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An effective method is given for computing the Hausdorff dimension of the boundary of a self-similar
digit tile T in n-dimensional Euclidean space:

dim
H
(¦T )¯

log λ

log c
,

where 1}c is the contraction factor and λ is the largest eigenvalue of a certain contact matrix first defined
by Gro$ chenig and Haas.

1. Introduction

In the book Classics on fractals [6], Edgar asked what the Hausdorff dimension of

the boundary of the Le! vy dragon might be. In general Edgar asked what could be said

about the dimension of the boundary of a self-similar tile [6, p. 236]. In [5] Duvall and

Keesling determined precisely the Hausdorff dimension of the boundary of the Le! vy

dragon. In [11] Keesling showed that the Hausdorff dimension of the boundary of any

self-similar tile in 2d is less than d, but that this dimension could be arbitrarily close

to d. In this paper we give a general method for determining the Hausdorff dimension

of the boundary of a self-similar digit tile. The only condition that is needed on the

self-similar digit tile T is that one of the equivalent conditions given in Theorem 1 and

below holds for T. The method given in this paper either determines precisely the

Hausdorff dimension of the boundary of T or it determines that one of these

conditions fails. One does not have to check beforehand whether or not the

conditions hold. The outcome of the algorithm itself will tell.

Having given some motivation for the main result of this paper, we now proceed

to give some basic definitions and results needed in the subsequent sections. A well-

known method of constructing fractals is by using an iterated function system ² f
i
´N
i="

consisting of contractions on Euclidean space 2d. On the space H of nonempty

compact subsets of 2d, with respect to the Hausdorff metric, define F :HMNH by

F(X )¯5
N

i="

f
i
(X ),

for any nonempty compact set X. It is well known that F is a contraction on H and

that H is a complete metric space with the Hausdorff metric. Hence, by the

contraction mapping theorem, F has a unique fixed point or attractor T satisfying

T¯5
N

i="

f
i
(T ) and given by T¯ lim

n!¢

F (n)(T
!
), (1.1)

where F (n) denotes the nth iterate of F, T
!

is an arbitrary nonempty compact subset
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of 2d and the limit is with respect to the Hausdorff metric. The attractor T will be

called a self-similar tile if

(1) each f
i
is a similitude with the same contraction factor 1}c, c" 1;

(2) the attractor T is the closure of its interior ;

(3) f
i
(T ) and f

j
(T ) do not overlap for any i1 j.

Non-o�erlapping means that the intersection of the interiors is empty. We use the

term ‘tile ’ because it is not hard to show that, under the above conditions, 2d can be

tiled by copies of T.

In this paper attention is restricted to a certain class of self-similar tiles that are

common in the literature on fractals. A self-similar digit tile is a self-similar tile whose

iterated function system is of the form

f
i
(x)¯A−"(xd

i
), d

i
`D (1.2)

where

(1) A is a similitude given by an expansive integer matrix;

(2) D is a set of coset representatives of :d}A(:d) with 0 `D.

Expansi�e means that the eigenvalues of A are greater than 1 or, equivalently, that

the ratio c of the similitude A is greater than 1. The set D is called a digit set.

Self-similar tiles, and the generalization to self-affine tiles, have been studied by,

among others, Bandt [1], Dekking [4], Gro$ chenig and Haas [9], Kenyon [12], Lagarias

and Wang [14–16], and Vince [21–23]. One of the motivations for studying this type

of tile is its use in higher-dimensional wavelet multiresolution analysis. This is dealt

with in the papers by Gro$ chenig and Madych [10] and Strichartz [18]. After the results

of this study were obtained we came across unpublished preprints by Veerman [20]

and by Strichartz and Wang [19] which also compute the Hausdorff dimension of the

boundary of self-similar tiles of 2n. Those papers obtain similar results by different

methods. Some additional calculations based on [19] are done in [13].

If T is a self-similar digit tile, then it is known that T is the closure of its interior,

and that the Lebesgue measure of the boundary ¦T is 0. In fact the Hausdorff

dimension of ¦T is less than d [11, Theorem 2.1]. Lagarias and Wang [15, 16] have

shown that there is a tiling of 2d by translates of T by some lattice, not necessarily

:d. The following special case of a 2-dimensional self-similar digit tile is illustrative.

1.1. Block tiling

Given an integer k" 1 consider the iterated function system whose functions are

indexed by pairs (i, j) of integers with 0% i, j%k®1:

f
ij
(x)¯

1

k
(x(i, j))(a

ij
, b

ij
),

where a
ij

and b
ij

are integers. In this case

A¯ 0k0
0

k1
and the digit set is D¯²(ika

ij
, jkb

ij
) r 0% i, j%k®1´.

Let T
!

be the unit square in 2# with vertices at (0, 0), (1, 0), (0, 1), (1, 1), and let

T
n
¯F (n)(T

!
). The set T

"
may be constructed by dividing T

!
into k# smaller squares by
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F 1. The limit tile has measure 2.

horizontal and vertical lines in the obvious way, and then translating each smaller

square an integral distance a
ij

in the horizontal direction and an integral distance b
ij

in

the vertical direction. One can rescale and repeat the same construction for each

daughter square. By repeating for n¯ 2, 3,… one gets the sequence T
n
. The Lebesgue

measure m(T
n
)¯ 1 for each n, and, moreover, 4

n
¯²aT

n
r a `:#´ is a tiling of the

plane by translation by the integer lattice.

The self-similar digit tile T that is the attractor of this iterated function system is,

according to equation (1.1), the limit of the T
n

in the Hausdorff metric. However T

may not have Lebesgue measure 1 and may not tile the plane by translation by the

integer lattice. As an example, consider the case where k¯ 3 and

D¯²(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)´.

The third tile in the sequence T
n

is shown in Figure 1. The limit tile T has area 2 and,

consequently, does not tile the plane by translation by the integer lattice. Also note

that, in this example, the boundary ¦T
n
does not approach ¦T in the Hausdorff metric

as n!¢. In fact, lim
n!¢ ¦T

n
¯T and is space filling.

The main result of this paper is an effective method for computing the Hausdorff

dimension of the boundary of a self-similar digit tile in Euclidean d-dimensional

space. It states that, under a certain natural condition, the Hausdorff dimension of the

boundary ¦T of a self-similar digit tile T¯T(A,D) is given by

dim
H
(¦T )¯

log λ

log c
,

where c is the expansion factor of A and λ is the largest eigenvalue of certain matrices

first defined by Gro$ chenig and Haas [9]. The exact statements are Theorems 2 and 3.

The hypotheses of these theorems insure that situations like those in the last example

do not occur. Theorem 1 contains several equivalent conditions for what we call well-

beha�ed boundary. In particular, four of these equivalent conditions are that, for the

approximating tiles T
n
¯F (n)(T

!
), where T

!
is the unit square centered at the origin

with edges parallel to the axes,

(1) lim
n!¢ ¦T

n
¯ ¦T ;

(2) lim
n!¢ ¦T

n
is not space filling;

(3) m(T )¯ 1;

(4) ²Tx rx `:d´ is a tiling of 2d.
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F 2. A Sierpinski tile.

The limits are with respect to the Hausdorff metric. Our methods are not, in

general, equipped to compute the dimension of the boundary when lim ¦T
n
1 ¦T, as

is the case for the tile in Figure 1. However, certain ‘nonprimitive ’ cases for which

the conditions above fail can be reduced, as explained in §4, to cases for which the

conditions hold.

The whole calculation of the Hausdorff dimension of the boundary ¦T of the digit

tile T depends only on the expansion matrix A and the set of digits D. A computer

program was written with input A and D and output λ so that, under any of the above

four conditions, dim
H
(¦T )¯ log λ}log c. In this case dim

H
(¦T )! d ; in other words

λ! cd¯ rdetAr. The algorithm yields a value λ even for the situation where conditions

(1)–(4) fail. In this case Theorem 3 shows that the output must be λ¯ rdetAr, so, in

fact, the algorithm detects well-behaved boundary. If λ! rdetAr, then conditions

(1)–(4) hold. If λ¯ rdetAr, then they do not and dim
H

¦T is not determined by the

method. The equivalence of conditions (3) and (4) above was proved by Gro$ chenig

and Haas [9, Proposition 4.1]. A different algorithmic condition equivalent to

conditions (1)–(4) is given by Vince [21, Theorem 4].

As a simple example of a tile where our methods apply, consider the following

modification of the Sierpinski carpet. Let

A¯ 030
0

31
and let the digit set be D¯²(0, 0), (1, 0), (2, 0), (0, 1), (4, 4), (2, 1), (0, 2), (1, 2), (2, 2)´.
Figure 2 plots T

%
to approximate the limit tile. Our methods compute the dimension

of the boundary of this tile :

dim
H

¦T¯
log(32o2)

log 3
¯ 1±604522….

Several additional examples will be computed in detail in §5.

2. Well-beha�ed boundary

T 1. Let T¯T(A,D) be a self-similar digit tile. If T
n
¯F (n)(T

!
), where T

!

is the unit square centered at the origin with edges parallel to the axes, are

approximating tiles, then the following statements are equi�alent.
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(1) lim
n!¢ ¦T

n
¯ ¦T.

(2) lim
n!¢ ¦T

n
is not space filling.

(3) ²Tx rx `:d´ is a tiling of 2d.

(4) m(T )¯ 1.

Moreo�er, if these conditions hold and c is the expansion factor of A, then there is

a positi�e constant a such that

d(¦T, ¦T
n
)! a}cn,

where d denotes the Hausdorff metric.

Proof. Various parts of the theorem appear in the literature. In particular, a

proof of the equivalence of the four conditions for the two-dimensional case appears

in Vince [22, Theorem 3]. The arguments in that paper generalize without change to

the d-dimensional case. We will prove the last statement in Theorem 1. First note that

there is a constant a such that d(T,T
n
)% a}cn. This can be proved by induction; just

note that

d(T,T
n
)¯ d(F(T ),F(T

n
))%

1

c
d(T,T

n−"
). (2.1)

To show that d(¦T, ¦T
n
)% a}cn, we first show that each point x ` ¦T

n
is at distance at

most a}cn from some point of ¦T. Consider three cases : x is in the interior of T,

x ` ¦T, and x aT. If x ` ¦T, then the assertion is trivial. If x aT, then by (2.1) there is

a point y `T such that d(x, y)% a}cn. Hence there must be a point z ` ¦T on the

segment xy such that d(x, z)% d(x, y)% a}cn. If x is in the interior of T, then consider

the two tilings of 2d :

4
n
¯²pT

n
r p `:d´

4¯²pT r p `:d´.

That 4
n

is a tiling follows easily from the fact that D is a set of coset representa-

tives of :d}A(:d). Since x ` ¦T
n
, there is another copy yT

n
in the tiling 4

n
such that

x ` ¦(yT
n
) but x a yT. Now (2.1) implies that there is a point z ` yT such

that d(z,x)% a}cn, and hence a point w ` ¦T on segment zx such that w ` ¦(yT )

and d(w,x)% d(z,x)% a}cn.

That each point of ¦T is at distance at most a}cn from a point of ¦T
n

is similarly

proved. *

3. Main result

Throughout this section A denotes an expansive similitude in 2d and D a digit set

as defined in §1. Let TBT(A,D) denote the self-similar digit tile as constructed from

A and D. By the sum of two sets A and B of points in 2d we always mean the

Minkowski sum AB¯²ab r a `A, b `B´ and by AX we likewise mean AX¯
²Ax rx `X ´. Let ²e

"
,… , e

d
´ denote the canonical basis of 2d. The following lemma

appears in [9, Lemma 4.5], but our proof is included because it is short.

L 1. Let N
!
¯²0´e²³e

"
,… ,³e

d
´. There is a unique smallest finite set

NZ:d such that N
!
XN and DNXAND.
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The set N of lattice points in Lemma 1 will be called the (A,D)-neighborhood, or

simply neighborhood when A and D are understood. It is clear that the neighborhood

can be easily computed using the following algorithm. Because D is a set of coset

representatives of :d}A(:d), for any lattice point y the equation Axd¯ y has a

unique solution pair (x, d ), where x `:d and d `D. It only remains to show that the

algorithm terminates after a finite number of steps.

A 1.

N¯N
!

Repeat until the two sets are equal :

NKLNe²x `:d rAxd¯ y for some d `D and y `DN ´.

Proof of algorithm termination. Let δ denote the maximum distance from the

origin to any point of D. Let N
j
denote the set N in the algorithm at the jth iteration

and r
j
the maximum distance from the origin to any point of N

j
. If c" 1 is the

expansion constant of A, then according to the algorithm r
j+"

% (1}c) (r
j
2δ).

Therefore the sequence ²r
j
´ is bounded and so N is finite. *

The contact matrix C will now be introduced. For each x `N and d `D let x
d

denote the unique solution to dx `Ax
d
D. Let k¯ rN r and let C « be the k¬k

matrix whose rows and columns are indexed by the elements in N and whose entries

are as follows. For x, y `N

c
xy

¯ r²d `D rx
d
¯ y´r.

By convention let the first index of C « correspond to the element 0 `N. Note that

c
!!

¯ rDr and c
!y

¯ 0 for y1 0. Thus the first row of C « consists of all zeros except for

one entry. Let C denote the (k®1)¬(k®1) matrix obtained from C « by removing the

first row and column. Call C the contact matrix for the pair (A,D). (In [9] it is actually

C « that is referred to as the contact matrix.) In Lemma 2 the following notation is

used:

D
n
BDAD…An−"D. (3.1)

L 2. Let x and y be points in the (A,D)-neighborhood. Then the entry cn

xy
in

the contact matrix Cn counts the number of elements d `D
n

such that dx `AnyD
n
.

Proof. The statement will be proved by induction on n. For n¯ 1 the quantity

in question is the number of d `D such that dx `AyD. In previous notation this

is the number of d `D such that x
d
¯ y, which is precisely the definition of the entry

of C in position (x, y).

Assume that the statement is true for n®1. Now cn

xy
¯3

z`N
c
xz

cn−"
zy

. (Recall that

c
x!

¯ c
!x

for all x1 0.) We first show that (1) for each pair d
"
`D, d

#
`D

n−"
with d

"


x `AzD and d
#
z `An−"yD

n−"
, the element d¯Ad

#
d

"
`D

n
satisfies xd `

AnyD
n
. Second we show that (2) each d `D

n
such that dx `AnyD

n
is of the

form d¯Ad
#
d

"
, where d

"
`D, d

#
`D

n−"
, d

"
x `AzD and d

#
z `An−"yD

n−"
.

This will complete the proof.

Concerning (1), we have d
"
Ad

#
x¯Azd «Ad

#
¯AnyAd§d «, where

d « `D and d§ `D
n−"

. Since Ad§d « `D
n

we have dx¯ d
"
Ad

#
x `AnyD

n
.
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Concerning (2), assume that dx `AnyD
n
, where d¯ d

"
Ad

#
and d

"
`D and

d
#
`D

n−"
are uniquely determined. By Lemma 1 we have d

"
x¯Azd «, for some

uniquely determined z `N and d « `D. Then A(d
#
z)d «¯xd

"
Ad

#
¯xd `

AnyD
n
¯A(An−"yD

n−"
)D. By uniqueness of the representation d

#
z `

An−"yD
n−"

. *

According to the Perron–Frobenius theorem for non-negative matrices, C has a

real eigenvalue λ such that for any other eigenvalue µ we have λ& rµr. In other words,

the spectral radius of C is an eigenvalue.

T 2. Let T¯T(A,D) be a self-similar digit tile where A has expansion

factor c and the contact matrix C has largest eigen�alue λ. Under any of the conditions

in Theorem 1 we ha�e

dim
H
(¦T )¯

log λ

log c
.

Proof. Let T
!

be the unit cube centered at the origin with edges parallel to the

axes and let T
n
¯Fn(T

!
) be the nth approximation to the self-similar digit tile T as in

equation (1.1). In the case of a self-similar digit tile the iterated function system is

given by equation (1.2), which implies that

T
n
¯5²A−n(T

!
d

!
Ad

"
…An−"d

n−"
) r d

i
`D´

and T¯ lim
n!¢ T

n
. Note that T

n
is the non-overlapping union of copies of A−n(T

!
),

each copy being a cube of edge length 1}cn. Under the mapping An there is a bijection

between this set of cubes of T
n

and the set of lattice points D
n

as defined in (3.1).

For the given pair (A,D), let N «¯N(A,D)c²0´. For any matrix M, let rM r denote

the sum of the entries of M. By Lemma 2, rCnr counts the number of triples (x, y, d )

that are solutions to the equation dx `AnyD
n
, where x, y `N « and d `D

n
. Let B

n

denote the set of d `D
n
such that dx `AnyD

n
for some x, y `N «, and let β

n
denote

the cardinality of B
n
. Thus

β
n
% rCnr% (k®1)# β

n
, (3.2)

where k is the cardinality of N. Under the bijection in the first paragraph of this proof,

B
n
also corresponds to a certain set of cubes in T

n
. By abuse of language we also refer

to this set of cubes as B
n
.

By Lemma 1 we have DNXAND. By a straightforward induction it is also

true that D
n
NXAnND

n
for n¯ 1, 2,… . Also recall that ²³e

"
,… ,³e

d
´ `N. Let

b¯ b(A,D) denote the largest Euclidean distance from the origin to any point in the

neighborhood N(A,D). By the comments above and the last statement in Theorem 1,

the center of each cube in B
n

has distance at most (ab)}cn from some point on ¦T,

and each point of ¦T has distance at most (ab)}cn from a center of such a cube.

Consider the following tiling of 2d by cubes of edge length 1}cn :

²xA−n(T
!
) rx `A−n(:d)´.

The number of such tiles of edge length 1}cn within distance (ab)}cn of, say, the

origin is bounded by a constant h that depends only on the dimension d, not on n.
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Let α
n

be the smallest number of tiles of edge length 1}cn whose union covers ¦T.

Thus β
n
% hα

n
and α

n
% hβ

n
. Moreover, by (3.2) and the paragraph above, there are

positive constants a« and b« such that

a«rCnr%α
n
% b«rCnr. (3.3)

By a standard result for non-negative matrices [3, Lemma 12, p. 198] we have

lim
n!¢(rCnr)"/n ¯ λ which implies that

lim
n!¢

1

n
logrCnr¯ log λ. (3.4)

Now ¦T is a sub-self-similar set in the sense of Falconer [5, §2f ]. By a result in [8,

Theorem 3.5], the box counting dimension and the Hausdorff dimension coincide for

¦T. Let dim
B
¦T and dim

B
¦T denote the upper and lower box counting dimensions

of ¦T, respectively. Then by [8, Theorem 3.5], dim
B
¦T¯dim

B
¦T¯dim

H
¦T. Thus

dim
H

¦T¯dim
B
¦T¯ lim

n!¢

log(α
n
)

log cn
; (3.5)

in particular the above limit exists. Together (3.3), (3.4) and (3.5) yield

dim
H
(¦T )¯ lim

n!¢

logα
n

n log c
¯ lim

n!¢

logrCnr
n log c

¯
log λ

log c
. *

4. Testing for well-beha�ed boundary

T 3. Let T¯T(A,D) be a self-similar digit tile in 2d, and let λ be the

largest eigen�alue of the contact matrix C. Then the four conditions in Theorem 1 are

equi�alent to

λ! rdetAr.

Proof. Assume the conditions in Theorem 1 are satisfied. Then by Theorem 2 we

have dim
H
(¦T )¯ log λ}log c and by [11, Theorem 2.1] we have d"dim

H
(¦T ).

Therefore rdetAr¯ cd" λ, the equality implied by standard results in linear algebra.

Conversely, assume that the conditions in Theorem 1 fail. Then there exists a

point x `:d such that distinct tiles T and xT overlap. As in the proof of the last

statement in Theorem 1, there is a constant a such that d(T,T
n
)% a}cn. Likewise

d(xT,xT
n
)% a}cn. (Note that the hypotheses of Theorem 1 were not used to

prove this result.) We will first show that any point in Tf(xT ) is within distance

a}cn of some point in ¦T
n
. If y `Tf(xT ) there are points z `T

n
and w `xT

n
such

that d(y, z)% a}cn and d(y, z)% a}cn. Since T
n
f(xT

n
)¯W, there is a point u ` ¦T

n

lying on the segment zw such that d(y, u)% a}cn.

The number of small cubes in T
n
equals rdetArn. Let β

n
denote the number of cubes

of T
n

contained in Tf(xT ) and γ
n

the number of cubes of T
n

in Tf(xT ) that

intersect ¦T
n
. Then there are constants a

"
and a

#
such that

rdetArn % a
"
β
n
% a

#
γ
n
% a

#
rCnr,

where C is the contact matrix. The last inequality is a consequence of Lemma 2, the

bijection between the points of D
n

and the cubes in T
n

described in the proof of
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F 3. Non-primiti�e pair: digits and limit tile.

Theorem 2, and the fact that the points ²³e
"
,… ,³e

d
´ are in the (A,D)-neighborhood.

By equation (3.4)

rdetAr% lim
n!¢

rCnr"/n ¯ λ. *

R 1. There are certain digit tiles which do not satisfy the conditions in

Theorem 1, but for which our method can, nevertheless, be made to work. A pair

(A,D) is called primiti�e if D is contained in no proper A-invariant sublattice of :d.

By A-invariant we mean that A(L)ZL. An example of a non-primitive pair is

A¯ 030
0

31
with digit set

D¯²(0, 0), (1,®1), (2, 0), (®1, 1), (1, 1), (3, 1), (0, 2), (1, 3), (2, 2)´

because D is contained in the A-invariant sublattice generated by (1, 1) and (®1, 1).

The limit tile, shown in Figure 3, is a square with side of length o2. Thus

m(T )¯ 2and, according toTheorems 1 and2, ourmethodof computing the dimension

of the boundary fails. However, by [16, Lemma 2.1], there is an easily computable

matrix Ah and digit set Dh such that (Ah ,Dh ) is primitive and

T(Ah ,Dh )¯ g(T(A,D))

where g is an invertible affine map. Since Hausdorff dimension is preserved by bi-

Lipschitz maps,
dim

H
¦T(Ah ,Dh )¯dim

H
¦T(A,D).

Our method may well apply to Th ¯T(Ah ,Dh ) although it fails for T¯T(A,D). In the

above example, for instance,

Ah ¯ 030
0

31
and

Dh ¯²(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)´.

Theorem 3 applies and gives dim
H

¦Th ¯ 1, the measure of the unit square in Figure 3.
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5. Some examples

5.1. Twin dragon

The twin dragon is a well-known and well-studied example. The dimension of the

boundary is also known and has been computed by various means. By our method

we start with the expansion similitude

A¯ 011
®1

1 1
and the digit set D¯²(0, 0), (1, 0)´. The expansion factor of A is o2. An

approximation of the twin dragon is given in Figure 4.

The neighborhood N, computed using the algorithm in §3, is the following set of

lattice points :

N¯²(0, 0), (0, 1), (1, 0), (1,®1), (0,®1), (®1, 0), (®1, 1)´.

Ordering the elements of Nc²0´ as above (clockwise around a hexagon) the contact

matrix C, computed using the definition, is the following integer matrix with cyclical

structure:

C¯

I

J

0

0

1

0

0

2

0

0

1

0

0

0

0

1

0

0

0

0

2

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

K

L

.

The characteristic polynomial is easy to compute because of the near diagonal

structure of the matrix:

det(C®λI )¯ λ%(1®λ)#®4¯ (λ1) (λ#®2λ2) (λ$®λ#®2).

Thus the largest eigenvalue of C is the real root of λ$®λ#®2. One can easily verify

that λ! 2¯detA. Theorem 3 implies that the formula in Theorem 2 successfully

computes the Hausdorff dimension of the boundary of the twin dragon:

F 4. The twin dragon.
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F 5. The gasket.

dim
H

¦K¯
log0p3[o8728

3


1

3[p3[o8728


1

31
logo2

¯ 1±523627…

5.2. Gasket

For the example we call the gasket the matrix is

a¯ 020
0

21
and the digit set is D¯²(0, 0), (1, 0), (0, 1), (®1,®1)´. An approximation to the gasket

is given in Figure 5.

The neighborhood N is again in a hexagonal pattern:

N¯²(0, 0), (1, 0), (1, 1), (0, 1), (®1, 0), (®1,®1), (0,®1)´.

The contact matrix is a cyclic matrix with three 1s in each row:

C¯

I

J

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

1

0

0

1

0

0

1

1

0

0

0

0

1

1

1

0

0

1

0

1

1

K

L

.

Hence the Perron–Frobenius eigenvector, the unique eigenvector with positive

entries, is the all-1s vector. The corresponding eigenvalue is λ¯ 3.

dim
H

¦K¯
log 3

log 2
¯ 1±5849625…

5.3. Rocket and lander

We conclude with two examples, shown in Figures 6 and 7, having successively

greater Hausdorff dimension.
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F 6. The rocket.

A¯ 030
0

31
D¯²(0, 0), (1, 1), (2, 2), (®1, 0), (®2, 0), (®1, 1), (0,®1), (0,®2), (1,®1)´

dim
H

¦K¯
log(32[o2)

log 3
¯ 1±604522…

F 7. The lander.

A¯ 030
0

31
D¯²(0, 0), (1, 1), (1,®1), (2, 0), (®1,®2), (3,®2), (®1, 2), (3, 2), (1, 3)´

dim
H

¦K¯ 1±913624…
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