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Abstract. A set U of vertices of a graph G is called a geodetic set if the union of all the
geodesics joining pairs of points of U is the whole graph G. One result in this paper is a
tight lower bound on the minimum number of vertices in a geodetic set. In order to obtain
that result, the following extremal set problem is solved. Find the minimum cardinality of a
collection S of subsets of ½n� ¼ f1; 2; . . . ; ng such that, for any two distinct elements
x; y 2 ½n�, there exists disjoint subsets Ax;Ay 2 S such that x 2 Ax and y 2 Ay . This sepa-
rating set problem can be generalized, and some bounds can be obtained from known
results on families of hash functions.

1. Introduction

The topics in this paper were originally motived by a problem in graph theory.
The distance between two vertices u; v in a graph G is the least number of edges in
a path joining u and v. Any such shortest path is called a geodesic. A set U of
vertices of G is called geodetic if the union of all the geodesics joining pairs of
points of U is the whole graph G. Let gðGÞ denote the minimum number of
vertices in a geodetic set for G, and call gðGÞ the geodetic number of G. It was
originally suggested that xðGÞ is a lower bound on gðGÞ, where xðGÞ is the clique
number of G. This, in fact, is far from the situation. In Section 3 we show that

gðGÞ 	 d3 log3 xðGÞe;

and this lower bound is tight in the following sense. For any n there exists a graph
G with xðGÞ ¼ n that contains a geodetic set with d3 log3 ne þ � vertices, where � is
0 or 1.

The problem concerning geodetic sets in graphs is directly related to the
following extremal set problem. Let ½n� ¼ f1; 2; . . . ; ng. Find the minimum
cardinality f ðnÞ of a collection S of subsets of ½n� with the following property.
For any two distinct elements x; y 2 ½n� there exists disjoint subsets Ax;Ay 2 S
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such that x 2 Ax and y 2 Ay . In Section 2 an exact formula for f ðnÞ is obtained,
namely,

f ðnÞ ¼
3m if 2 
 3m�1 < n � 3m

3mþ 1 if 3m < n � 4 
 3m�1
3mþ 2 if 4 
 3m�1 < n � 2 
 3m,

8<
: ð1Þ

for m 	 1. It is easy to see that f ðnÞ is essentially 3 log3 n. More precisely,
f ðnÞ ¼ d3 log3 ne þ �, where � is 0 or 1. The relation between this extremal set
problem and the extremal graph problem concerning geodesics is discussed in
Section 3.

The extremal set problem can be generalized as follows. For integers n and
n1; n2; . . . ; nk, determine the minimum cardinality f ðn; n1; n2; . . . ; nkÞ of a collec-
tion S of subsets of ½n� with the following property. For any distinct subsets
U1;U2; . . . ;Uk � ½n� with jUij ¼ ni, there exists pairwise disjoint subsets
A1;A2; . . . ;Ak in S such that Ui � Ai for all i. Except in the case k ¼ 2; n1 ¼
n2 ¼ 1, we are not able to give an exact formula for f ðn; n1; n2; . . . ; nkÞ. In certain
other special cases, however, bounds on f ðn; n1; n2; . . . ; nkÞ can be derived from
known results on families of hash functions. Hash functions have been extensively
studied by computer scientists because of their application in searching a dat-
abase. These bounds are given in Section 4.

2. Extremal Set Problem

This section contains the proof of the main theorem concerning the extremal set
problem. If a collection S of subsets of ½n� has the property that, for any two
distinct elements x; y 2 ½n�, there exists disjoint subsets Ax;Ay 2 S such that x 2 Ax
and y 2 Ay , we say that S separates pairs.

Theorem 1. Let f ðnÞ denote the minimum cardinality of a collection S of subsets of
½n� that separates pairs. Then

f ðnÞ ¼
3m if 2 
 3m�1 < n � 3m

3mþ 1 if 3m < n � 4 
 3m�1
3mþ 2 if 4 
 3m�1 < n � 2 
 3m.

8<
:

Proof. First note that f ðnÞ is non-decreasing. IfS is a family of subsets of ½nþ 1�
that separates pairs, then, after removing the element nþ 1 from each set in S,
the resulting family of subsets of ½n� will separate pairs.

We first show that there exists a collection of subsets of ½n� that separates
pairs and with cardinality as given by the formula in the statement of the
theorem. After that we show that there is no collection with fewer sets that
separates pairs.
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Let n be the least integer greater than or equal to n and of the form 3m; 4 
 3m�1
or 2 
 3m for some integer m. Let n ¼ p1 . . . pk, where pi is either 2 or 3 for each i.
Further, let

N ¼ fa :¼ ða1; . . . ; akÞ j 1 � ai � pig

and

Aij ¼ fa 2 N j ai ¼ jg; S ¼ fAij j 1 � j � pi; 1 � i � kg:

Clearly jN j ¼ n and

jSj ¼
X
i

pi ¼
3m if n ¼ 3m

3mþ 1 if n ¼ 4 
 3m�1

3mþ 2 if n ¼ 2 
 3m.

8<
:

The collectionS of subsets of N separates pairs of elements of N because any two
distinct elements of N must differ in at least one coordinate position ai and hence
must belong, respectively, to two distinct elements of S. Let

gðnÞ ¼
3m if n ¼ 3m

3mþ 1 if n ¼ 4 
 3m�1
3mþ 2 if n ¼ 2 
 3m.

(

Then we have shown that

gðnÞ 	 f ðnÞ 	 f ðnÞ; ð2Þ

the second inequality following from the monotonicity of f ðnÞ.
It now suffices to prove, by induction on n, that f ðnÞ ¼ gðnÞ. This is easy to

verify for n ¼ 2; 3; 4. Assume it is true for all natural numbers less than n.

Case 0. n is not of the form 3m þ 1; 4 
 3m�1 þ 1 or 2 
 3m þ 1.

Then gðnÞ 	 f ðnÞ 	 f ðn� 1Þ ¼ gðn� 1Þ ¼ gðnÞ, the first inequality by formula
(2) and the first equality by the induction hypothesis. Therefore f ðnÞ ¼ gðnÞ.

Case 1. n ¼ 3m þ 1 for some m.

Because 3mþ 1 ¼ gðnÞ 	 f ðnÞ 	 f ðn� 1Þ ¼ gðn� 1Þ ¼ 3m, it must be the case
that f ðnÞ ¼ 3m or f ðnÞ ¼ 3mþ 1. It suffices to show that f ðnÞ 6¼ 3m. Let S be the
collection of subsets of minimal cardinality that separates pairs, and let A be a
largest element of S. There must be a B 2 S;B \ A ¼ ;; otherwise A could be
removed, contradicting the minimality of S. Let jAj ¼ a; jBj ¼ b and
c ¼ n� a� b.

If a � 3m�1 then aþ c ¼ n� b 	 n� a 	 2 
 3m�1 þ 1. This implies, by the
induction hypothesis, that f ðaþ cÞ 	 3m. This, in turn, implies that
f ðnÞ 	 f ðaþ cÞ þ 1 	 3mþ 1, the þ1 in the first inequality being the set B. So, if
a � 3m�1 we are done.
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If a > 4 
 3m�2 then , by the induction hypothesis, f ðaÞ 	 3m� 1. This implies
that f ðnÞ 	 f ðaÞ þ 2 ¼ 3mþ 1, the þ2 being the sets A and B. Hence we are done
unless

3m�1 < a � 4 
 3m�2:

Now a � 4 
 3m�2 implies that aþ c ¼ n� b 	 n� a 	 5 
 3m�2 > 4 
 3m�2.
Hence, by the induction hypothesis, f ðaþ cÞ 	 3m� 1. Assume, by way of con-
tradiction, that f ðnÞ ¼ 3m. Then it must be the case that pairs in ½n�nB are sep-
arated by exactly 3m� 1 of the sets in S, including the set A. Since
f ðaþ cÞ 	 3m� 1, the set A is essential; thus there must exists a set
C 2 S;C 6¼ B;C \ A ¼ ;. But a > 3m�1 implies, by the induction hypothesis, that
f ðaÞ 	 3m� 2, which implies that f ðnÞ 	 f ðaÞ þ 3 ¼ 3mþ 1, the þ3 being the
sets A;B;C. This contradicts the assumption f ðnÞ ¼ 3m.

Case 2. n ¼ 2 
 3m þ 1 for some m.

Because 3mþ 3 ¼ gðnÞ 	 f ðnÞ 	 f ðn� 1Þ ¼ gðn� 1Þ ¼ 3mþ 2, it must be the
case that f ðnÞ ¼ 3mþ 2 or f ðnÞ ¼ 3mþ 3. It suffices to show that f ðnÞ 6¼ 3mþ 2.
As in case 1, let S be a collection of subsets of minimal cardinality that separates
pairs, and let A be a largest element of S . There must be a B 2 S;B \ A ¼ ;;
otherwise A could be removed, contradicting the minimality of S. Let
jAj ¼ a; jBj ¼ b and c ¼ n� a� b.

If a � 2 
 3m�1 then aþ c ¼ n� b 	 n� a 	 4 
 3m�1 þ 1. This implies, by the
induction hypothesis, that f ðaþ cÞ 	 3mþ 2. This, in turn, implies that
f ðnÞ 	 f ðaþ cÞ þ 1 	 3mþ 3, the þ1 in the first inequality being the set B. So, if
a � 2 
 3m�1 we are done.

If a > 3m, then, by the induction hypothesis, f ðaÞ 	 3mþ 1. This implies that
f ðnÞ 	 f ðaÞ þ 2 ¼ 3mþ 3, the þ2 being the sets A and B. Hence we are done
unless

2 
 3m�1 < a � 3m:

Now a � 3m implies that aþ c ¼ n� b 	 n� a 	 3m þ 1. Hence, by the in-
duction hypothesis, f ðaþ cÞ 	 3mþ 1. Assume, by way of contradiction, that
f ðnÞ ¼ 3mþ 2. Then it must be the case that pairs in ½n� n B are separated by
exactly 3mþ 1 of the sets in S, including the set A. Since f ðaþ cÞ 	 3mþ 1, the
set A is essential; thus there must exists a set C 2 S;C 6¼ B;C \ A ¼ ;. But
a > 2 
 3m�1 implies, by the induction hypothesis, that f ðaÞ 	 3m, which implies
that f ðnÞ 	 f ðaÞ þ 3 ¼ 3mþ 3, the þ3 being the sets A;B;C. This contradicts the
assumption f ðnÞ ¼ 3mþ 2.

Case 3. n ¼ 4 
 3m�1 þ 1 for some m.

Because 3mþ 2 ¼ gðnÞ 	 f ðnÞ 	 f ðn� 1Þ ¼ gðn� 1Þ ¼ 3mþ 1, it must be the
case that f ðnÞ ¼ 3mþ 1 or f ðnÞ ¼ 3mþ 2. It suffices to show that f ðnÞ 6¼ 3mþ 1.
Let the notation be exactly as for cases 1 and 2 above. The proof in case 3 is,
however, slightly more involved.
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If a � 3m�1 then aþ c ¼ n� b 	 n� a 	 3m þ 1. This implies, by the induc-
tion hypothesis, that f ðaþ cÞ 	 3mþ 1. This, in turn, implies that
f ðnÞ 	 f ðaþ cÞ þ 1 	 3mþ 2, the þ1 in the first inequality being the set B. So, if
a � 3m�1 we are done.

If a > 2 
 3m�1, then, by the induction hypothesis, f ðaÞ 	 3m. This implies that
f ðnÞ 	 f ðaÞ þ 2 	 3mþ 2, the þ2 being the sets A and B. Hence we are done
unless

3m�1 < a � 2 
 3m�1:

We now make the following additional assumption:

a > 4 
 3m�2: ð3Þ

Since a � 2 
 3m, we have aþ c ¼ n� b 	 n� a 	 2 
 3m�1 þ 1. Hence, by the
induction hypothesis, f ðaþ cÞ 	 3m. Assume, by way of contradiction, that
f ðnÞ ¼ 3mþ 1. Then it must be the case that pairs in ½n�nB are separated by
exactly 3m of the sets in S, including the set A. Since f ðaþ cÞ 	 3m, the set A is
essential; thus there must exists a set C 2 S;C 6¼ B;C \ A ¼ ;. But, according to
the assumption (3), we have a > 4 
 3m�2 which implies, by the induction
hypothesis, that f ðaÞ 	 3m� 1. This, in turn, implies that f ðnÞ 	 f ðaÞþ
3 	 3mþ 2, the þ3 being the sets A;B;C. This contradicts the assumption
f ðnÞ ¼ 3mþ 1.

In view of assumption (3) we are now done unless

3m�1 < a � 4 
 3m�2: ð4Þ

Since a � 4 
 3m�2, we have aþ c ¼ n� b 	 n� a 	 8 
 3m�2 þ 1. Hence, by the
induction hypothesis, f ðaþ cÞ 	 f ð8 
 3m�2 þ 1Þ ¼ f ð2 
 3m�1 þ 1Þ ¼ 3m. Assume,
by way of contradiction, that f ðnÞ ¼ 3mþ 1. Then it must be the case that pairs in
½n�nB are separated by exactly 3m of the sets in S, including the set A. Since
f ðaþ cÞ 	 3m, the set A is essential; thus there must exists a set
C 2 S;C 6¼ B;C \ A ¼ ;. It now must be the case that pairs in E :¼ ½n� n ðB [ CÞ
are separated by 3m� 1 sets in S. Let e ¼ jEj. But e 	 n� 2a 	 4 
 3m�2 þ 1, the
last inequality by formula (4). By the induction hypothesis f ðeÞ 	 3m� 1.
Therefore the set A is essential in separating pairs in E; so there must exists a set
D 2 S;D 6¼ B;D 6¼ C;D \ A ¼ ;. Formula (4) implies that f ðaÞ 	 f ð3m�1 þ 1Þ
¼ 3m� 2, the equality by the induction hypothesis. This implies that
f ðnÞ 	 f ðaÞ þ 4 	 3mþ 2, the þ4 being the sets A;B;C;D. This contradicts the
assumption f ðnÞ ¼ 3mþ 1. (

3. Geodetic Sets of Graphs

A set U of vertices of a graph G is defined to be geodetic if the union of all the
geodesics joining pairs of points of U is the whole graph G. This concept derives
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from a similar notion due to Harary, Loukakis, and Tsours [8]. They define a set
U of vertices of G to be geodetic if the union of all the geodesics joining pairs of
points of U contain all the vertices of G (but not necessarily all the edges). To
emphasize the distinction, let gvðGÞ denote the minimum number of vertices in a
geodetic in the sense of Harary, Loukakis, and Tsours and geðGÞ the minimum in
our sense. They will be referred to as the vertex and edge geodetic numbers,
respectively. If G is a nontrivial connected graph, then it is obvious that

gvðGÞ � geðGÞ � gvðGÞ þ ðn� 2Þ: ð5Þ

Equality between gvðGÞ and geðGÞ holds in (5), for example, when G is a tree, a
cycle, a complete, or a complete bipartite graph. In the case of a tree, a mini-
mum geodetic set is the set of endpoints. In the case of a cycle a minimal
geodetic set consists of either two or three vertices, depending on whether the
cycle is even or odd, respectively. The geodetic number of Kn is n and the
geodetic number of Km;n is minfn;mg. In fact, it is easy to show that the geo-
detic number is n for any n vertex graph that has two adjacent vertices each of
which has degree n� 1. Equality can also hold on the right side of (5). Take
G ¼ Kn � e, the complete graph with an edge deleted. A minimal vertex geodetic
set consists of the two endvertices of the edge e. An edge geodetic set must
consists of all n vertices. We refer to [2, 3, 4, 8] for more details on the vertex
geodetic number of a graph G.

What follows is the proof of the lower bound given in the introduction for the
edge geodetic number (which we hereafter refer to simply as the geodetic number).

Theorem 2. If xðGÞ is the clique number and gðGÞ the geodetic number of G; then

gðGÞ 	 d3 log3 xðGÞe:

Moreover, for any n there exists a graph G with xðGÞ ¼ n that contains a geodetic
set with d3 log3 ne þ � vertices, where � is 0 or 1.

Proof. Assume that the largest clique in G, denoted Kn, has order n. Let U be a
geodetic set of G. For any geodesic c between u 2 U and v 2 U , denote by uc the
first vertex of c, starting at u, that lies in Kn (if it exists), and let cu denote the
subpath of c from u to uc.

Since U is a geodetic set, the set of geodesics joining pairs of vertices of U must
cover every edge of Kn. From here on we consider only geodesics that contain an
edge of Kn. We claim that, if a and b are two such geodesics with the same
endvertex u 2 U , then the lengths of au and bu are equal. Assume not, that au is
longer than bu. Let geodesic a join vertices u; v 2 U , and let w be the last vertex on
a that is also in Kn. Consider the path consisting, in sequence, of bu, followed by
the edge of Kn from ub to w, then followed by the subpath of a from w to v. This is
a path from u to v that is shorter than a, contradicting the fact that a is a geodesic.
Let

Au ¼ fuc j c is a geodesic with endvertex ug; S ¼ fAu j u 2 Ug:
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We have just proved that the distances from u to the vertices in Au are all the
same.

Denote the vertices of Kn by f1; 2; . . . ; ng, so that S can be considered as a
collection of subsets of ½n�. We next show that, in the terminology of Section 2, the
collection S separates pairs in ½n�. Let i; j be any two distinct vertices of Kn. Since
U is a geodetic set, there is a geodesic c from, say u 2 U , to, say v 2 U , containing
the edge fi; jg. Then uc ¼ i and vc ¼ j (or vice versa); otherwise the path obtained
by concatenating the shortest path from u to uc, followed by the edge fi; jg,
followed by the shortest path from vc to v would be shorter than c, contradicting
the fact that c is a geodesic. Therefore i 2 Au and j 2 Av. Moreover, Au \ Av ¼ ;.
Otherwise, if there exists a vertex w 2 Au \ Av, then, by what we proved in the
paragraph above, there would be a path from u to w with the same length as the
path from u to i along c; and a path from v to w with the same length as the path
from v to j along c. This would imply that the concatenated path from u to v
through w would be shorter than c, contradicting the fact that c is a geodesic.
Therefore jU j ¼ jSj 	 f ðnÞ by Theorem 1. It follows that gðGÞ 	 jU j 	 f ðnÞ ¼
f ½xðGÞ� 	 d3 log3 xðGÞe.

We next show that this lower bound is tight. In fact, this bound can be
realized as follows. Consider a complete graph Kn together with a set U of f ðnÞ
additional vertices. According to Theorem 1, there exists a collection
S ¼ fAuju 2 Ug of subsets of ½n�, i.e., subsets of vertices of the complete graph
Kn, that separate pairs. For each u 2 U , join vertex u, by a single edge, to each
vertex in Au. Call the resulting graph G. Since Au 6¼ ½n� for all u 2 U , we have
xðGÞ ¼ n. Moreover, for each edge fi; jg of Kn there exist u; v 2 U such that
i 2 Au; j 2 Av and Au \ Av ¼ ;. Hence there exists a geodesic between u and v of
length 3 containing fi; jg. So U is a geodetic set of cardinality f ðnÞ; in other
words gðGÞ ¼ f ðnÞ. (

4. Set Separation and Perfect Hash Families

In this section a few comments are made on the following generalization of the
extremal set problem. For integers n and n1; n2; . . . ; nk, determine the minimum
cardinality f ðn; n1; n2; . . . ; nkÞ of a collection S of subsets of ½n� with the following
property. For any distinct subsets U1;U2; . . . ;Uk � ½n� with jUij ¼ ni, there exists
pairwise disjoint subsets A1;A2; . . . ;Ak with Ui � Ai for all i. Two special cases are
considered in this section:

1. n1 ¼ n2 ¼ 
 
 
 ¼ nk ¼ 1
2. k ¼ 2

In the first case, a collection S that satisfies the required property will be said to
separate k-tuples, and the minimum size of such a collection will be denoted
f ðn; kÞ. Note that f ðn; 2Þ ¼ f ðnÞ in the notation of Theorem 1. To obtain a bound
on f ðn; kÞ we consider families of hash functions. An ðn;m; kÞ-perfect hash family
(PHF) is a set F of functions such that h : ½n� ! ½m� for each h 2 F, and, for any
X � ½n� such that jX j ¼ k, there exists an least one h 2 F such that hjX is one-
to-one. Note that, if
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SðFÞ ¼ fh�1ðiÞ j h 2 F; 1 � i � mg;

then S separates k-tuples. For example, the ð9; 3; 2Þ-PHF

F ¼
h 1 2 3 4 5 6 7 8 9

h1 1 1 1 2 2 2 3 3 3

h2 1 2 3 1 2 3 1 2 3

provides the following collection of subsets of ½9� that separates pairs:

SðFÞ ¼ fA1;A2;A3;A4;A5;A6g

where

A1 ¼ h�11 ð1Þ ¼ f1; 2; 3g;
A2 ¼ h�11 ð2Þ ¼ f4; 5; 6g;
A3 ¼ h�11 ð3Þ ¼ f7; 8; 9g;
A4 ¼ h�12 ð1Þ ¼ f1; 4; 7g;
A5 ¼ h�12 ð2Þ ¼ f2; 5; 8g;
A6 ¼ h�12 ð3Þ ¼ f3; 6; 9g:

In general, the following relationship between the k-tuple separation problem and
perfect hash families will be used in this section.

Lemma 3. If P ðn;m; kÞ denotes the minimum number of hash functions in an
ðn;m; kÞ-PHF, then

f ðn; kÞ � min
m	2

m 
 P ðn;m; kÞ½ �:

It is known [1] that the minimal number of functions in a perfect hash family,
with k ¼ 2, is dlog n= logme. Lemma 3 implies the bound

f ðnÞ ¼ f ðn; 2Þ � min
m	2

mdlog n= logme ð6Þ

for the original extremal set problem. Note, however, that equality does not,
in general, hold in inequality (6). For example, if n ¼ 12, then f ðnÞ ¼ 7 by
Theorem 1, but minm	2mdlog n= logme ¼ 8 (with m ¼ 2).

Although results on perfect hash function do not improve or, for that matter,
do not imply Theorem 1, they provide upper bounds for values of k 	 3. Using
elementary counting, Mehlhorn [9] shows that there exist ðn;m; kÞ-PHFs of size at
most

log n
k

� �
log mkð Þ � log mk � k! m

k

� �� �
& ’

;
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which implies the simpler (but less accurate) bound

dkek2=m ln ne:

By Lemma 3, this implies f ðn; kÞ � dminm mkek
2=m ln ne. The minimum is attained

when m ¼ k2, giving the following upper bound.

Corollary 4. f ðn; kÞ � dk3e ln ne.

Thus, for fixed k, we have f ðn; kÞ ¼ Oðlog nÞ. The proof of Melhorn’s bound,
however, is not constructive, and, even for k ¼ 3, we have no examples of families
S of size Oðlog nÞ with the separating property.

The authors of [1] do construct ðn;m; kÞ-PHFs, but the size is polynomial in
log n rather than linear. To be precise, for arbitrarily large values of n, they
construct an ðn;m0; kÞ-PHF of size

N0

ðlog n0Þlog
k
2ð Þþ1ð Þ ðlog nÞ

log k
2ð Þþ1ð Þ: ð7Þ

The log is base 2, and the constants N0; n0;m0 can take any values for which there
exists a ðn0;m0; kÞ-PHF of size N0 where gcdðn0; k

2

� �
!Þ ¼ 1. Lemma 3 then implies

the following result, which is constructive but fairly far from the theoretical
bound of Corollary 4.

Corollary 5. There are explicitly constructed families of subsets of ½n�, for arbi-
trarily large values of n, for which

f ðn; kÞ ¼ O ðlog nÞlogð
k
2ð Þþ1Þ


 �
:

The method used in [1] for constructing perfect hash families of size given in
formula (7) is recursive, constructing a ðn2;m; kÞ-PHF of size k

2

� �
þ 1

� �
N from a

ðn;m; kÞ-PHF of size N . As examples, consider the following ð5; 3; 3Þ-PHF and
ð5; 4; 4Þ-PHF, respectively.

h 1 2 3 4 5

h1 1 2 3 1 2

h2 3 1 2 2 3

h3 2 3 1 3 1

h 1 2 3 4 5

h1 1 2 3 4 4

h2 1 2 2 3 4

h3 1 1 2 3 4

Using these perfect hash families as seed, formula (7) implies the following
result.

Corollary 6. There are explicitly constructed families of subsets of ½n�, for arbi-
trarily large values of n, for which
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f ðn; 3Þ � 9

ðlog 5Þ2
ðlog nÞ2 � 1:66ðlog nÞ2

f ðn; 4Þ � 12

ðlog 5Þlog 7
ðlog nÞlog 7 � 1:12ðlog nÞlog 7:

We now turn to the second case of the general problem, to determine
f ðn; n1; n2Þ. In this case we must provide a collection of subsets of ½n� sufficient to
separate any two subsets of given sizes n1 and n2, respectively. This problem is
closely related to a problem of Friedman, Graham, and Ullman [7] that was
motivated by considerations involving asynchronous sequential circuits. An
ðn1; n2Þ-separating system is a family P ¼ fðPi;QiÞg of partitions of ½n� into two
blocks satisfying the following property. For each pair of disjoint subsets U1;U2

of ½n� there is at least one partition ðP ;QÞ 2 P such that U1 � P and U2 � Q or
U1 � Q and U2 � P . Using probabilistic methods, Fredman and Komlós [6] prove
that the minimum size of a ðn1; n2Þ-separating system is

O Zðn1; n2Þ log nð Þ

where

Zði; jÞ ¼ ðiþ jÞiþjþ1

iijj

and log n is base 2. This immediately implies the following bound.

Corollary 7. f ðn; n1; n2Þ ¼ OðZðn1; n2Þ log nÞ .

Thus, for n1; n2 fixed, f ðn; n1; n2Þ is Oðlog nÞ. As in the first special case of the
general separating set problem, except when n1 ¼ n2 ¼ 1, the result of Corollary 7
is not constructive. We have no constructive example of a collection of subsets of
½n�, for arbitrarily large n, whose size is Oðlog nÞ.
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