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Abstract

Integrity, a measure of network reliability, is de-ned as

I(G) = min
S⊂V

{|S| + m(G − S)};

where G is a graph with vertex set V and m(G− S) denotes the order of the largest component
of G − S. We prove an upper bound of the following form on the integrity of any cubic graph
with n vertices:

I(G)¡ 1
3 n+ O

(√
n
)
:

Moreover, there exist an in-nite family of connected cubic graphs whose integrity satis-es a
linear lower bound I(G)¿�n for some constant �. We provide a value for �, but it is likely
not best possible. To prove the upper bound we -rst solve the following extremal problem. What
is the least number of vertices in a cubic graph whose removal results in an acyclic graph? The
solution (with a few minor exceptions) is that n=3 vertices su5ce and this is best possible.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There are several measures of the reliability of a communication network. An elegant
and simple one is called the integrity of the network, a concept introduced by Barefoot,
Entringer and Swart in 1987 [9]. The motivation is as follows. Model the network as a
graph. To disrupt the network a terrorist attempts to remove a small set of vertices (or
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edges) such that the remaining connected components are small. Formally, the integrity
of a graph G with vertex set V is de-ned as

I(G) = min
S⊂V

{|S| + m(G − S)};

where m(G−S) denotes the order of the largest component of G−S. The edge integrity
is de-ned similarly as

I ′(G) = min
S⊂E

{|S| + m(G − S)};

where E is the edge set of G. The goal in constructing networks resilient to attack is
to -nd in-nite families of graphs for which the integrity is large. The complete graphs
have this property, but they are “expensive” in the sense that many edges must be
incorporated. For this reason, it is natural to consider the integrity of k-regular graphs,
for a -xed integer k.
There is a substantial literature on integrity, but most of the papers are concerned

with calculating the integrity of particular graphs. For example, an easy result cited in
the survey article on integrity by Bagga et al. [7] gives the integrity and edge integrity
of a path Pn with n vertices:

I(Pn) = �2√n+ 1� − 2; I ′(Pn) = �2√n� − 1: (1)

There are results on the interrelations between integrity and other graph parameters [18],
on the computational complexity of computing integrity [17] and results on 2-regular
graphs [5]. Conspicuously absent from the literature are general results on the integrity
of k-regular graphs for -xed k ¿ 2, and on constructing in-nite families of k-regular
graphs with large integrity. In this paper we concentrate on cubic graphs. One result
(Theorem 7 of Section 3) gives an upper bound, linear in the number of vertices, on
the integrity and edge integrity of cubic graphs. Basically we prove that

I(G)¡
n
3
+ O(

√
n) I ′(G)¡

n
2
+ O(

√
n)

for connected cubic graphs G with n vertices.
The proof of the above result is based on the solution of the following extremal

problem. What is the least number of vertices in a cubic graph whose removal results
in an acyclic graph? It was brought to our attention by a knowledgeable referee that
this problem, for general as well as cubic, graphs has received attention since at least
1974. Background on the problem appears at the beginning of Section 2. For cubic
graphs the result in this paper is an improvement over past results. The solution (with
a few minor exceptions) is that n=3 vertices su5ce and this is best possible. The proof
also appears in Section 2 (Theorem 2).
Concerning the question of in-nite families of cubic graphs with large integrity, it

is somewhat surprising that there exists an in-nite family G of connected cubic graphs
with integrity linear in the number of vertices, i.e., there is a positive constant � such
that I(G)¿�n for every in G ∈G (Theorems 8 and 9). The proof relies on expander
graphs as explained in Section 4.
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2. An extremal graph problem

All graphs are assumed to be simple, i.e., without multiple edges or loops. In fact,
the main result in this section is false, in general, for graphs with multiple edges. The
problem is to determine the minimum number of vertices in a connected cubic graph
G such that their removal results in an acyclic graph. When we say that a vertex is
removed from a graph, that vertex and all incident edges are removed. The notation
G−S is used for the graph obtained by removing set S of vertices from G. A minimal
cardinality set S of vertices such that G−S is acyclic will be called a G-set and f(G)
will denote the number of elements in a G-set.
The problem of determining the number f(G) of vertices in a G-set has appeared in

the literature in various guises. In the computer science literature a set of vertices such
that their removal results in an acyclic graph is referred to as a vertex feedback set
[8,20–22,25] and in the graph theory literature as a decycling set [11,12]. The problem
of -nding a minimum such set is known to be NP-hard for general networks, but
there are polynomial time approximation algorithms and polynomial time algorithms
for particular families of graphs relevant to applications (see references above). Also
several papers address the problem of -nding the maximum number a(G) of vertices
of G that induce a forest; this is an equivalent problem since a(G)= n−f(G), where
n is the number of vertices of G. Alon, Kahn, and Seymour [3] proved that for graphs
with average degree d¿ 2 the upper bound f(G)6 2n=(d + 1) holds. Concerning
cubic graphs, in 1974 Jaeger [19] proved that f(G)¿ �(n+2)=4� for connected cubic
graphs. Concerning an upper bound Bondy et al. [14] proved that f(G)6 (3n+ 2)=8
for any connected graph all of whose vertices have degree at most 3 and n¿ 5. Alon
et al. [4] proved a result whose corollary (Corollary 1.6) is that f(G)6 3n=8 for
any triangle-free graph all of whose vertices have degree at most 3. Actually, in the
prior paper of Bondy, Hopkins and Staton it is proved that f(G)6 (n+ 1)=3 for any
triangle-free graph all of whose vertices have degree at most 3. This was improved
slightly by Lu and Zheng [28] to f(G)6 n=3 for the same class of graphs with
two exceptions, thus con-rming a conjecture of Speckenmeyer [27]. The result in this
paper (Theorem 2) is an improvement over prior results on cubic graphs in that the n=3
upper bound is proved, with a few given exceptions, without assuming that the graph is
triangle-free. This is required for subsequent results in the paper. It is interesting to note
that it remains open [1] whether f(G)6 3n=8 for any n vertex, planar, bipartite graph.
Note that there are in-nitely many connected cubic graphs such that f(G) = n=3,

where n denotes the number of vertices of G. Figs. 1A and B can be generalized in
the obvious way. To leave the graph in Figure 1A acyclic, at least one vertex must
be removed from each triangle. Hence, at least n=3 vertices must be removed from G
to obtain an acyclic graph. In fact, there are in-nitely many connected cubic graphs
G on n vertices such that f(G) = 3n=8. To leave the graph in Fig. 1B acyclic at least
one vertex must be removed from each triangle lying on the cycle and at least two
vertices from each copy of the subgraph in Fig. 1C. Hence at least 3n=8 vertices must
be removed to leave the graph acyclic.
The graph in Fig. 1C will be denoted K+

4 throughout this paper. Likewise, the
graphs in Figs. 1D and E will be denoted K++

4 and 2K4, respectively. We use the
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term exceptional for any of the following graphs: K4, K+
4 , 2K4, any connected cubic

graph with 8 vertices, and any connected graph containing K++
4 as a subgraph. Note

that f(K4) = 2; f(K+
4 )= 2 and f(2K4) = 4. Any graph that is not exceptional will be

called ordinary. The remarks above show that Theorem 2 below is best possible.

Lemma 1. Any connected cubic graph of order 8 has f(G) = 3. Any connect graph
of order 8 whose vertices have degree at most 3, but not all 3, has f(G)6 2.

Proof. We prove the statement about connected, cubic graphs and leave the easy proof
of the last statement as an exercise.
We -rst show that f(G)¿ 2. If a set S consisting of any 2 vertices is removed,

6 vertices and at least 6 edges remain. Hence at least one connected component
of G − S has at least as many edges as vertices. This implies that G − S contains
a cycle.
To show that f(G)6 3, let S be a set of two vertices at a distance at least 3 apart.

Then G− S has 6 vertices, each of degree 2. If G− S is a 6-cycle, then removing one
addition vertex results in an acyclic graph. There is only one connected graph with 8
vertices, up to isomorphism, where G − S is the disjoint union of two 3-cycles. For
this particular graph f(G) = 3.
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Fig. 2. Case 1.

Theorem 2. Let G be a connected graph with n vertices, all of degree at most 3. If G
is ordinary, then n=3 vertices can be removed from G such that the remaining graph
is acyclic. If G is exceptional, then 3n=8 vertices su5ce unless G = K4; K+

4 or 2K4.

Proof. All graphs in this proof will have degrees at most 3, even if not explicitly
stated. The -rst statement in the theorem will be proved by induction on n. The second
statement will be proved afterwards. Note that f(G)6 n=3 for any graph (including
the empty graph) with n6 1. Assume that G is any ordinary graph with n¿ 1 vertices
and that the statement is true for all graphs with less than n vertices. The induction is
somewhat delicate, requiring -ve cases.
Case 1. The graph G contains the graph in Fig. 2A or B as a subgraph. The following

pairs of vertices are assumed non-adjacent: a; c and b; d in Fig. 2A and a; c and b; c
in Fig. 2B.
Remove the four non-labeled vertices in Fig. 2 and add edges ac and bd in Fig.

2A (ac and bc in Fig. 2B) to form a connected graph G′ with n − 4 vertices. Let S ′

be a G′-set, and let S be the union of S ′ and the “large” vertex in Fig. 2A or 2B.
That G′ − S ′ is acyclic implies that G − S is acyclic. By induction f(G′)6 (n− 4)=3
if G′ is ordinary. Therefore f(G)6f(G′) + 16 (n − 4)=3 + 1¡n=3. Concerning
the exceptional cases, if G′ = K4, then G, having 8 vertices, is also exceptional. For
the case G′ = K+

4 , G has 9 vertices and f(G) = f(K+
4 ) + 1 = 9

3 . If G′ has 8 ver-
tices, then G has 12 vertices and, by Lemma 1, f(G) = f(G′) + 1 = 4 = 12

3 . If G
′ is

exceptional containing K++
4 , then either G also contains K++

4 , hence is exceptional,
or G consists of two ordinary graphs G1 (with n1 vertices) and G2 (with n2 vertices)
joined by a bridge. (A bridge is an edge whose removal from the graph results in
an additional component.) In this case, by induction f(G) = f(G1) + f(G2)6 n1=3
+ n2=3 = n=3.
Case 2. The graph G has at least one vertex of degree less than 3.
If G has a vertex v of degree 1, then remove v to obtain a graph G′. If G′ is

ordinary, then by induction f(G) = f(G′)6 (n − 1)=36 n=3. The cases where G′ is
exceptional are easily checked.
Assuming no vertices of degree 1, let v be a vertex of degree 2 with adjacent

vertices a and b. We consider two cases. First assume that a and b are adjacent.
Remove vertices v; a; b to obtain a graph G′ with n − 3 vertices, at least one vertex
of degree less than 3 (at least one in each component if G′ has two components).
Let S be the union of a G′-set and vertex a. If G′ is ordinary, then by induction
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f(G)6f(G′) + 16 (n − 3)=3 + 1 = n=3. If G′ is exceptional, then G must contain
K++
4 and hence also be exceptional.
Now assume that a and b are not adjacent. Form a new graph G′ by removing vertex

v from G and adding an edge joining a and b. If G′ is ordinary, then by induction
f(G) = f(G′)6 (n − 1)=3¡n=3. So assume that G′ is exceptional. If G′ = K4 then
G = K+

4 is again exceptional. If G = K+
4 , then G has 6 vertices. It is easy to verify

that the few graphs G on 6 vertices satisfy f(G)6 2= 6
3 . If G

′ is a cubic graph with
8 vertices then G has 9 vertices and, according to Lemma 1, f(G) = f(G′) = 3 = 9

3 .
Finally consider the case where G′ consists of a graph G0 with K++

4 attached. If G also
contains K++

4 then G is also exceptional. Otherwise G0 is ordinary and by induction
f(G) = f(G0) + 26 (n − 6)=3 + 2 = n=3.
In light of Case 2, we can now assume that G is cubic in Cases 3–5.
Case 3. The graph G has a bridge.
Denote the two components after removing the bridge by G1 and G2 with number

of vertices n1 and n2, respectively. If they are both ordinary, then by induction f(G)=
f(G1)+f(G2)6 n1=3+n2=3=n=3. If G1 is exceptional, then by Case 2 either G1=K+

4
or G1 contains K++

4 ; in either case G is exceptional.
Case 4. The graph G has an edge cutset consisting of two edges as in Fig. 3 where

G0 has 4, 6 or 8 vertices.
Consider -rst the case where G0 has 6 vertices. It is easy to check that, for any

graph G0 on 6 vertices (each of degree at most 3) there is a set S0 consisting of 2
vertices such that G0 − S0 is acyclic and, moreover, one of the vertices in S0 can be

a

c 

G0

d

Fig. 3. Case 4.
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assigned arbitrarily. In Fig. 3, choose vertex a to be in S0. Remove G0 from G to
obtain a graph G′ on n − 6 vertices. If G′ is disconnected, then the situation reverts
to Case 3. Let S ′ be a G′-set and let S = S ′ ∪ S0. That G′ − S ′ is acyclic implies that
G−S is acyclic. Since G′ has two vertices of degree less then 3, G′ is either ordinary
or contains K++

4 . In the exceptional case, G is again exceptional. If G′ is ordinary,
then by induction f(G)6f(G′) + 26 (n − 6)=3 + 2 = n=3.
Next consider the case where G0 has 8 vertices. By Lemma 1 there is a set S0 of 2

vertices such that G0−S0 is acyclic. If c is not adjacent to d in Fig. 3, then remove G0

from G and an add edge cd to obtain a connected cubic graph G′ with n− 8 vertices.
Let S ′ be a G′-set and let S = S ′ ∪ S0. That G′ − S ′ is acyclic implies that G − S is
acyclic. If G′ is ordinary, then by induction f(G)6f(G′)+ 26 (n− 8)=3+ 2¡n=3.
Concerning the cases where G′ is exceptional, if G′ = K4 then G has 12 vertices and
f(G)=f(K4)+2= 12

3 . If G
′ has 8 vertices, then G has 16 vertices and f(G)=f(G′)+

2 = 5¡ 16
3 . Finally, if G

′ contains K++
4 , then G has a bridge which has already been

considered in Case 3.
If c is adjacent to d in Fig. 3, then remove G0 and vertices c; d from G to obtain a

graph G′ with n− 10 vertices. If G′ is disconnected, then the situation reverts to Case
3. Let S ′ be a G′-set and let S = S ′ ∪ S0 ∪ {c}. That G′ − S ′ is acyclic implies that
G−S is acyclic. Since G′ has two vertices of degree less then 3, G′ is either ordinary
or contains K++

4 . In the exceptional case, G is again exceptional. If G′ is ordinary,
then by induction f(G)6f(G′) + 36 (n − 10)=3 + 3¡n=3.
Finally consider the case where G0 has 4 vertices. If c is adjacent to d in Fig. 3,

then the graph G′ induced by G0 and vertices {c; d} has 6 vertices attached to the
rest of G by two edges, a situation already considered. If c is not adjacent to d, then
remove G0 from G and add an edge cd to obtain a connected cubic graph G′ with
n − 4 vertices. There is a vertex v0 in G0 such that G0 − v0 is acyclic. Let S ′ be a
G′-set and let S = S ′ ∪ {v0}. That G′ − S ′ is acyclic implies that G − S is acyclic.
If G′ is ordinary then by induction f(G) = f(G′) + 16 (n − 4)=3 + 1¡n=3. Con-
cerning the cases where G′ is exceptional, if G′ = K4, then G is also exceptional,
having 8 vertices. If G′ has 8 vertices, then G has 12 vertices and, by Lemma 1,
f(G) = f(G′) + 16 3 + 1 = 12

3 . If G′ contains K++
4 , then either G also contains

K++
4 , and hence is exceptional, or G has a bridge, a situation already considered in

Case 3.
Case 5. Let v be any vertex of G that is not a cutvertex. Such a vertex must exist

in a cubic graph. The vertex v is incident with either 0, 1, 2 or 3 triangles. Once these
cases have been considered, the proof of the -rst statement in Theorem 2 is complete.
If 3 triangles are incident with v, then G=K4; if v is incident with exactly 2 triangles,
then G contains a graph that has already been considered in Case 3. Thus G must
contain one of the graphs in Figs. 4A or B. In each -gure, it is possible that some
vertices of degree 1 coincide.
Case 5A. Graph G contains the graph in Fig. 4A.
It may be assumed that a1 is not adjacent to a2, b1 not adjacent to b2, and c1 not

adjacent to c2. Otherwise, if say a1 is adjacent to a2, since v is not a cutvertex of G,
neither is a. So choose a instead of v as the non-cutvertex. Then G contains the graph
in Fig. 4B, and Case 5B below applies.
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Fig. 4. Case 5.

Remove the vertices v; a; b; c from G and add 3 edges a1a2; b1b2; c1c2 to form
a connected cubic graph G′ with n − 4 vertices. If any two of the following three
unordered pairs are equal: {a1; a2}; {b1; b2}; {c1; c2}, then G′ has a multiple edge, a
case we consider later. Let S ′ be a G′-set and let S = S ′ ∪ {v}. That G′ − S ′ is acyclic
implies that G − S is acyclic. The inductive argument is now exactly as in Case 1
except when G′ is an exceptional graph containing K++

4 . In this case if G is not itself
exceptional, then it is easy to check that G must be of the form already considered in
Case 4.
It remains to consider what happens if at least two of the following three unordered

pairs are equal: {a1; a2}; {b1; b2}; {c1; c2}. If all three are equal then G = K3;3, a
graph of order 6, for which f(K3;3) = 2 = 6

3 . If two pairs are equal, say a1 = b1
and a2 = b2, then choose a as the non-cutvertex instead of v. Then a1 is adjacent
to a, to b, and to a third vertex, say c1; similarly a2 is adjacent to a to b, and to,
say c2. If no two of the vertices c; c1; c2 are identical, then the situation is exactly as
in the paragraph above. If all three are equal, then G = K3;3 of order 6. If exactly
two are equal, then it is easy to check that G is of the form already considered in
Case 4.
Case 5B. Graph G contains the graph in Fig. 4B.
The situations b= c or a1 =b or a2 = c are covered by Cases 1,3 or 4. The situation

b adjacent to c is also covered by Case 1. So we can assume that the 4 vertices of
degree 1 are distinct and b and c are non-adjacent.
If a1 is not adjacent to a2, then remove v and the three adjacent vertices from G

and add 2 edges a1a2 and bc to form a connected cubic graph G′ with n− 4 vertices.
The inductive argument is now identical to that of Case 5A.
If a1 is adjacent to a2 then, referring to Fig. 4C, we may again assume that b 
= c

and that b is not adjacent to c. Similarly we may assume that a′
1 
= a′

2 and that a′
1

is not adjacent to a′
2. Also it may be assumed that {a′

1; a
′
2} is not equal to {b; c};

otherwise G is a graph already considered in Case 4.
Remove the 6 vertices on the two triangles in Fig. 4C and add edge bc to form

a connected (no longer cubic) graph G′ with n − 6 vertices. Let S ′ be a G′-set
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Fig. 5.

and let S be the union of S ′ and the “large” vertices in Fig. 4C. That G′ − S ′ is
acyclic implies that G − S is acyclic. Since G′ has two vertex of degree 2, it is either
ordinary or an exceptional graph containing K++

4 . If G′ is ordinary, then by induction
f(G)6f(G′)+26 (n−6)=3+2=n=3. If G is an exceptional graph containing K++

4 ,
then it is easy to check that G must also contain K++

4 or be a graph already considered
in Case 4.
It has now been shown that f(G)6 n=3 for ordinary graphs. It only remains to

show that f(G)6 3n=8 for all other graphs except K4; K+
4 and 2K4. The proof again

is by induction on n. It obviously holds for n = 0; 1. So assume n¿ 1 and that the
statement holds for all graphs with less than n vertices. We have already proved that
the statement is true for ordinary graphs. By Lemma 1 we have f(G) = 3n=8 for all
graphs with 8 vertices. It only remains to show that f(G)6 3n=8 for graphs other than
2K4 containing K++

4 . Referring to Fig. 5, there are two cases.
If a and b are adjacent, then remove K++

4 and vertices a and b to obtain a graph
G′ with n− 8 vertices. If S ′ is a G′-set, then let S be the union of S ′, the two “large”
vertices in Fig. 5 and vertex a. Then G′ − S ′ acyclic implies G − S acyclic. It is
not possible that G′ = K4 or G′ = K+

4 or G′ = 2K2, so by induction f(G)6f(G′) +
36 3(n − 8)=8 + 3 = 3n=8.
If a and b are not adjacent (or if either a or b do not exist), then remove K++

4 and
add an edge ab (if both a and b exist) to obtain a graph G′ with n− 6 vertices. If S ′

is a G′-set, then let S be the union of S ′ and the two “large” vertices in Fig. 5. Then
G′ − S ′ acyclic implies G − S acyclic. If G′ 
= K4; G′ 
= K+

4 and G′ 
= 2K4, then by
induction f(G) = f(G′) + 26 3(n − 6)=8 + 2¡ 3n=8. If G′ = K4, then G = 2K4. If
G′ = K+

4 , then G has 11 vertices and f(G) = 4¡ (3 · 11)=8. If G′ = 2K4, then G has
16 vertices and f(G) = 6 = (3 · 16)=8.
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Theorem 2 gives a tight upper bound on f(G) for a connected cubic graph G.
Obtaining a tight lower bound is easier.

Theorem 3. Let G be a connected cubic graph with n vertices. If S is a set of vertices
such that G − S is acyclic, then |S|¿ n=4 + 1=2. Moreover, in7nitely many graphs
attain this bound.

Proof. Let |S| be a G-set. The number 3|S| counts each edge not in G − S at least
once. Also the number of edges in the acyclic graph G − S is at most n− |S| − 1, the
number of edges in a tree on n − |S| vertices. Then for the total number of edges in
G we have

3n=26 3|S| + (n − |S| − 1) = n+ 2|S| − 1;

which implies that |S|¿ (n+ 2)=4.
To see that in-nitely many graphs attain this bound, consider any tree T on (3n−2)=4

vertices (assuming n ≡ 2mod 4) with no vertex of degree greater than 3. Add to T a
set S consisting of (n+2)=4 independent vertices, each adjacent to exactly 3 vertices in
T , thus forming a graph with |S|+ |V (T )|=(n+2)=4+(3n−2)=4=n vertices. This can
be done (in many ways) as long as the total number of edges is 3n=2, as required of a
cubic graph. But this is so because: 3|S|+|E(T )|=3(n+2)=4+((3n−2)=4−1)=3n=2.

The edge version of the extremal graph problem asks for the minimum number of
edges in a connected cubic graph G such that their removal results in an acyclic graph.
(When an edge is removed, its endpoints remain.) The result in the edge case is almost
trivial, but we state it for use in the next section.

Lemma 4. Let G be a connected cubic graph with n vertices. The minimum number
of edges in a set S such that G − S is acyclic is exactly n=2 + 1.

Proof. Assume that G − S is acyclic. Add edges to G − S if necessary to form a
spanning tree T of G. Since T has n − 1 edges, 3n=2 − (n − 1) = n=2 + 1 edges must
be removed from G to obtain T . Hence at least that number must be in S.

3. Upper bound on the integrity of cubic graphs

What we seek are constants c and c′ such that I(G)6 cn and I ′(G)6 c′n for all
connected cubic graphs on n vertices. Theorem 7 below states that 1

3 is such a constant
for integrity and 1

2 for edge integrity, up to O(
√
n).

The proof of Theorem 7 requires the solution to the extremal problem in Section 2
and two lemmas concerning the integrity of trees. The -rst lemma states that, of all
trees on n vertices, the integrity is maximized for a path. This result is a subject of
[10], but we include our short proof for completeness. The edge version of Lemma 5
is false, even if restricted to trees where each vertex has degree at most 3. Lemma 6
below, however, su5ces for our purposes.
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Lemma 5. Of all trees with n vertices, the path has the maximum integrity.

Proof. The proof is by induction on the number w = w(T ) of vertices of degree 1 in
T . If w = 2, then T is a path. So let T be a tree with w¿ 2 and assume the theorem
is true for all trees with smaller w.
Regarding T as rooted at one of its vertices of degree 1, let v be any vertex of degree

at least 3 with no descendents of degree greater than 2. The subgraph of T induced
by the descendents of v is the disjoint union of paths. Let p1 and p2 be any two of
these paths. De-ne a new tree T ′ obtained from T by removing p1 and attaching it
to the end of p2 as in Fig. 6. By abuse of language, we allow the notation p1; p2

for the subgraphs of both T and T ′ corresponding to these paths. Note that T and T ′

have the same number of vertices, but w(T ′) =w(T )− 1. By the induction hypothesis
I(T ′)6 I(Pn), so it only remains to show that I(T )6 I(T ′).

Let S ′ be a set of vertices of T ′ such that |S ′|+m(T ′ − S ′) = I(T ′). For simplicity,
denote m := m(T ′ − S ′). De-ne a set S of vertices of T as follows. Assume that there
are k (possibly 0) vertices in S ′ that lie on p2 in T ′. Choose a set S0 = {x1; x2 : : :}
of vertices on p2 in T as follows. Starting from the leaf d, let xi be the i(m + 1)st
vertex. In other words, successive vertices in S0 are separated along the path p2 by
m vertices not in S0. The set S0 should have as many such vertices as -t on p2, but
not more than k. If k vertices do not -t, then add vertex v to S0. Let S1 be the set of
vertices of T that correspond to the set of vertices of S ′ in T ′ that do not lie on p2,
and let S = S0 ∪ S1. By de-nition |S|6 |S ′|. To complete the proof it only remains to
show that m(T − S)6m(T ′ − S ′).
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By the way S was de-ned, all components of T−S except possibly the one containing
v, have at most m(T ′ −S ′) vertices. If v∈ S, then there are no exceptions and the proof
is complete. Otherwise, to verify the one exception, it su5ces to show that the number
a of vertices in the boldface section of T in Fig. 6 (vertices v; x and y excluded)
is at most the number b of vertices in the boldface section of T ′ (vertices v and z
excluded). In Fig. 6, vertices x; y∈ S and z ∈ S ′, but the boldface sections contain no
vertices of S or S ′. Also the boldface sections do not contain v. If p denotes the
number of vertices on path p2 and q denotes the number of vertices between v and x
in T , then a=p− k(m+1)+ q=p− [(k − 1)m+ k + (m− q)]6 b. The -rst equality
is obtained by subtracting the number of vertices between (and including) y and the
leaf d from the number of vertices on p2. The inequality is obtained by subtracting
the number of vertices between (and including) b and z from the number of vertices
on p2. Note that the number of vertices between consecutive vertices of S ′ on p2 in
T ′ is at most m, and the number of vertices between d (included) and the last vertex
u in S ′ along p2 (not included) is at most m − q.

Lemma 6. If T is a tree with no vertex of degree greater than 3, then I ′(T )¡ 2
√
2n.

Proof. Consider T rooted at any vertex of degree less than 3. If x is any node in the
tree, denote by g(x) the number of descendents of x plus 1 (for x itself). Let m be
a positive integer. If 1¡m6 n=2, then we claim that there exists a node x such that
m6 g(x)¡ 2m and g(p(x))¿ 2m where p(x) is the parent of x. Note that x cannot
be the root. Assuming that the claim is true, then deleting the edge from x to its parent
divides T into two connected components, one, say S1, of order less than 2m and the
other called T1. Now perform the procedure again on T1 to obtain S2 and T2. Repeat
until either m¿ |V (Ti)|=2. At termination at stage k, the components S1; S2; : : : ; Sk and
Tk have order less than 2m. The number k of edges removed from T is one less than
the number c of components. So by the de-nition of edge integrity I ′(T )6 (2m−1)+
(c−1). Since n=

∑k−1
i=1 |Si|+ |Sk |+ |Tk |=

∑k−1
i=1 |Si|+ |Tk−1|¿ (k−1)m+2m, we have

c=k+16 n=m. This implies that I ′(T )6 (2m−1)+(n=m−1). Let m=
⌊√

n=2
⌋
. Note

that 1¡ n=2�6 n=2 unless n6 3, in which case the lemma can be easily checked.
Then I ′(T )¡ 2

√
2n, which takes a little elementary checking.

To prove the claim, mark a node x with B (too big) if g(x)¿ 2m and mark it L
(too little) if g(x)¡m. The claim is proved if T has an unmarked node. It can be
assumed that such a node x satis-es g(p(x))¿ 2m; otherwise replace x by p(x), which
also must be unmarked. If it is still the case that g(p2(x))¿ 2m, then replace p(x) by
p2(x). This process must halt because g(r) = n¿ 2m where r is the root. Note that
the root is marked B and that each leaf is marked L. Also, if x is marked B, then not
both of its (at most 2) children can be marked L. Starting at any leaf x, perform the
following procedure. If x is marked L then replace x by its parent; if x is marked B
then replace x by a child not marked L; if x is unmarked then stop. If the algorithm
terminates, then the claim is proved. Assume that there is a B node in the sequence.
A B node is always followed by a child not marked L. Therefore we eventually arrive
at an unmarked node or a B leaf, which is impossible. So either there is an unmarked
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G’

Fig. 7.

node in the sequence or no B nodes are encountered. An L node is always followed
by its parent, so we arrive at the root marked L. But the root is a B node.

Theorem 7. If G is a connected cubic graph with n vertices, then

I(G)¡
n
3
+

2
3

√
6n+

1
3

I ′(G)¡
n
2
+ 2

√
2n+ 1:

Proof. Consider edge integrity -rst. By Lemma 4 there is a set S consisting of at
most n=2 + 1 edges whose removal results in a tree T . Then by Lemma 6 we have
I ′(G)6 n=2 + 1 + I ′(T )¡n=2 + 1 + 2

√
2n.

By Theorem 2 the same reasoning shows that I(G)6 n=3+I(T ) when G is ordinary.
In this case T is a tree with 2n=3 vertices and, by Lemma 5 and Eq. (1) in the
introduction,

I(G)6
⌊n
3

⌋
+

⌈
2

√⌈
2n
3

⌉
+ 1

⌉
− 2¡

n
3
+

2
3

√
6n: (2)

There remains the case where G is exceptional. It is easy to verify that the formula
holds for G = K4; K+

4 and any cubic graph with 8 vertices, so assume that G contains
K++
4 as a subgraph. Remove every copy of K++

4 appearing as a subgraph of G. Assume
that there are k such copies. Fig. 7 shows the case k = 2. What remains is either an
ordinary graph G′ or K+

4 . In the later case Theorem 7 can be easily checked, so assume
that G′ is ordinary.
Call a set X of vertices such that I(G) = |X |+m(G −X ) a G-integrity set. If S ′ is

a G′-integrity set, then consider the union S of S ′ and the k additional “large” vertices
shown in Fig. 7. Note that m(G − S)¿ 4. If m(G′ − S ′)¿ 4, then applying inequality
(2) to the ordinary graph G′ yields

I(G)6 k + I(G′)¡k +
(
n − 5k

3

)
+

2
3

√
6(n − 5k)¡

n
3
+

2
3

√
6n

and the proof is complete.
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If m= m(G′ − S ′)¡ 4, then the -rst inequality of (2) applied to G′ yields

I(G)6 k + I(G′)¡
n
3
+

2
√
6n
3

−
(
1 +

2k
3

)
+ (4 − m);

which is less than or equal to n=3 + 2
√
6n=3 + 1=3 unless m= 1 and k6 2. If m= 1

and k6 2, then choose three vertices on K++
4 (instead of one) to be in S so that also

m(G − S) = 1 and, from the -rst inequality of (2) applied to G′, we have

I(G)6 3 + I(G′)¡ 3 +
(
n − 5k

3

)
+

2
3

√
6n − 16

n
3
+

2
3

√
6n+

1
3
:

4. Existence of cubic graphs with large integrity

Theorem 7 shows that the integrity of a cubic graph G is bounded above by a
linear function in the number of vertices of G. There is no a priori reason to believe,
however, that there actually exist in-nite families of cubic graphs with anywhere near
this large integrity. Our proof that such families do exist depends on expander graphs.
For a set A of vertices of a graph G, denote the set of neighbors of A by N (A) :=

{v∈V (G) | v adj u∈A} and denote the boundary of A by @A := N (A)−A. We say that
a graph G on n vertices has the ((; �)-expanding property if, for any set A of at most
(n vertices, |@A|¿ �|A|.

Theorem 8. For a connected cubic graph G on n vertices with the ((; �)-expanding
property, we have

I(G)¿ nmin
(
(;

�
3 + �

)
; I ′(G)¿ nmin((; �=2):

Proof. Concerning the second inequality, consider any set S of edges of G and let
A1; A2; : : : ; Am be the connected components that result when the edges in S are removed
from G. Let |Ai| denote the number of vertices in the component Ai. Assume that
|Ai|6 (n for each i. If di denotes the number of edges with exactly one endpoint in
Ai, then, using the ((; �)-expanding property,

2|S| =
∑
i

di¿
∑
i

|@Ai|¿
∑
i

�|Ai| = �n:

Therefore either G − S has a component of size greater than (n or else |S|¿ �n=2. In
either case I ′(G) := minS⊂E {|S| + m(G − S)}¿ nmin((; �=2).

Concerning the -rst inequality of Theorem 8, consider any set S of vertices of G
and let A1; A2; : : : ; Am be the connected components that result when the vertices in S
are removed from G. Assume that |Ai|6 (n for each i. Using the ((; �)-expanding
property,

3|S|¿
∑
i

|@Ai|¿
∑
i

�|Ai| = �(n − |S|):

Therefore either G−S has a component of size greater than (n or else |S|¿ �n=(3+�).
In either case I(G) = minS⊂V {|S| + m(G − S)}¿ nmin((; �n=(3 + �)).
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Because of their many applications, expanders have received considerable attention in
recent years. Various de-nitions of expander are in common use. One de-nition is that
a k-regular graph on n vertices is called a �-expander if, for all subsets A of vertices
with |A|6 n=2, we have |@A|¿ �|A|. In other words, take ( = 1

2 in the de-nition of
((; �)-expanding property. Every connected k-regular graph is such a �-expander for
some �. Of interest are in-nite families of expanders where k and � are -xed and n
goes to in-nity. It is not too di5cult, using random graphs, to show that such families
exist [23], but -nding explicit constructions has proved extremely di5cult. (See, for
example, the exposition of Lubotzky [23] of a method using the representation theory
of semi-simple Lie groups.)
Ramanujan graphs are used in the proof below. A k-regular graph is a Ramanujan

graph if the second largest (in absolute value) eigenvalue )1 of its adjacency matrix
is not more than 2

√
k − 1. The value 2

√
k − 1 is optimum for an in-nite family {Gi}

of k-regular graphs according to the following result of Alon–Boppama (see [2,24]):
lim inf i→∞ )1(Gi)¿ 2

√
k − 1.

Theorem 9. There exist an explicitly constructed in7nite family G of connected cubic
graphs such that I(G)¿ 0:038n and I ′(G)¿ 0:058n for all G ∈G.

Proof. The proof relies on known constructions of Ramanujan graphs by Lubotzky
et al. [24] and independently by Margulis [26]. In particular, an in-nite family G of
such graphs have been explicitly constructed for k=3 by Chiu [15]. The expansion of
a k-regular graph can be bounded from below in terms of )1. Substituting k = 3 and
)1 = 2

√
k − 1 in such a result of Chung [16, Lemma 6.3] yields

|@A|
|A| ¿

1 − |A|=n
8 + |A|=n

for any subset A of vertices of any graph in the family G. Let (0 = (
√
297− 17)=4¿

0:058. A simple calculation shows that if |A|=n6 (0, then |@A|=|A|¿ (1 − |A|=n)=
(8 + |A|=n)¿ 2(0. In the terminology of Theorem 8, this means that each graph in
G is an ((0; 2(0)-expander. Theorem 8 then implies the bound I ′(G)¿ 0:058n. To ob-
tain the bound on I(G), let (0 =(

√
684−26)=4¿ 0:038. If |A|=n6 (0, then |@A|=|A|¿

(1 − |A|=n)=(8 + |A|=n)¿ 3(0=(1 − (0). In the terminology of Theorem 8, this means
that each graph in G is an ((0; 3(0=(1 − (0))-expander. Theorem 8 then implies I ′(G)
¿ 0:038n.

5. Open questions

It is impressive that the upper and lower bounds on the integrity given in Theorems
7 and 9 are both linear in the number of vertices. There is a large gap, though, between
the two constants. Atici [6] conjectures that the upper bound on I(G) can be decreased
to n=4 + o(n). However, we are unable even to prove the following more modest
statement.
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Question 10. For any su5ciently large connected cubic graph G with n vertices, there
is a set S of n=4 vertices such that each component of G − S contains at most n=4
vertices.

Perhaps better constants can be obtained in Theorem 9 using BollobRas’ model [13]
for random k-regular graphs, although the proof would not be constructive.
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