←−

θ 1
)k σ ϕ fe(pe+)

= f←−
θ 0

(f←−
θ 1

)k+1 σ ϕ fe(pe+) = f←−
θ 0

(f←−
θ 1

)k+1 σ′(pσ′+),

where σ′ = σε. The last expression in the equality is again a tile in T (F ,
←−
θ ). □

⟨thm:closure⟩Theorem 7.3. For a given self-similalr GIFS F , the set of globally self-similar F-tilings is
dense in the tiling space T(F).

Proof. Let T = T (F ,
←−
θ ) ∈ T(F) be given. Let

←−
θ (k) ∈ P be chosen to have the property that

θ(k) is eventually periodic and such that the first k edges of
←−
θ (k) and

←−
θ are the same. By the

continuity of the tiling map T , it follows from limk→∞
←−
θ (k) =

←−
θ that limk→∞ T

(
F ,
←−
θ (k)

)
=

T (F ,
←−
θ ) = T . Because T

(
F ,
←−
θ (k)

)
is self-similar by Theorem 7.2, the tiling T is in the closure

of the set of self-similar F-tilings. □

8. A GIFS Tiling Dynamical System
⟨sec:DS⟩

For a self-similar GIFS F , two dynamical systems are considered in this section. One is (T, H),
the action H : T(F) → T(F) on the tiling space P of F defined as follows. For a self-similar

F-tiling T = T (F ,
←−
θ ) ∈ T with parameter

←−
θ =

←−
θ 1
←−
θ 2 · · · ∈ P(F), let T = T0, T1, T2, . . .

denote its hierarchy and let
H(T ) = fθ1(T1)

for all T ∈ T. In other words, H is a map that takes a self-similar GIFS-tiling to a scaled down
tiling at the next level in its hierarchy.

Throughout this section it will be assumed that all self-similar GIFSs are non-redundant,
asymmetric and uniquely hierarchical. It will also be assumed, without loss of generality, that
the origin is contained in the interior of each attractor component and, if two distinct attractor
components are congruent, then they are placed so as not to coincide. In this case it can be shown,
similarly to Property 6 in Theorem 5.1, that if F is a uniquely hierarchical, asymmetric and not

redundant, self-similar GIFS and
←−
θ and

←−
θ ′ are two parameters, then T (F ,

←−
θ ) = T (F ,

←−
θ ′) if

and only if
←−
θ =

←−
θ ′.
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⟨thm:TC⟩Theorem 8.1. For a self-similar GIFS the two dynamical systems (P, S) and (T, H) are topo-
logically conjugate discrete dynamical systems, the topological conjugation being the tiling map
T . As a commuting diagram we have

S
P → P

T
y y T
T → T

H

Proof. By the comments prior to the statement of the theorem, the tiling map T is bijective. A
bijective continuous map on a metric space is a homeomorphism. Property 5 of Theorem 5.1
implies that the diagram commutes:

H
(
T (F ,

←−
θ )

)
= fθ1T1(F ,

←−
θ ) = fθ1f

−1
θ1

T (F , S
←−
θ ) = T (F , S

←−
θ ). □

8.1. Application 1. Let F be a self-similar GIFS. Throughout this section, it is assumed that
F is non-redundant, asymmetric and uniquely hierarchical, or at least that the tiling map T
induces a topological conjugacy as in the diagram above.

Let pk := pk(F) denote the number of F-tilings T such that Hk(T ) = T . In other words, pk
is the number of F-tilings such that its nth-level hierarchical tiling Tk, scaled down by a factor
(f←−

θ |k)
−1, is equal to the original tiling T . In this sense, pk counts the number of F-tilings whose

hierarchy T = T0, T1, T2 . . . cycles with period k.

⟨thm:zeta⟩Theorem 8.2. For a self-similar GIFS F as above, a generating function for the sequence
{pk}∞n=1 is given by

∞∑
k=1

pk
k

xk = log
( 1

det(I − xM)

)
,

where M is the adjacency matrix of the digraph of F .

Proof. An element in the parameter space P of F can be viewed as a one sided word in the

alphabet V , where V is the set of vertices of the digraph
←−
G . The parameter space P is clearly

shift invariant. In the terminology of symbolic dynamics, the dynamical system (P, S) is a 1-step
shift of finite type. This means that there is a finite set W of ordered pairs of elements of V ,

i.e. a set of edges in the complete digraph on V , such that P consists of all words (paths in
←−
G)

that do not contain an ordered pair (edge) in W .
The Artin-Mazur zeta function of a dynamical system (X, g) is defined by

ζ(x) = exp
( ∞∑

k=1

qk
k

xk
)
,

where qk is the number of points of period n of X under the action of g. (Note that a point
of period n is also a point of period any multiple of n.) For our shift of finite type (P, S), the
number qk is thus the number of parameters

←−
θ such that Sk←−θ =

←−
θ , equivalently the number

of closed paths in
←−
G of length k. The zeta function is a well-known invariant of topological

conjugacy and, for a shift of finite type, can be computed by the Bowen-Lanford formula:

ζ(x) =
1

det(I − xM t)
=

1

det(I − xM)
,

where M is the adjacency matrix of the digraph G and its transpose M t is the adjacency matrix

of the digraph
←−
G . For our shift of finite type (T, H), the number qk is thus the number of tilings

T ∈ T such that Hk(T ) = T , equivalently qk = pk.
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According to Theorem 8.1, the two dynamical systems (T, H) and (P, S) are topologically
conjugate and therefore have the same zeta function. Hence

exp
( ∞∑

k=1

pk
k

xk
)
=

1

det(I − xM)

and Theorem 8.2 follows. □

We note that the Artin-Mazur zeta invariant used in the prove above is also investigated by
Anderson and Putnam [2] for substitution tiling spaces.

Example 8.1. A simple computer calculation gives the following series for the Ammann chair
tilings of Example 4.1:

∞∑
k=1

pk
n

xk = x+
3x2

2
+

4x3

3
+

7x4

4
+

11x5

5
+

18x6

6
+

29x7

7
+

47x8

8
+

76x9

9
+ · · · .

For example, there are 4 Ammann chair tilings for which the hierarchy cycles with period 3.
Referring to the graph in the right panel of Figure 5, these correspond in (P, S), via topological
conjugacy, to the 4 parameters 111, 132, 213, 321, where the individual digits are shorthand for

the edges in
←−
G with those function subscripts, and the bar over the numbers means that the

three numbers repeat.

8.2. Application 2.

⟨lem:ds⟩
Lemma 8.1. Let F be a self-similar GIFS, and let

←−
θ ,
←−
θ ′ ∈ P. Then T (

←−
θ ) = T (

←−
θ ′) if and

only if T (θ, k) = T (θ′, k) for k = 0, 1, 2, . . . .

Proof. Since T (
←−
θ ) is the nested union of the T (θ, k), clearly T (θ, k) = T (θ′, k) for k = 0, 1, 2, . . .

implies that T (
←−
θ ) = T (

←−
θ ′).

In the other direction, it follows from the proof of of Property 5 of Theorem 5.1 that the
union of the tiles in T (θ, k) is itself a tile tk ∈ Tk; similarly the union of the tiles in T (θ′, k) is a

tile t′k ∈ T ′k. Since 0 ∈ tk ∩ t′k and T := T (
←−
θ ) = T (

←−
θ ′) has a unique hierarchy, it follows that

T (θ, k) = T (θ′, k). □

For a self-similar GIFS F , let Nk := Nk(F) denote the number of distinct (pairwise unequal)

patches T (
←−
θ , k) over all

←−
θ ∈ P. In view of Lemma 8.1, if two F-tilings T (

←−
θ ) and T (

←−
θ ′) are

not equal, then, for some k, the patches T (
←−
θ , k) and T (

←−
θ ′, k) will not be equal. Therefore,

the growth of the sequence {Nk}∞k=1 is a measure of how fast F-tilings can be distinguished by
looking at these increasingly large finite patches.

⟨thm:ent⟩Theorem 8.3. For a self-similar GIFS F , let ρ := ρ(F) denote the Perron-Frobenius eigenvalue
of the adjacency matrix of the digraph of F . Then asymptotically

Nk ≃ ek log ρ, i.e.,

lim
k→∞

k
√

Nk = ρ.

Proof. Given a self-similar GIFS F = (G,F ), the topological entropy of the shift of finite type
(P, S) is defined by

h(P) = lim
k→∞

1

k
log N̂k,

where N̂k is the number of paths of length k in the digraph
←−
G , which equals the number of paths

of length k in the digraph G. In the same way that T (
←−
θ ) = T (

←−
θ ′) if and only if

←−
θ =

←−
θ ′, we

have T (
←−
θ , k) = T (

←−
θ ′, k) if and only if

←−
θ |k =

←−
θ ′|k. Therefore Nk = N̂k for all k.



22 A. VINCE

For (P, S) (and more generally for any shift of finite type) it is well known that h(P) = ρ(F),
the Perron-Frobenius eigenvalue of M . Therefore

lim
k→∞

1

k
logNk = lim

k→∞

1

k
log N̂k = ρ,

which is equivalent to limk→∞
k
√
Nk = ρ. □

Example 8.2. Applying Theorem 8.3 to the Ammann chair self-similar GIFS F of Example 4.1
yields

Nk ≃ τk ≈ e.4812 k,

where τ is the golden ratio.

9. The Existence of Self-Similar GIFSs
⟨sec:E⟩

According to Theorem 9.1 below, self-similar GIFSs are easy to construct in dimension 1.
Polygonal rep-sets in dimension 2 may lead to self-similar GIFSs. These have appeared in both
recreational websites and mathematical journals, mostly discovered in an ad hoc manner, some
very clever. They include the Ammann chair tile in Example 4.1, Robinson’s triangle variant of
the Penrose tiles, and the pinwheel tile (the tile due to J. Conway, the tiling due to C. Radin).
According to Theorem 9.2 below, for every dimension d and for every Perron number ρ, there
exists a self-similar GIFS on Rd whose scaling ratio is 1/ρ; the attractor components are boxes.
All of the above examples give self-similar GIFS tilings by the method in Definitions 4.1 and
4.3. The digit IFSs referred to in the introduction [41] are self-similar IFSs and produce lattice
tilings by translates of a single prototile.

Non-polyhedral, aperiodic tilings in dimension d ≥ 2 with self-replicating properties are hard
to come by. The difficulty in producing such a self-similar GIFS is that the attractor is required
to be non-overlapping and the attractor components to have non-empthy interior. Rauzy type
fractals, often called central tiles, do admit non-period tilings. They are are usually obtained
from symbolic dynamics [9] or from numeration systems (β-expansions) [1] and are also related
to model sets obtained by the cut-and-project method [28]. Although a general discussion of
Rauzy tilings does not fall within the scope of this paper, we give a shot exposition in Section 9.1
of the elegant GIFS approach due to Rao, Wen and Yang [31].

A real number ρ > 1 is a Perron number if it is a real algebraic integer such that the moduli
of all other Galois conjugates (roots of the minimal polynomial of ρ) are less than |ρ|. Call a
real algebraic integer ρ > 1 a weak-Perron number if the moduli of all of its Galois conjugates
are less than or equal to |ρ|. A real number ρ > 1 is a Pisot number if it is a real algebraic
integer such that the moduli of all of its other Galois conjugates are less than 1. It is a unit
pisot number if, in addition, the constant term in its minimal polynomial is ±1.

Proposition 9.1. If F is a self-similar GIFS on Rd with scaling ratio λ, then 1/λ is a weak-
Perron number.

Proof. Let ρ = 1/λ. By condition (2) in Statement 3 of Theoem 5.1 we know that ρd is the
Perron-Frobenius eigenvalue of M(G). If the characteristic polynomial of M(G) is p(x), then ρ
is a root of p̂(z) = p(zd), all of whose roots are less than or equal to ρ. □

Note that there exists no self-similar GIFS whose digraph is a directed cycle.

⟨thm:P2⟩Theorem 9.1. (1) For any 0 < λ < 1 such that 1/λ is a Perron number, there exists a
primitive self-similar GIFS on R whose scaling ratio is λ.

(2) For every strongly connected digraph G = (V,E), not a directed cycle, there exists a
primitive self-similar GIFS F = (G,F ) on R such that fe(x) = (1/ρ) (x + de) for all
e ∈ E, where ρ is the Perron-Frobenius eigenvalue of the adjacency matrix M(G) of G
and de ∈ Q(ρ).
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Proof. Concerning statement (1), let 0 < λ < 1 and let ρ = 1/λ. The result [23, Theorem
1] states that if ρ is a Perron number, then there is a primitive non-negative integral matrix
M = (mi,j), i, j ∈ {1, 2, . . . , n} whose spectral radius is ρ. A self-similar GIFS on R, whose
adjacency matrix is M , can be obtained as follows. Let the vertex set of G be V = {1, 2, . . . , n}.
For each pair (i, j) of vertices, add mi,j edges from vertex i to vertex j, and label edge e with a
function of the form fe(x) = (1/ρ)(x + de), where de is defined as follows. Let (x1, x2, . . . , xn)
be a positive right eigenvector corresponding to the eigenvalue ρ, which exists by the Perron-
Frobenius theorem. The set {x1, x2, . . . , xn} of coordinates is a solution to the linear system

xj =

n∑
i=1

λmj,i xi, j = 1, 2, . . . , n,

and hence can be chosen to lie in Q(ρ). Consider the intervals Ij = [0, xj ], j = 1, 2, . . . , n, on
the real line. From the system of linear equations above, the interval Ij can be tiled (often in
many different ways) by translated copies of the intervals [0, λ xi], i = 1, 2, . . . , n. The de are
the translation distances multiplied by ρ, which are sums of the xis. Therefore de ∈ Q(ρ) for all
e ∈ E.

The adjacency matrix M(G) determines the digraph G, so, as long as the Perron-Frobenius
eigenvalue of M(G) does not equal 1, the proof of statement (2) is as in the paragraph above.
Since M(G) is a non-negative, integral matrix, the Perron-Frobenius eigenvalue equals 1 if and
only if M is orthogonal which can occur if and only if M(G) is a permuatation matrix if and
only if G is a directed cycle. □

⟨thm:P⟩Theorem 9.2. For any 0 < λ < 1 such that 1/λ is a Perron number, there exists a primitive
self-similar GIFS on Rd whose scaling ratio is λ. The components of the attractor are boxes.

Proof. The case d = 1 is Theorem 9.1. So let F = (G,F ) be such a 1-dimensional self-similar
GIFS with scaling ratio λ = 1/ρ and with attractor components Ij = [0, xj ], j = 1, 2, . . . , n,
intervals on the real line. Denote the vertex set of G by V = {1, 2, . . . n} and the edge set by E.

The result is extended to arbitrary dimension by a product construction. In dimension d,
let Fd = (Gd, Fd) be the GIFS, where Gd = (Vd, Ed) is the digraph with vertex set Vd = V d

and edge set Ed = Ed. The edge e := (e1, e2, . . . , ed) ∈ Ed joins vertex i := (i1, i2, . . . , id) to
vertex j := (j1, j2, . . . , jd) where ek = (ik, jk) for k = 1, 2, . . . d. Label edge e with the function
fe(y1, y2, . . . yd) =

(
fe1(y1), fe2(y2), . . . , fed(yd)

)
to obtain Fd.

It is routine to check that F and Fd have the same scaling ratio. The GIFS Fd is primitive
for the following reason. Since G is primitive, there exists a positive integer m such that,
for any two vertices of G there is a directed path of length m from one to the other. Let
i := (i1, i2, . . . , id) and j := (j1, j2, . . . , jd) be two arbitrary vertices of Gd. For k = 1, 2, . . . , d,
let ek,1 ek,2 · · · ek,m be a path of length m in G from vertex ik to vertex jk. For q = 1, 2, . . . ,m,
let eq = (e1,q, e2,q, . . . , ed,q). Then e1 e2 · · · em is a path of length m from vertex i to vertex j in
Gd.

For each i := (i1, i2, . . . , id) ∈ Vd, let Bi = Ii1 × Ii2 × · · · × Iid , which is a box in Rd. We leave
it as an exercise to verify that

Bi =
⋃

e∈(Ed)i

fe(Be+)

for all i ∈ Vd and that the union is non-overlapping. This shows that {Bi : i ∈ Vd} is the set of
attractor components of Fd. □

Theorem 9.1 suggests the following questions.

Question 9.1. For which strongly connected digraphs G and integers d ≥ 2, does there exist a
self-similar GIFS on Rd whose digraph is G?



24 A. VINCE

⟨sec:rt⟩ 9.1. The Dual of a Self-Similar GIFS on R.

Definition 9.1 (Dual GIFS). A slightly more general definition of the dual appers in [31]. Let
G = (V,E) be a strongly connected digraph of order d+ 1, d ≥ 2, not a cycle, and let ρ be the
Perron-Frobenius eignevalue of the adjacency matrix of G. According to Theorem 9.1, there is
a self-similar GIFS F = (G,F ) on R (often many) such that

fe(x) =
1

ρ

(
x+ de

)
,

where de ∈ Q(ρ) for all e ∈ E. Such 1-dimensional self-similar GIFSs can be obtained explicitly
and easily using the method provided in the proof of Theorem 9.1. Call any such self-similar
GIFS a 1-dimensional self-similar GIFS or simply a 1-dim self-similar GIFS.

Let F = (G,F ) be a 1-dim self-similar GIFS. If ρ is a Pisot unit, then the dual GIFS

F∗ = (
←−
G,F ∗) of F is defined as follows. The reverse digraph

←−
G is as defined in Section 4. Let

ρ = ρ0, ρ1, . . . , ρd be the Galois conjugates of ρ ordered as follows:

ρ > 1 > |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρd|,

where complex conjugates appear consecutively. Let

B′ = diag(ρ1, ρ2, . . . , ρd),

be the diagonal matrix and replace each pair z, z of complex conjugates in B′ by the 2× 2 real

block

(
Re z −Imz
Imz Re z

)
to obtain the matrix B. Since 1, ρ, ρ2, . . . , ρd is a basis for Q(ρ), we have

x =
∑d

i=0 xiρ
i for any x ∈ Q(ρ), where the xi ∈ Q. The dual of x is defined as

x∗ =

d∑
i=0

xi(ρ
i
1, . . . , ρ

i
d)

t ∈ Cd,

where pair z, z of complex conjugates is replaced with Re z, Imz. Equivalently, the star operator
is the unique linear map ∗ : Q(ρ) → Rd such that (ρ x)∗ = Bx∗ for all x ∈ Q(ρ). Now set

F ∗ = {f←−e (x) = Bx+ d∗e : e ∈ E}. The dual of F is F∗ := (
←−
G,F ∗), which is a GIFS on Rd.

The following theorem is essentially [31, Theorem 1.2].

⟨thm:P1⟩Theorem 9.3. The dual of a 1-dim self-similar GIFS F for which 1/λ(F) is a Pisot unit is
also a self-similar GIFS.

Proof sketch. A GIFS satisfies the OSC if there exists open sets U1, . . . , Un such that⋃
e∈Ei

fe(Ue+) ⊂ Ui

for i = 1, 2, . . . , n, where n is the order of the digraph of the GIFS. Three results lead to the
proof of Theorem 9.3.

First, necessary and sufficient conditions for a GIFS to satisfy the OSC, in terms of certain
“digits” is given in [24].

Second, a result in [31], using the above necessary and sufficient conditions, immediately
implies that if 1-dim self-similar GIFS F satisfies (1) the open set condition (OSC) and (2)
that 1/λ(F) is a Pisot number, then F∗ also satisfies the OSC. Concerning condition (1), the
attractor components of a 1-dim self-similar GIFS are closed intervals; hence the OSC is satisfied
by taking the Ui as the set of corresponding open intervals. Condition (2) is, by assumption,
satisfied. Therefore F∗ satisfies the OSC.

Third, a result in [22] immediately implies that if F∗ = (
←−
G,F ∗) is such that (1) the functions

in F ∗ are affine of the form fe(x) = B(x) + de for all e ∈ E, (2) F∗ satisfies the OSC, and

(3) 1/ρ∗ = |det(B)|, where ρ∗ is the Perron-Frobenius eigenvalue of M(
←−
G), then the attactor
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components of F∗ have nonempty interior. Condition (1) is clearly true, and condition (2)
follows immediatly from the previous result from [24]. Concerning condition (3), we have

|det(B)| = |ρ1 · ρ2 · · · ρd| =
1

ρ
=

1

ρ∗
.

The second equality follows from the fact that ρ is a unit and the last equality from the fact

that M(
←−
G) is the transpose of M(G).

Therefore the attractor components of F∗ have nonempty interior. Moreover, because λ(F∗) =√
|det(B)| = 1/

√
ρ∗, Lemma 5.1. implies that F∗ is a self-similar GIFS. □

⟨ex:R⟩Example 9.1 (Rauzy Tilings from a Dual Self-Similar GIFS). Duality is used here to obtain
fractal, non-periodic self-similar GIFS-tilings of R2. We start with an initial 1-dim self-similar
GIFS F = (G,F ) on R, where G is an order 3 strongly connected digraph and the Perron-
Frobenius eigenvalue ρ of the adjacency matrix M(G) is a Pisot unit. It is not hard to find
many such 1-dim self-similar GIFSs as follows. Regarding the 9 integer entries of M(G) as
variables, it is easy to solve for values of these variables so that (1) det(M(G)) = ±1, (2) the
degree 3 characteristic polynomial of M(G) has a pair of complex roots, and (3) G is strongly
connected. That ρ > 1 together with condition (2) immediately implies that ρ is a Pisot number.
Condition (1) further implies that ρ is a unit. Because M(G) is a 3× 3 matrix, the dual F∗ is
a self-similar GIFS on R2. With the digraph G in hand, we use Theorem 9.1 (and its proof) to
obtain possibilities for F and hence possibilities for the 1-dim self-similar GIFS F . We then use

Theorem 9.3 to obtain F ∗ and hence F∗ = (
←−
G,F ∗). The tiling method of this paper is then

used to produce the F∗-tiling.
For each of the following examples we provide an adjacency matrix M = M(G), which

determines the digraph G, the characteristic polynomial p(x) of M , whose Perron-Frobenius
eigenvalue ρ is a Pisot unit and equals 1/λ(F), and the functions in F .

(1) The original Rauzy fractal is the non-overlapping union of three smaller similar copies
of itself. A tiling based on the Rauzy fractal appears on the right in Figure 3. This
self-similar GIFS-tiling can be constructed from the dual of this 1-dim self-similar GIFS:

M =

1 1 1
1 0 0
0 1 0

 p(x) = x3 − x2 − x− 1
f2,1(x) = f31(x) = f1,1(x) = (1/ρ)x

f1,2(x) = f2,3(x) = (x− 1)/ρ,

where fi,j is the function in F that is the label of edge (i, j).

(2) A tiling from the the dual of the data below appears on the left in Figure 7.

M =

1 0 1
1 0 0
0 1 0

 p(x) = x3 − x2 − 1
f2,1(x) = f3,2(x) = f1,1(x) = (1/ρ)x

f1,3(x) = (x− 1)/ρ

(3) The tilings on the left and right, respectively, in Figure 4 are from the duals of these
1-dim self-similar GIFSs:

M =

1 1 1
1 0 1
1 0 0

 p(x) = x3 − x2 − 2x− 1

f3,1(x) = f2,1(x) = f1,1(x) = (1/ρ)x

f1,3(x) = f2,3(x) = (x+ ρ)/ρ

f1,2(x) = (x+ ρ+ 1)/ρ

(4)

M =

1 1 1
1 1 0
0 1 0

 p(x) = x3 − 2x2 − x− 1

f2,3(x) = f3,1(x) = f1,1(x) = (1/ρ)x

f2,1(x) = (x− 1)/ρ

f1,2(x) = (x+ ρ)/ρ

f2,2(x) = (x+ ρ+ 1)/ρ
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Figure 7. Tilings from duals given in Example 9.1.
⟨fig:RR⟩

(5) The tiling on the right in Figure 7 is from the dual of the 1-dim self-similar GIFS below.
The three prototiles also appear in Figure 2.

M =

1 1 1
1 1 0
0 1 1

 p(x) = x3 − 3x2 + 2x− 1

f2,3(x) = f3,3(x) = f1,1(x) = (1/ρ)x

f3,1(x) = f2,1(x) = (x− 1)ρ

f2,2(x) = (x+ ρ)/ρ

f1,2(x) = (x+ ρ− 1)/ρ

acknowledgement

I thank Professor Chun-Kit Lai for valuable conversations about topics covered in this paper
during my visit to San Francisco State University during fall semester 2022.

References

ak [1] S.Akiyama, Self affine tiling and Pisot numeration system, in Number Theory and its Applications, K. Györy
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