
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Vince, A.]
On: 30 April 2009
Access details: Access Details: [subscription number 909588328]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Digital Earth
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t777764757

Arithmetic and Fourier transform for the PYXIS multi-resolution digital Earth
model
A. Vince a; X. Zheng b

a Department of Mathematics, University of Florida, Gainesville, FL, USA b Department of Arts and Sciences,
Voorhees College, Denmark, SC, USA

Online Publication Date: 01 March 2009

To cite this Article Vince, A. and Zheng, X.(2009)'Arithmetic and Fourier transform for the PYXIS multi-resolution digital Earth
model',International Journal of Digital Earth,2:1,59 — 79

To link to this Article: DOI: 10.1080/17538940802657694

URL: http://dx.doi.org/10.1080/17538940802657694

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t777764757
http://dx.doi.org/10.1080/17538940802657694
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Arithmetic and Fourier transform for the PYXIS
multi-resolution digital Earth model

A. Vincea* and X. Zhengb

aDepartment of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA;
bDepartment of Arts and Sciences, Voorhees College, Denmark, SC 29042, USA

(Received 6 March 2008; final version received 30 November 2008)

This paper investigates a multi-resolution digital Earth model called PYXIS,
which was developed by PYXIS Innovation Inc. The PYXIS hexagonal grids
employ an efficient hierarchical labeling scheme for addressing pixels. We provide
a recursive definition of the PYXIS grids, a systematic approach to the labeling,
an algorithm to add PYXIS labels, and a discussion of the discrete Fourier
transform on PYXIS grids.
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1. Introduction

The representation and analysis of global data has a history that dates back several

millennia. The oldest known maps are preserved on Babylonian clay tablets from

about 2300 B.C. The first whole world maps began to appear in the early 16th

century, following voyages by Columbus and others to the New World. Buckminster

Fuller invented the geodesic dome in the late 1940s. Geographic information systems

(GIS) emerged in the 1970�1980s. The emphasis over the past few decades has been

on the computer display and analysis of georeferenced information and remotely

sensed data about the Earth. Traditional reference models of the Earth are based on

the spherical coordinates of latitude and longitude, but recent models, called discrete

global grids (DGGs), are based on cellular subdivisions of regular polyhedra (in

particular, the tetrahedron, octahedron, and icosahedron).

There is a substantial recent literature on discrete global grids, including Ahuja

(1983), Baumgardner and Frederickson (1985), Brodzik and Knowles (2002), Carr

et al. (1992), Chen et al. (2003), Goodchild and Shiren (1992), Kidd (2005), Lee and

Samet (1998), Sahr et al. (2003), Szalay et al. (2005), Tong et al. (2007), and Vince

(2006). The most commonly used is the icosahedral, aperture 3, multi-resolution,

hexagonal discrete global grid. The term hexagonal is used because the cells are

hexagonal (except 12 pentagonal cells). While traditional image processing

algorithms and digital image transforms are typically computed on rectangular

grids, for many applications hexagonal grids are advantageous. Hexagonal grids have

a high packing density, approximate circular regions, and each cell has equal distance

from its six immediate neighbors. Hexagonal grids appear in a wide variety of
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applications such as image processing (Middleton and Sivaswamy 2005), geoscience

(Carr et al. 1992), and the soil moisture and ocean salinity space mission (Camps

et al. 1997, Anterrieu et al. 2002). The term icosahedral is used because the centers of

the cells are located at the vertices of certain subdivisions of the icosahedron. The

Snyder equal area method (Snyder 1992) is often used to project the subdivided

icosahedron onto the surface of the sphere (no projection method can simulta-

neously preserve both area and angle). The icosahedral Snyder equal area aperture 3

hexagonal DGG is usually referred to as ISAE3H. Multi-resolution means that there

is not just a single tessellation, but a hierarchical sequence of progressively finer

tessellations. Going further in the sequence zooms in on smaller areas. Aperture 3

refers to the approximate ratio between the areas of hexagons at successive

tessellations in the sequence. In fact, this small ratio is one of the features that

makes an aperture 3 DGG appealing. A high resolution of ISEA3H appears in

Figure 1.

A major issue in any application of a discrete global grid is how to reference the

cells, i.e. how to give each cell a useful label or address. This paper concentrates on a

novel approach being developed by PYXIS Innovation, Inc., a company based in

Kingston, Ontario, Canada. This paper concerns, not its performance compared

with other digital Earth models, but three particular foundational issues. First, a

precise mathematical description of the indexing system is provided in Section 3,

together with a list of its properties. Second, basic to many DGG applications is an

efficient algorithm for the vector addition of points in terms of their addresses.

A linear time algorithm is provided in Section 4. Third, the discrete Fourier

transform (DFT) is ubiquitous in data analysis (Dudgeon and Mersereau 1984).

An approach that is applicable to the PYXIS grid is given in Section 5. Section 2

provides a summary of the PYXIS approach to the ISEA3H.

Figure 1. ISEA3H.
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2. PYXIS approach

This section provides a summary of the PYXIS# approach to the ISEA3H. This

approach is based on a partition of the sphere into 32 regions, each region modeled

by a multi-resolution sequence of finite, planar, hexagonal grids. The brief summary

of how these planar PYXIS# grids partition the sphere is meant as motivation for

their use in a digital Earth setting. A more precise mathematical description of the

PYXIS# grids is given in Section 3.

Finite, planar, hexagonal, multi-resolution grids with nice properties have

previously appeared. In particular, Lucas (1979) described a multi-resolution

sequence of planar, hexagonal grids called GBT2 (general balanced ternary).

Moreover, the cells in each grid in the sequence can be labeled in a natural way.

This labeling has the property that labels can be added and multiplied conveniently,

i.e. algebraically the structure is a ring (Kitto and Wilson 1991). Kitto et al. (1994)

showed that this ring is isomorphic to the 7-adic integers. Zapata and Ritter (2000)

developed a fast Fourier transform on GBT2. Unfortunately, the generalized

balanced ternary is not compatible with a spherical grid. The ISEA3H discrete

global grid cannot be partitioned into (projected) copies of GBT2.
The basis of the PYXIS# digital Earth reference model is a multi-resolution

sequence P of planar hexagonal grids introduced by Peterson (2003) and PYXIS

Innovation Inc. (2006). Let Pn denote the nth level or resolution, i.e. the nth grid in

the sequence P. Figures 2 and 3 show the hexagonal cells of P1 through P4. In

Figure 2, the levels are superimposed.

Figure 2. Levels 1 through 4 of the PYXIS array.
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A sketch of how the PYXIS# grids Pn are applied to the ISEA3H is as follows.

The central fact is that, for each n, the nth resolution of the ISEA3H can basically be

partitioned into 20 projected copies of Pn�1 and 12 projected copies of Pn. This is

done recursively. The sphere is first tessellated by 20 hexagonal and 12 pentagonal

regions as shown in Figure 4(a), where the sphere has been flattened onto the plane.

Figure 4(b) shows each pentagon in Figure 4(a) as a hexagon with one of its six

directions ‘empty’. This allow us, for practical purposes, to treat each of the 12

pentagons at each level as a hexagon. For each edge of a polygon in Figure 4(b),

construct a line segment 1=
ffiffiffi
3

p
times the length of that edge and a perpendicular

bisector of that edge. This results in the subdivision shown in Figure 5. Repeating

this process again results in the finer resolution subdivision shown in Figure 6.

Figure 4(b), 5, and 6 are the zeroth, first, and second level resolutions of the ISEA3H

discrete global grid. As illustrated in Figure 6(right), the second resolution

tessellation of the sphere is the non-overlapping union of 20 copies of P1 and

12 copies of P2 (by omitting one of its six directions). In general, the ISEA3H is the

non-overlapping union of 20 projected copies of Pn�1 and 12 projected copies of Pn.

This section provided an informal introduction to the PYXIS# approach to the

icosahedral, Snyder equal area, aperture 3, hexagonal discrete global grid in terms of

Figure 3. The first four grids in P, containing seven hexagons, 13 hexagons, 55 hexagons, and

133 hexagons, respectively.
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finite, planar, hexagonal grids denoted Pn. The next section of this paper provides a

precise recursive definition of the array Pn and also a systematic approach to the

labeling of the cells of Pn.

Figure 5. Level 1 � the polygons obtained from the subdivision of polygons in Figure 4(b).

(a)

(b)

Figure 4. (a) The 20 hexagons and 12 pentagons in a tessellation of the flattened sphere.

(b) Each pentagon in (a) as a hexagon with one of its six directions empty.
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3. PYXIS# array

This section begins with a precise definition of the PYXIS# multi-resolution

sequence P of planar hexagonal grids that was introduced informally in the previous

section. The definition is recursive, the grid at a given resolution defined in terms of

the grids at the two previous lower resolutions. A few basic properties that follow

from the definition are then listed, including a tree-like structure on the cells at all

resolutions. The section concludes with an indexing scheme that assigns to each cell

at resolution n a string of n digits from the set {0,1,2,3,4,5,6}. This indexing is a

natural one in that it is compatible with the tree structure, as explained at the end of

this section, and has an arithmetic, as explained in the next section. The indexing

scheme is based on a representation theorem that is analogous to the representation

of integers in base 3. This is further explained in Section 4.

Figure 6. Level 2 � the hexagons generated from the subdivision of polygons in Figure 5.
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It is convenient to represent each hexagonal cell in a grid by its center. The

centers of the cells at a given resolution are a finite set of points of a hexagonal lattice

in the plane. More precisely, a two-dimensional lattice L is the set of all integer linear

combinations of two independent vectors in the plane R2. The elements of the lattice
are called lattice points. The Voronoi cell of a lattice point x in a two-dimensional

lattice L is a set consisting of all points of R2 which are at least as close to x as to any

other lattice point of L. If the Voronoi cells are regular hexagons, then the lattice is

called a hexagonal lattice. A finite, non-empty subset of a hexagonal lattice, or the

corresponding set of Voronoi cells, will be called a hexagonal array. Throughout this

paper we often refer to the lattice point and its Voronoi cell (hexagon)

interchangeably.

In this paper, Z, R, and C denote the set of integers, real numbers, and complex
numbers, respectively. If u and v are two linearly independent vectors in R2, then

L :�fn1u�n2v : n1; n2 � Zg is a two-dimensional lattice and {u, v} is called a set of

generators of L. Let

uA�(1; 0); vA�
�
�

1

2
;

ffiffiffi
3

p

2

�
;

uB�
� ffiffiffi

3
p

2
;
1

2

�
; vB�

�
�

ffiffiffi
3

p

2
;
1

2

�
:

For n]1, let r�1=
ffiffiffi
3

p
; and

un�
rnuA; if n is odd;
rnuB; if n is even;

vn�
rnvA; if n is odd;
rnvB; if n is even;

��

For n]1, define the lattice

Ln�fn1un�n2vn : n1; n2 �Zg:

It is not hard to check that each Ln is a hexagonal lattice. For n odd, Ln is just a

scaled copy of L1, and for n even, Ln is a scaled copy of L1 rotated 308 about the

origin. It is also easy to check that the Ln are nested in the sense that, for all n]1,

LnƒLn�1:

Let Wn�{vn,1, . . . ,vn,6} denote the six immediate neighbors of 0 :�(0,0) in the

lattice Ln. The six lattice points of Wn are ordered counterclockwise as shown in
Figure 7 for both the even and the odd case. More precisely, the six points of Wn, in

order, are (un�vn, vn,�un,�un�vn�vn, un) for both the even and odd cases.

For any lattice L and ¥"X ;Y⁄L; we use the notation X �Y :�fx�y �

L : x � X ; y � Yg: The PYXIS# array Pn can now be defined recursively as follows.

DEFINITION 3.1 Let P0�0, P1�W1@{0} and, for any integer n�1,

Pn�Pn�1@(Pn�2�Wn): (1)

The set Pn is called the PYXIS# array at level n.

Let h be any hexagon at level n centered at lattice point x. According to the

recursive definition of Pn, there is a hexagon h? at level n�1 centered at the same

lattice point x. Call h? the central child of h. Also according to the definition, there
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are six hexagons h1,h2, . . . , h6 in Pn�2 centered at the lattice points x�Wn�2. Call

these the vertex children of h (see Figure 8). This provides a natural tree-like data

structure on the PYXIS# cells.

Properties of P. Property 1 in the list below follows immediately from the

definition of Pn and the facts that the Ln are nested and that WnƒLn. Property 2

follows immediately from the definition of Pn, and property 3 follows from the

definition of Ln. Property 4 is easily verified by induction using the definition of Pn.

1. PnƒLn for n]1.

2. The PYXIS# arrays are nested: P0ƒP1ƒ P2ƒ. . . .

3. The ratio of the area of a Pn hexagon to the area of a Pn�1 hexagon is 3.

4. The number of lattice points in Pn is 1
5
(3n�2�(�2)n�2):

The PYXIS# indexing scheme, explained below, is based on the following

representation theorem for the lattice points of Pn.

o

o

o

o

o

o

o

Figure 8. The vertex child and central children of a cell.
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ω
2,3

ω
2,5

ω
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Figure 7. The generators of the lattices L1 and L2 and the lattice points contained in W1 and

W2.
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THEOREM 3.2 For any n]0 and a �Pn, there exist uniquely determined vi �Wi@{0}

such that

a�
Xn

i�1

vi; (2)

and either vi�0 or vi�1�0 for each i satisfying 05iBn.

Proof. Let Sn be the set of all points of the form a�an
i�1 vi; where vi �Wi@{0} and

either vi�0 or vi�1�0 for each i satisfying 05iBn. The set Sn�1 consists of all
such sums an

i�1 vi; where vn�0, and Sn�2�Wn consists of all such sums an
i�1 vi;

where vn�1�0. Hence the sets Sn satisfy the same recurrence (1) as do the sets Pn.

Since it is easy to check that Sn�Pn for n�0,1, the equality Sn�Pn holds for all n.

The uniqueness is proved by induction. It is easily checked for n�0,1. Assume

that an
i�1 vi�an

i�1 v?i: If vi�/v?n, then, by induction, an�1
i�1 vi�an�1

i�1 v?i implies that

vi�/v?n for all i. If vn"v?n; consider two cases. If exactly one of vn or /v?n is 0, say

/v?n�0i, then, because the lattices Li are nested, vn�an�1
i�1 (v?i�vi) � Ln�1: But this

is a contradiction because vnQLn�1. If neither vn nor /v?n is 0, then, because no two
consecutive vi (or /v?i) are non-zero, vn�v?n�an�2

i�1 (v?i�vi) � Ln�2: This is also a

contradiction because vn�v ?nQLn�2. I

Theorem 3.2 can be used as follows to assign to each cell in Pn a label (address)
that is a string of n digits from the set {0,1,2,3,4,5,6}. The expression a�an

i�1 vi in

Theorem 3.2 will be called the standard form for a in Pn. Recall that Wn�{vn,1, . . . ,

vn,6}. Let vn,0�0 and W n�fvn;0;vn;1; . . . ;vn;6g: So, in standard form,

a�
Xn

i�1

vi;ai
;

where vi;ai
� W i and ai �{0,1,2, . . . ,6}. The string a1a2 . . . an of integers in the

standard form will be called the label of a in Pn. In light of the obvious one-to-one

correspondence between lattice points and Voronoi cells, the string a1a2 . . . an also

serves as the label of the Voronoi cell of a �Pn. Note that, in the label of a point in Pn,

there are no two consecutive non-zero digits. It is easy to verify that the center

hexagon of P1 is labeled 0 and the other six hexagons of P1 are labeled 1, 2, 3, 4, 5, 6

going counterclockwise. The PYXIS# array P2 consists of 13 hexagons labeled 00,
10, 20, 30, 40, 50, 60, 01, 02, 03, 04, 05 and 06. Figure 9 shows the labels of P1, P2,

P3, P4, while Figure 10 shows the labels just at level 4 such that no two consecutive

terms are non-zero. Then the representation theorem implies the following.

COROLLARY 3.3 There is a bijection between Pn and the set of all strings of length n

from the set {0,1,2,3,4,5,6} such that no two consecutive terms are non-zero.

The following result also follows directly from the definitions of Pn and its labels.

COROLLARY 3.4:

1. If a is the label of a point in Pn, then a 0 is the label of its central child.

2. If a is the label of a point in Pn, then a 0 k, 15k56, are the labels of its six

vertex children.
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In this section, the recursive definition of the arrays Pn led to a natural way to

uniquely label each of its hexagonal cells. These results lead to an elegant tree-like

data structure on the PYXIS# cells. The labeling method is further refined in the

next section to yield an efficient algorithm for vector addition of two points in Pn in

terms of their labels.

4. Addition algorithm

Just as the arithmetic of coordinates of points in a standard array is essential for data

retrieval, the arithmetic for the labels of lattice points in a PYXIS# array is

important for data retrieval on PYXIS# grids. Let Ln denote the set of all strings of

length n from the set {0,1,2,3,4,5,6} such that no two consecutive terms are non-zero.

Given two lattice points a,b �Pn the goal is, in terms of their labels in Ln, to

determine the vector sum a�b. This section begins with an informal explanation of

the method, which is based on an equivalent version of the representation

Theorem 3.2. This is followed by the full algorithm.

For a �Pn let l(a) denote the label of a in Pn. Let l(a)�a1a2 . . . an and l(b)�
b1b2 . . . bn. If a�b �Pn and l(a�b)�c1c2 . . . cn, then the label c1c2 . . . cn is called the

sum of the labels a1a2 . . . an and b1b2 . . . bn, and we write c1c2 . . . cn�a1a2 . . . an�
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Figure 9. Labeled cells at levels 1 through 4 of the PYXIS# array.
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b1b2 . . . bn in Ln. For example, the three dashed vectors in Figure 10 show that

0506�2005�1040 in L4. If a�b QPn, then we have an ‘overflow’.
Table 1 is a partial table for addition in L4. (Because it is obvious that 0000�

abcd�abcd for any a,b,c,d, this is not included in the table.) A general algorithm for

addition in the set Ln is given below, and Table 1 is used in that algorithm. Referring

to the table, if 00a1a2�00b1b2�c1c2c3c4, then c1c2 and c3c4 will be called the carry

and the remainder of the addition, respectively.

By grouping terms into pairs in its standard form (2), we obtain the equivalent

form for a point a �Pn,

a�
X�n=2�
i�1

wi3
�i;

where

wi�vi�v?i;

for some vi � W 1; v?i � W 2: Note that, although vi�v?i � W 1�W 2; it cannot be

just any element of W 1�W 2 because, by the definition of the standard form, either

vi or v ?i (or both) must be 0. Hence there are exactly 13 possibilities for each wi

(including 00). Thus, the standard form for Pn is essentially a base 3 number system
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Figure 10. Labeled cells at level 4 of the PYXIS# array.
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(radix system) using 13 digits. There would be redundancy (non-uniqueness of

representation) if not for the requirement of no two consecutive non-zero digits.

Theorem 1 guarantees unique representation. Exactly as for other familiar radix

number systems, addition in Pn can be carried out by summing digits from right to

left, and possibly ‘carrying’ a digit one place to the left. In our case, each of the 13

possible wi are represented by a pair of digits (00,01,02,03,04,05,06,10,20,30,40,

50,60). Hence, addition is carried out two digits at a time instead of one digit at a

time. Table 1 is the basic addition table for PYXIS#, exactly as the 10�10 addition

table is the basic table for base 10 arithmetic. There is one glitch � namely it may

happen that, by using the table, we arrive at two consecutive non-zero digits, for

example 0320. In this case we can use Table 1 to convert the label to standard form:

0320�0300�0020�3060.

As an example, consider 001020�000503�(00j10j20)�(00 j 05 j 00). We proceed

from right to left in pairs, always using Table 1.

Stage 1: 20 �0000020 �0000�0020�00 j 20. The remainder is 20 and the

carry is 00. The sum to this point is 20.

Stage 2: 10 �05 �00 (carry)00010 �0005�0603�06 j 03. So the remainder

is 03 and the carry is 06. The concatenated sum at this point (from Stages 1 and 2) is

0320, which is not in standard form. So we convert using Table 1: 0320�0300�
0020�3060.

Stage 3: 00�00�06 (previous carry)�06. The sum at this point is now 063060.

Again, it must be converted into standard form: 0630�0600�0030�0010. Note

that when 0ab0 is converted to standard form, Table 1 gives 0a�b0�c0d0, in

particular the rightmost digit is always 0. Therefore, no new pair of consecutive non-

zero digits is introduced to the right. In our example, the final sum is 001060.

Table 1. Partial addition table for P4.

� 0001 0002 0003 0004 0005 0006 0010 0020 0030 0040 0050 0060

0001 0104 0020 0002 0000 0006 0010 0105 0103 0205 0003 0005 0603

0002 0020 0205 0030 0003 0000 0001 0104 0206 0204 0306 0004 0006

0003 0002 0030 0306 0040 0004 0000 0001 0205 0301 0305 0401 0005

0004 0000 0003 0040 0401 0050 0005 0006 0002 0306 0402 0406 0502

0005 0006 0000 0004 0050 0502 0060 0603 0001 0003 0401 0503 0501

0006 0010 0001 0000 0005 0060 0603 0602 0104 0002 0004 0502 0604

0010 0105 0104 0001 0006 0603 0602 1040 0100 0020 0000 0060 0600

0020 0103 0206 0205 0002 0001 0104 0100 2050 0200 0030 0000 0010

0030 0205 0204 0301 0306 0003 0002 0020 0200 3060 0300 0040 0000

0040 0003 0306 0305 0402 0401 0004 0000 0030 0300 4010 0400 0050

0050 0005 0004 0401 0406 0503 0502 0060 0000 0040 0400 5020 0500

0060 0603 0006 0005 0502 0501 0604 0600 0010 0000 0050 0500 6030

0100 0101 0102 0103 0104 0105 0106 1030 2060 2050 0020 0010 1040

0200 0201 0202 0203 0204 0205 0206 2050 2040 3010 3060 0030 0020

0300 0301 0302 0303 0304 0305 0306 0030 3060 3050 4020 4010 0040

0400 0401 0402 0403 0404 0405 0406 0050 0040 4010 4060 5030 5020

0500 0501 0502 0503 0504 0505 0506 6030 0060 0050 5020 5010 6040

0600 0601 0602 0603 0604 0605 0606 1050 1040 0010 0060 6030 6020
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The general algorithm appears below, followed by some explanatory comments.

Algorithm 1: SUM (a1a2 . . . an, b1b2 . . . bn)

Input: Two labels a1a2 . . . an �Ln and b1b2 . . . bn �Ln.
Output: The SUM:�a1a2 . . . an�b1b2 . . . bn in Ln, if it exists. Otherwise

SUM�overflow.

Step 1. If n is odd, append 0 to the end of each summand. So now each summand
consists of 2m digits, for some m.

Step 2. Divide the digits into pairs as follows:

a1a2½a3a4½ . . . ½a2m�1a2m

b1b2½b3b4½ . . . ½b2m�1b2m

Denote the pairs by A1, . . . ,Am and B1, . . . ,Bm, respectively.
Initialize Cm�00.

Step 3. For k�m to 1 (right to left) do
Compute 00Ak�00Bk�00Ck as follows. If one of the summands is 0000, then
use Table 1. Otherwise, first compute Dk�00Ak�00Bk using Table 1 � then
recursively compute 00Ak�00Bk�00Ck�SUM(00Ck, Dk).
Let Rk be the remainder and Ck�1 the carry of 00Ak�00Bk�00Ck.
If Rk�0a and Rk�1�b0, where a,b"0, then use Table 1 to compute
0a00�00b2�c0d0, and let Rk�c0 and Rk�1�d0.

Step 4. If C0�0a and R1�b0, where a,b"0, then use Table 1 to compute 0a00�00b0�
c0d0, and let C0�c0 and R1�d0.

Step 5. If C0"00, then SUM�overflow.
Otherwise SUM�R1 . . . Rm, the concatenation of the Rk. If n is odd, the last
digit in this concatenation is 0 � remove this 0.
Return SUM.

Concerning Step 1, by appending a 0 to the end of the label, the label of the

central child is obtained. But the lattice point for the parent and central child is the

same point. The 0 is removed in Step 5.

Concerning the first part of Step 3, note that, since 00Ck begins with 00, the

algorithm does not perform a nested recursive call on SUM when SUM (00Ck, Dk) is

performed. Hence the algorithm does not enter an infinite loop. Also note that any
sum of three labels of the form 00a1a2�00b1b2�00c1c2 lies in L4; there is no

‘overflow’. This can be proved formally, but can also be easily checked by referring to

Table 1. Concerning the last part of Step 3, this puts the answer in standard form as

explained prior to the algorithm. Step 4 is just to convert the leftmost digits to

standard form.

Since the number of computations in each iteration in Step 3 is constant, the

computational complexity of this algorithm is efficient, linear in n.

5. Discrete Fourier transform for PYXIS#

Because the discrete Fourier transform (DFT) is ubiquitous in data analysis and is an

important tool in image processing, we consider the DFT on PYXIS# grids in this

section. Its application to the PYXIS# arrays, however, is somewhat problematic.
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The first issue is to formulate the DFT in the context of a lattice. The second, more

difficult, issue is to apply it to the finite subset Pn of the hexagonal lattice. These are

the topics addressed in this section.

In dimension 1, consider cells of unit length centered, say, at the points 0,91,
92, . . . . An image can be thought of as a complex-valued function defined on a

finite subset, say {0,1,2, . . . ,N�1}, of these points. Let C [N] denote the vector space

of all such functions. The classical discrete Fourier transform (DFT) is the linear

transformation F :C[N] 0 C[N] defined by

(Fa)(k)�
XN�1

j�0

a(j)e�2i(jk=N):

The set SN�{0,1,2, . . . ,N�1} can be regarded as a set of coset representatives of

the quotient Z/NZ (i.e. residues modulo N). In fact, the DFT can be thought of as

being defined on this quotient Z/NZ. Although any set of coset representatives can

be used, the set SN is particularly useful for practical applications.

Using the notion of the quotient lattice, the DFT can be extended to the two-
dimensional hexagonal lattice (or, for that matter, to an arbitrary lattice in any

dimension). A non-empty subset L0 of a lattice L that is itself a lattice of the same

dimension as L is called a sublattice of L. The quotient G:�L/L0 is just the quotient

of the lattices considered as Abelian groups. The dual L* of a lattice L is defined by

L+�fs �R2:hr; si �Z; for all r � Lg;
where hr; si denotes the ordinary inner product of r and s. Let G+:�L+

0=L+: For an

arbitrary lattice L and sublattice L0, the DFT is defined as the linear transformation

F :CG 0 CG+

;

given by

(Fa)(s)�
1ffiffiffiffi
N

p
X
r �G

a(r)e�2ihr;si; (3)

for all a �C G and all s � G+: Some properties of the DFT as defined above can be

found in Zapata and Ritter (2000).

Consider the following geometric interpretation. For any finite subset T⁄L and

x �L, let Tx :�x�T : We say that T tiles the lattice L by translations by the sublattice

L0 if [
x �L0

Tx�L

and

TxSTy�¥

whenever x"y: In this context, T is called a tile. Each tiling (tile) involved in this
paper is a tiling (tile) by translations by a sublattice. It is easy to show that a

subset TƒL is a tile if and only if T is a set of coset representatives of L/L0 for

some sublattice L0. So, in Definition 3 of the DFT, a tile T can be taken as a set

of coset representatives of the quotient group L/L0. Hence, if T is not such a tile,

the region T is not amenable to the DFT as defined in Equation (3). The following
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theorem, the somewhat complicated proof of which appears in Zheng (2007),

shows that, for any integer n�2, the nth level PYXIS# array Pn does not tile the

underlying hexagonal lattice Ln. Hence we cannot apply the above definition of

the DFT to Pn.

THEOREM 5.1 For any n�2, the nth level Pn of the PYXIS# array does not tile

its underlying lattice Ln.

Since the DFT cannot be directly applied to the PYXIS# array Pn, we introduce

another sequence of arrays that closely approximates the Pn and that is amenable to

our formulation of the DFT. Recall from Section 2 that

uA�(1; 0); vA�
�
�

1

2
;

ffiffiffi
3

p

2

�
; uB�

� ffiffiffi
3

p

2
;
1

2

�
; vB�

�
�

ffiffiffi
3

p

2
;
1

2

�
:

Let LA be the lattice generated by uA and vA, and similarly LB the lattice generated by

uB and vB. Let RA
n be the subset of LA that lies within the closed convex hull of the six

points

fjuA�kvA : (j; k) � f9(n; 0);9(0; n);9(n; n)g;

and RB
n the subset of LB that lies within the closed convex hull of the six points

fjuB�kvB : (j; k) � f9(n;�n);9(2n; n);9(n; 2n)g:

The arrays RA
n and RB

n are hexagonal in shape, the case n�3 shown in Figure 11(a)

and (b), respectively. It has been proved by Vince and Zheng (2007) that the array RA
n

is a set of coset representatives of the quotient of the hexagonal lattice LA by a

hexagonal sublattice. Likewise, RB
n is the set of coset representatives of the quotient

of LB by a hexagonal sublattice. We call a set of coset representatives of the quotient

of two hexagonal lattices a regular hexagonal array.
Using the general method outlined at the beginning of this section, the DFT on

RA
n and RB

n can be computed. Moreover, the paper of Vince and Zheng (2007) gives a

detailed exposition of the DFT on regular hexagonal arrays. A particularly efficient

method in that paper computes the two-dimensional hexagonal DFT by converting

it to the one-dimensional standard DFT.

It remains to show the relationship between the regular hexagonal arrays and the

PYXIS# arrays. The following theorem states that, up to a scaling factor, Pn can be

tightly embedded into a regular hexagonal array. In Figure 12, the solid hexagons are
cells of P4, and the dashed hexagons are the remaining cells of the corresponding

level of the regular hexagonal array. To be precise, define a scaled version of the

regular hexagonal array as follows. Let k:�k(n)� 1
2
(3n�1) and r�1=

ffiffiffi
3

p
: Then for

n]1 define

R2n�1�r2n�1RA
k ; R2n�r2nRB

k :

The following properties 1�3 are easily checked for all n, and property 4 is derived in

Vince and Zheng (2007), and is not a difficult calculation.

1. RnƒLn,

2. RnƒRn�1,
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3. both R2n�1 and R2n consist of all points contained in the closed convex hull of

the six points Xn�{kv :v �W2n�1},

4. /½RA
n ½�3n2�3n�1 and ½RB

n ½�9n2�3n�1:

Statements 1 and 2 in the following theorem indicate that each PYXIS# array is

contained in a particular regular hexagonal array of type Rn, but in no coarser

(scaled) regular hexagonal array of type RA or RB: Hence statements 2 and 3 of the

theorem indicate that the embedding of the PYXIS# array into a regular hexagonal

array in statement 1 is tight.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a)

(b)

Figure 11. The regular hexagonal array RA
3 (a) and RB

3 (b).
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THEOREM 5.2:

1. For all n]1, we have PnƒRn.

2. For kB 1
2
(3n�1); the array P2n�1 is not a subset of the array r2n�1RA

k and Pn

is not a subset of r2nRB
k :

3. If jPnj and jRnj denote the number of lattice points in Pn and Rn, respectively,

then

lim
n0

½Pn½

½Rn½
�

4

5
:

Proof. Let v �W2n�1 and let L
0

be the ray directed from the origin through v. We

first show by induction that P2n�1 contains the point kv but no point on L
0

past kv.

The statement is clearly true for n�1. By the definition of the PYXIS# array

P2n�1�P2n�2@ (P2n�3�W2n�1)�(P2n�2"P2n�3)@P2n�3@(P2n�3�W2n�1):

The set P2n�2"P2n�3ƒL2n�2"L2n�3 contains no points on L
0

. By the induction
hypothesis, the set P2n�3 contains the point [(3n�1�1)/2](3v) but no point

on L
0

past this point. Therefore, P2n�3�W2n�1ƒL2n�3�W2n�1 contains

[(3n�1�1)/2](3v)�v�kv but no point on L
0

past this point. A similar proof shows

that P2n contains the point kv but no point on L
0

past kv. Statement 2 of the theorem is

now proved.
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Figure 12. Array P4 embedded in the corresponding level of the regular hexagonal array.
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Since P2n�1 and P2n both contain the set of six points Xn, to prove statement 1

of the theorem, it is sufficient to show that both P2n�1 and P2n are contained in the

convex hull C2n�1�C2n of Xn. To do this, two facts are needed: Cn⁄Cn�1 for all n

follows from properties 2 and 3 preceding the statement of the theorem, and
C2n�3�conv(W2n�1)⁄C2n�1 is easily checked, where conv denotes the convex hull.

The proof now proceeds by induction, the first case being immediate. For the odd

case:

P2n�1�P2n�2@ (P2n�3�W2n�1)ƒC2n�2@ (C2n�3�W2n�1)⁄C2n�1;

where the second to last inclusion is by the induction hypothesis and the last

inclusion by the facts above. For the even case:

P2n�P2n�1@(P2n�2�W2n)ƒC2n�1@ (C2n�2�conv(W2n))

⁄C2n�1@(C2n�3�conv(W2n�1))⁄C2n�1�C2n;

the second to last inclusion because C2n�2�C2n�3 and conv/(W2n)ƒconv(W2n�1):
Consider statement 3 of the theorem. By property 4 of the PYXIS# array in

Section 3, we have ½P2n�1½�
1
5
(32n�1�(�2)2n�1): Also by property 4 of hexagonal

arrays in this section

½R2n�1½� ½RA
k ½�3k2�3k�1�

3

4
(3n�1)2�

3

2
(3n�1)�1�

1

4
(32n�1�1):

Figure 13. The Fourier transform. An image, on the left, on a regular hexagonal array. The

right figure shows the frequencies of the left figure.
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Therefore,

lim
n0

½P2n�1½

½R2n�1½
� lim

n0

1
5
(32n�1 � (�2)2n�1)

1
4
(32n�1 � 1)

�
4

5
:

A similar argument holds in the even case. I

Using the notion of the quotient lattice, the DFT has been formulated in this
section for certain finite subsets of the hexagonal lattice L. Such a subset must tile L

by translations by a sublattice. For n�2 the PYXIS# array Pn, however, does not

tile its underlying hexagonal lattice Ln by translations. To circumvent this problem,

we have constructed another sequence of arrays, the regular hexagonal arrays Rn,

that do tile Ln by translations and into which the arrays Rn can be very closely

embedded in the sense of Theorem 5.2. Our formulation of the DFT can be

efficiently applied to Rn. As shown in Figures 13 and 14, the DFT on a regular

hexagonal array performs well in transforming a certain patch of image on the
PYXIS# DGG.

6. Conclusion

ISEA3H is a multi-resolution, aperture 3, discrete global grid based on the Snyder

equal area projection of a certain sequence of basically hexagonal subdivisions of the

Figure 14. The inverse Fourier transform. The left figure shows the high frequencies in

Figure 13 by cutting off the low frequencies. The right figure is the image obtained from the

inverse Fourier transform of the left figure.
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icosahedron. The PYXIS# digital Earth reference model is based on a partitioning

of ISEA3H at each resolution into 32 pieces, each piece the projection of a finite,

planar, hexagonal grid. The sequence of such planar grids is denoted Pn, n]1, in this

paper. The research undertaken in this paper is foundational, namely

1. to provide a mathematical definition of the PYXIS# grids Pn and a precise

description of the unique labeling of the cells of Pn by strings of n digits from

the set {0,1,2,3,4,5,6}. This is essential to further research and to the
development of algorithms,

2. to provide an efficient algorithm for the basic task of vector addition in Pn,

and

3. to provide an efficient method to perform the discrete Fourier transform on

the grids Pn.

Concerning item 1, a definition is given by the recursive formula (1) in Section 3,

and the indexing, which is analogous to a base 3 radix system for the integers, is

described in Sections 3 and 4. Item 2 is done in terms of the cell labels in Section 4

with linear computational complexity in n. Concerning item 3, the DFT is general-

ized in Section 5 from intervals in dimension 1 to two-dimensional ‘tiles’ in the

hexagonal lattice. Although Pn is not a tile for n�2, a small number of cells from the

arrays surrounding Pn in the tessellation of the sphere can be added to Pn so that the
DFT can be computed efficiently on the slightly extended array.
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