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Abstract
Iterated function systems (IFSs) and their attractors have been central to the theory of fractal
geometry almost from its inception. Moreover, contractivity of the functions in the IFS
has been central to the theory of iterated functions systems. If the functions in the IFS are
contractions, then the IFS is guaranteed to have a unique attractor. The converse question,
does the existence of an attractor imply that the IFS is contractive, originates in a 1959
work by Bessaga which proves a converse to the contraction mapping theorem. Although a
converse is true in that case, it is known that it does not always hold for an IFS. In general,
there do exist IFSs with attractors and which are not contractive. However, in the context of
IFSs in Euclidean space, this question has been open. In this paper we show that a highly
non-contractive iterated function system in Euclidean space can have an attractor. In order
to do that, we introduce the concept of an L-expansive map, i.e., a map that has Lipschitz
constant strictly greater than one under any remetrization. This is necessitated by the absence
of positively expansive maps on the interval.

Keywords Iterated function system · Attractor · Contractive · L-expansive

Mathematics Subject Classification 28A80
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1 Introduction

A seminal result of Hutchinson [17] states that, if the functions in an iterated function system
(IFS) F on a complete metric space are contractions, then F has a unique attractor. This
paper concerns the converse: does the existence of a unique attractor of an IFS imply that the
IFS is contractive? In particular, whether or not a highly non-contractive IFS on Euclidean
space can possess a unique attractor was an open question. Classes of such IFSs, as well as
particular examples, appear in Sects. 4, 5, and 6 of this paper. The remainder of this section
contains definitions of all terms used above, a short history of results on the subject, and an
overview of subsequent sections of the paper.

Let (X, d) be a metric space. An iterated function system (IFS) is a set

F = { f1, f2, . . . , fN }
of continuous functions from X into itself. Throughout this paper we denote the n-fold
composition of a function f with itself by f (n). The Lipschitz constant of a function f is

Lipd( f ) = sup
x �=y

d( f (x), f (y))

d(x, y)
.

A function f : X → X is

(a) A contraction with respect to d if Lipd( f ) < 1;
(b) Non-expansive with respect to d if Lipd( f ) ≤ 1;
(c) L-expansive with respect to d if Lipd( f ) > 1.

Definition 1 Twometrics onX are equivalent if they induce the same topology onX. Given a
metric space (X, d), an IFS F onX is contractive if there is an equivalent metric with respect
to which all the functions in F are contractions. A function f on (X, d) is L-expansive if
f is L-expansive with respect to any metric d ′ on X that is equivalent to d . An IFS F is
L-expansive if all the functions in F are L-expansive. “L-expansive IFS" is what is meant
by the informal phrase “highly non-contractive IFS" in the title of this paper.

If Y ⊂ X and f (Y) ⊂ Y, then f is said to be L-expansive on Y if the restriction f|Y
is L-expansive. If f (Y) ⊂ Y for every f ∈ F , then F is said to be L-expansive on Y, if
all maps in F are L-expansive on Y. Clearly, if an IFS is L-expansive on Y ⊂ X, then it is
L-expansive.

Remark 1 The term “expansive” has a different meaning in dynamical systems theory. For
a compact infinite metric space X, a continuous surjection f : X → X is called positively
expansive if there is a constant e > 0 such that if x �= y then d( f (n)(x), f (n)(y)) > e for
some nonnegative integer n. Note that this condition is independent of the choice of equivalent
metric on X. Furthermore, there are no positively expansive maps on a closed interval, see
[2, Chap. 2.2], [26]. Note also that every positively expansive map is L-expansive but not
vice versa. In this paper we are primarily interested in maps on Euclidean space. Since the
notion of positively expansivemaps is too restrictive in this setting, we introduced the broader
notion of L-expansion.

For the collection K(X) of non-empty compact subsets of X and an IFS F on X, the
classical Hutchinson operator F : K(X) → K(X) is given by

F(K ) =
⋃

f ∈F
f (K ).
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By abuse of language, the same notation F is used for the IFS and for theHutchinson operator;
the meaning should be clear from the context. Furthermore, for simplicity we write F(x)
instead of F({x}).

Denote the Hausdorff metric onK(X) by hd . Convergence inK(X) is always with respect
to the Hausdorff metric. Note that equivalent metrics d, d ′ onX lead to equivalent Hausdorff
metrics hd , hd ′ on K(X).

Definition 2 A compact set A is the attractor of IFS F if

• (invariance) F(A) = A, and
• (attraction) F (n)(K ) → A for every K ∈ K(X),

where F (n) denotes the n-fold composition of F .

An iterated functions system, as amethod for constructing fractals, was introduced by John
Hutchinson [17] in 1981. In that paper appears the fundamental result that, if the functions
in an IFS F on a complete metric space are contractions, then F has a unique attractor.
Inquiry into a converse of Hutchinson’s theorem, asking whether contractivity is necessary
for the existence of an IFS attactor, can be traced back to 1959, well before the notion of
an IFS was introduced. The contraction mapping theorem, first stated by Stefan Banach [4],
is a special case of Hutchinson’s theorem applied to an IFS consisting of a single function.
A 1959 paper by C. Bessaga [10] was titled “On the converse of the Banach fixed-point
principle." Subsequently, a slew of versions of a converse to Banach’s fixed point theorem
appeared; see [11] for an extensive list of references.

For an IFS consisting of at least two functions, the first converse of Hutchinson’s theorem
was proved for an affine IFS [3] (see also [24]). Specifically, if all the functions of an IFS F
on Rs are affine and F has an attractor, then F is contractive, although the equivalent metric
on R

s , for which the functions in F are contractions, may not be the standard Euclidean
metric. This result was followed by analogous converses for (1) IFSs consisting of projective
transformations on n-dimensional real projective space [8] and (2) for IFSs consisting of
Möbius transformations on the extended complex plane, equivalently the Riemann sphere
[27]. Also, as proved in [5] and [25], if an attractor A exists and admits a suitable fibering
structure (so that the single-valued coding map exists), then there is a remetrization of A
making all the maps of the IFS weakly contractive, in particular non-expansive. In [22] the
authors survey results on the existence of an attractor for IFSs that are, in various senses,
weakly contractive.

The first counterexample to the converse of Hutchinson’s theorem probably appeared in
the 2000 paper of Kameyama [18]. He introduces the notion of a topological self-similar set
and asks whether there is a metric inducing the underlying topology such that the functions
associated with the topological self similar set (IFS in the terminology of this paper) are
contractions with respect to this metric. He proves that the answer to his question is “no" by
providing an IFS consisting of two functions on an abstractly defined space.

Less abstract, more geometric counterexamples to the converse of Hutchinson’s theorem,
have subsequently been found. In particular, an L-expansive IFS consisting of two functions
on the circle with an attractor appears in [21]. See also [7, 19]. The following question,
however, has gone unanswered up to now.

Question 1 Does there exist an L-expansive IFS on Rs that has an attractor?

Question 1 is answered in this paper. As previously mentioned, any such IFS cannot be
affine. In Sects. 4, 5, and 6 we provide classes of IFSs and concrete examples showing that
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Fig. 1 The attractor of the
L-expansive IFS of Example 6

there do exist L-expansive IFS onRs, s ≥ 1, possessing an attractor.Moreover, our examples
are L-expansive on the attractor (see Definition 1), whichmeans that the lack of contractivity
is not artificially induced on the complement of the attractor. Section 4 contains results and
examples in 1-dimensional Euclidean space, i.e., L-expansive IFSs onR that have an attractor.
Theorem 15 provides an example of an L-expansive IFS on R2 whose attractor is the closed
unit disk. Moreover, according to Theorem 16, every set in R

2 homeomorphic to a closed
disk is the attractor of an L-expansive IFS. Theorem 10, Theorem 18 and Corollaries 19
and 20 provide methods to construct new L-expansive IFSs having an attractor from more
basic ones. The attractor in Fig. 1 was obtained in this way (see Example 6).

Our Definition 1 of an L-expansive IFS is intended to capture the intuitive notion of a
“highly non-contractive" IFS. It may be problematic to provide a stronger, yet useful, notion
of “high non-contractivity". Specifically, in Sect. 7 it is shown that, for any IFS F with an
attractor and such that Lipd( f ) < ∞ for all f ∈ F , the following is true: For any ε > 0,
there exists an equivalent metric d ′ such that Lipd ′( f ) < 1+ ε, and d ′ is complete provided
d is complete.

2 L-expansive Functions

We begin with results that will be used to show that the IFSs in Sects. 4, 5, and 6 are L-
expansive. The proof of the following lemma is routine.

Lemma 1 Let f : X → X be a continuous function on a metric spaceX. If, for some positive
integer n, the composition f (n) is L-expansive, then f itself is L-expansive.

A function f on ametric spaceX and a function g on ametric spaceY are called conjugate
if there is a homeomorphism h : X → Y such that g = h ◦ f ◦ h−1.

Lemma 2 If functions f : X → X and g : Y → Y are conjugate, then f is L-expansive if
and only if g is L-expansive.

Proof Let d be a fixed metric on X and � be a fixed metric on Y. Let h : X → Y be the
homeomorphism conjugating f with g. It is sufficient to observe that for any metric d ′ on X

123



Journal of Dynamics and Differential Equations

equivalent to d , there is a metric �′ onY equivalent to � such that Lip�′(h f h−1) = Lipd ′( f ).
Namely, �′(x, y) := d ′(h−1(x), h−1(y)), x, y ∈ Y, satisfies this requirement. ��

Let x0 ∈ X be a non-isolated fixed point of a mapping f : X → X of a metric space X.
We say that x0 is:

(a) Repelling if there exists an open set U 
 x0 such that for all x ∈ U \ {x0} there is an
n ∈ N for which f (n)(x) /∈ U ;

(b) Partially repelling if there exists an open set U 
 x0 such that for all open sets V with
x0 ∈ V ⊂ U , there is an x ∈ V and an n ∈ N for which f (n)(x) /∈ U .

Note that a repelling fixed point is partially repelling, but the converse implication does not
hold. For instance, a fixed point of a map of the real line that is repelling only from one side,
is partially repelling, though it is not repelling.

Proposition 3 (Repelling Criterion for L-expansiveness) If f : X → X has a partially
repelling fixed point, then f is L-expansive.

Proof Suppose, by way of contradiction, that f is not L-expansive with respect to some
metric d equivalent to the original metric on X. Let x0 be the partially repelling fixed point.
Then there exists ε > 0 and sequences xn → x0 and kn ∈ N such that d( f (kn)(xn), x0) ≥ ε

for all n ∈ N. This leads to a contradiction:

ε ≤ d( f (kn)(xn), x0) = d( f (kn)(xn), f (kn)(x0)) ≤ d(xn, x0) → 0.

��
Remark 2 A fixed point x0 of f is partially repelling if and only if the family of iterates
{ f (n)}n∈N is not equicontinuous at the point x0. Therefore, if X is a compact metric space,
then Proposition 3 is immediate from the Markov criterion (see [23, Chap. 1.5]): f is non-
expansive under some equivalent metric in X if and only if the family of iterates { f (n)}n∈N
is uniformly equicontinuous. For various notions of equicontinuity we refer to [14, A.7.2].

For a real function, one can quickly determine if a fixed point is repelling whenever
the derivative at that point exists. Below we denote by f ′(x0) the derivative of the function
f : [a, b] → [a, b] at point x0 ∈ [a, b]. In case x0 = a, f ′(x0) stands for the right derivative,
and in case x0 = b, f ′(x0) stands for the left derivative.We allow the derivatives to be infinite.

Proposition 4 (Derivative Test for L-expansiveness, [1]) Let f : [a, b] → [a, b] be a
continuous map and x0 = f (x0). If | f ′(x0)| > 1, then x0 is a repelling fixed point. In
particular, f is L-expansive.

Example 1 The following functions are easily seen to be L-expansive using the previous
results in this section. Several will be used later in the paper.

(1) s(x) = √
x

The function s(x) is L-expansive on [0, 1] by Proposition 4 (x0 = 0, f := s, f ′(x0) =
∞).

(2) ŝ(x) = 1 − √
x

Note that ŝ ◦ ŝ(x) = 1 − √
1 − √

x is L-expansive by Proposition 4 ( f := ŝ ◦ ŝ with
x0 = 0, f ′(x0) = ∞). By Lemma 1, the map ŝ is L-expansive on [0, 1]. One cannot
apply Proposition 4 directly to f := ŝ, because x0 = 1

2 (3 − √
5) is the only fixed point

of f in [0, 1], but | f ′(x0)| < 1.
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(3) s̃(x) = √
1 − x

Let h(x) = 1 − x and note that s̃(x) = h ◦ ŝ ◦ h−1. That s̃ is L-expansive on [0, 1]
follows from Lemma 2. One cannot apply Proposition 4 directly to f := s̃, because
x0 = 1

2 (
√
5 − 1) is the only fixed point of f in [0, 1], but | f ′(x0)| < 1.

(4) s(x) = 1 − √
1 − x

The function s(x) is L-expansive on [0, 1] by Proposition 4 ( f := s with x0 = 1,
f ′(x0) = ∞).

(5) p(x) = xα, α > 1
The function p(x) is L-expansive on [0, 1] by Proposition 4 (x0 = 1, f := p, f ′(x0) =
α > 1).

(6) g(x) = αx + β for x ∈ [a, b], where α > 1 and a ≤ β
1−α

≤ b.

The function g is L-expansive on [a, b] by Proposition 4 (x0 = β
1−α

, f := g, f ′(x0) =
α > 1).

(7) For 0 ≤ c < d ≤ 1 and any continuous L-expansive f : [0, 1] → [0, 1], let
g(x) = f

( x − c

d − c

)
· (d − c) + c.

Then g(x) is L-expansive on [c, d]. This follows from Lemma 2 because the restriction
g∣∣[c,d] = h ◦ f ◦ h−1, for the linear increasing homeomorphism h : [0, 1] → [c, d].

3 The Existence of an Attractor

In subsequent sections, a proof will be required that a certain set A ∈ K(X) is the attractor
of a certain IFS F on X. The results gathered in this section will be helpful in this regard.
In particular, Theorem 7 provides a way to reduce the attraction property in Definition 2 to
showing that it holds for a single point in A. Lemma 6, in turn, reduces that requirement to
showing that a certain set is dense in A. Theorem 10 is used in Example 5, where the attractor
is partitioned into three parts.

The following proposition has appeared in various guises; see [15] for an early reference.

Proposition 5 Assume that F is an IFS on ametric spaceXwith attractor A, and let h : X →
Y be a homeomorphism. Then h(A) is the attractor of the IFS hFh−1 = {h◦ f ◦h−1 : f ∈ F}.
Lemma 6 ([16], Chap. 7, pp. 663–664, Propositions 1.19 and 1.20) If S1 ⊂ S2 ⊂ S3 ⊂ . . .

is a nested sequence of compact sets in a metric space X and if S := ⋃
n≥1 Sn is compact,

then Sn → S.

Theorem 7 Let F be an IFS on compact metric space X. If there is an x0 ∈ X such that

(1) For every x ∈ X there is a sequence (xn) with xn ∈ F (n)(x) such that xn → x0, and
(2) F (n)(x0) → X,

then F (n)(x) → X for all x ∈ X. In particular, X is the attractor of F.

Proof Fix any x ∈ X and any ε > 0. By assumption (2) we can find an n0 ∈ N so that

hd
(
F (n0)(x0),X

)
<

ε

2
. (1)

Clearly, the map x �→ F (n0)(x) is continuous with respect to the Hausdorff metric hd . In
particular, it is continuous at x0, so we can find η > 0 such that

hd
(
F (n0)(y), F (n0)(x0)

)
<

ε

2
(2)
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for every y in the ball B(x0, η) centered at x0 of radius η.
Take any x ∈ X. By assumption (1) there is a sequence (xn) such that xn ∈ F (n)(x) for all

n ∈ N and xn → x0. Let k0 ∈ N be such that xk ∈ B(x0, η) for all k ≥ k0. By equation (2)
we have

hd
(
F (n0)(xk), F

(n0)(x0)
)

<
ε

2
. (3)

Let n ≥ k0 + n0 and express n = n0 + k for some k ≥ k0. Because xk ∈ F (k)(x) we have

F (n0)(xk) ⊂ F (n0+k)(x) = F (n)(x). (4)

Hence

hd(F
(n)(x),X) ≤ hd(F

(n0)(xk),X)

≤ hd(F
(n0)(xk), F

(n0)(x0)) + hd(F
(n0)(x0),X) <

ε

2
+ ε

2
= ε.

The first inequality is from Equation (4); the last inequality from Equations (1) and (3). The
result follows. ��

Below we provide natural conditions for IFS on the interval [0, 1] which guarantee con-
ditions (1) and (2) of the above theorem.

Proposition 8 Let F be an IFS on the interval [0, 1] and x0 ∈ [0, 1] be a fixed point of one of
the maps from F. Assume that there exist closed intervals I1, . . . , Ik ⊂ [0, 1] and one-to-one
maps f p1 , . . . , f pk ∈ F such that

(1)
⋃k

i=1 f pi (Ii ) = [0, 1];
(2) | f ′

pi (x)| < 1 for i = 1, . . . , k, and for all x ∈ Int(Ii );

(3) for distinct i, j ∈ {1, . . . , k}, if f pi (Ii )∩ f p j (I j ) �= ∅, then F (n)(x0)∩ f pi (Ii )∩ f p j (I j ) �=
∅ for some n ∈ N.

Then F (n)(x0) → [0, 1].
Proof Since x0 ∈ F(x0), we see that (F (n)(x0)) is increasing, and hence it is enough to show
that

S :=
⋃

n∈N
F (n)(x0)

is dense in [0, 1]. Assume, on the contrary, that it is not the case. Let

J := {J : J is an open interval and S ∩ J = ∅}
and set L := supJ∈J |J |. Then there exists a sequence of intervals Jn = (an, bn), n ∈ N,
such that bn − an → L and S ∩ Jn = ∅. By passing to a subsequence, we can assume that
an → a0, bn → b0 for some a0, b0. Necessarily a0 < b0, S∩ (a0, b0) = ∅ and b0−a0 = L .
Define J0 := (a0, b0) and consider two cases:
Case 1. J0 ⊂ f pi (Ii ) for some i = 1, . . . , k and corresponding pi . Then f −1

pi (J0) ⊂ Ii ,
so by condition (2) we have that | f −1

pi (J0)| > |J0|. This contradicts the maximality of L as

S ∩ J = ∅ implies that f −1
j (J ) ∩ S = ∅ for every j = 1, . . . , k. Case 2. Case 1 does not

hold. We claim that

∅ �= f pi (Ii ) ∩ f p j (I j ) ⊂ J0
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for some distinct i, j ∈ {1, . . . , k}. Then, by condition (3), there is an element of F (n)(x0)
in J0, which contradicts S ∩ J0 = ∅, completing the proof. To prove the claim, denote by
ci , di the respective endpoints of f pi (Ii ), i = 1, . . . , k. From the family of intervals [ci , di ]
which contain a0, choose [ci0 , di0 ] with the largest right endpoint. Then di0 < b0; otherwise
it would contradict the assumption that we are not in Case 1. By condition (1), there is a
j0 �= i0 such that di0 ∈ [c j0 , d j0). Then a0 < c j0 ; otherwise that d j0 > di0 contradicts the
assumption that di0 is the largest right endpoint containing a0. Now

∅ �= [ci0 , di0 ] ∩ [c j0 , d j0 ] ⊂ (a0, b0) = J0,

proving the claim. ��

The next proposition guarantees assumption (1) of Theorem 7. The proof is straightfor-
ward.

Proposition 9 Let F be an IFS on a metric space X and x0 ∈ X. Fix a map f ∈ F, and let
I f = {x ∈ X : f (n)(x) → x0}. Assume that for every x ∈ X \ I f there exists a g ∈ F so
that g(x) ∈ I f . Then for every x ∈ X, there is a sequence (xn) with xn ∈ F (n)(x) such that
xn → x0.

Theorem 10 (Gluing IFSs) Let X be a metric space and X1, . . . ,Xk nonempty compact
subsets of X so that X = X1 ∪ · · · ∪ Xk . Let

Fj = { f j
1 , . . . , f j

N j
}, j = 1, . . . , k, N j ∈ N

be IFSs on X such that for every j = 1, . . . , k we have

(1) The restriction F j := {( f j
1 )|X j , . . . , ( f

j
N j

)|X j } is an IFS on X j with attractor A j ;
(2) Fj (x) ∩ X j �= ∅ for every x ∈ X;
(3) Fj (Xi ∩ K ) ⊂ A1 ∪ · · · ∪ Ak ∪ Fi (Xi ∩ K ) for all i �= j and all K ∈ K(X).

Then A = ⋃k
j=1 A j is the attractor of the IFS F = ⋃k

j=1 Fj .

Proof For convenience we denote F (0)
i (S) := S for S ⊂ X. Clearly, for every n ∈ N and

K ∈ K(X),

k⋃

i=1

F (n−1)
i (F(K ) ∩ Xi ) ⊂ F (n)(K ). (5)

We will also show that for n ∈ N and all K ∈ K(X), we have

F (n)(K ) ⊂ A ∪
k⋃

i=1

F (n−1)
i (F(K ) ∩ Xi ). (6)

By (3), we have

F(A) =
k⋃

j=1

Fj (A) =
k⋃

j=1

k⋃

i=1

Fj (Ai ) ⊂ A ∪
k⋃

i=1

Fi (Ai ) = A ∪
k⋃

i=1

Ai = A. (7)
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For n = 1, the inclusion (6) is evident. Assume that (6) holds for some n ∈ N. We will verify
it for n + 1. By (3) and (7) we get, for all K ∈ K(X), that

F (n+1)(K ) ⊂
k⋃

j=1

Fj

(
A ∪

k⋃

i=1

F (n−1)
i (F(K ) ∩ Xi )

)

⊂ A ∪
k⋃

j=1

k⋃

i=1

Fj (F
(n−1)
i (F(K ) ∩ Xi ))

⊂ A ∪
k⋃

i=1

F (n)
i (F(K ) ∩ Xi ).

The last inclusion is valid because, according to (1) and (3) for j �= i , n and K replaced with
F (n−1)
i (F(K ) ∩ Xi ), we have

Fj (F
(n−1)
i (F(K ) ∩ Xi )) = Fj (F

(n−1)
i (F(K ) ∩ Xi ) ∩ Xi )

⊂ A ∪ Fi (F
(n−1)
i (F(K ) ∩ Xi ) ∩ Xi )

= A ∪ F (n)
i (F(K ) ∩ Xi ).

Therefore (6) holds for n + 1 and all K ∈ K(X).
Finally, since F(K ) ∩X j is nonempty, according to (2) we have that (F (n)

i (F(K ) ∩Xi ))

converges to Ai for i = 1, . . . , k, and also that A∪ (F (n)
i (F(K )∩Xi )) converges to A. Thus

conditions (5) and (6) imply that F (n)(K ) → A. ��
We finish this section with the following straightforward observation which will be used

throughout the rest of the paper.

Proposition 11 Let F be an IFS on X and Y ⊂ X be such that F(X) ⊂ Y. Suppose that the
restricted IFS F|Y has an attractor A. Then A is the attractor of F.

4 L-Expansive IFSs onRHaving an Attractor

Examples of L-expansive IFSs on R that possess a unique attractor appear in this section.

Example 2 Consider the IFS F = { f0, f1, f2} on R consisting of maps:

f0(x) =

⎧
⎪⎨

⎪⎩

√
x if x ∈ [0, 1]

0 if x < 0

1 if x > 1

f1(x) =

⎧
⎪⎨

⎪⎩

1 − √
x if x ∈ [0, 1]

1 if x < 0

0 if x > 1

f2(x) =

⎧
⎪⎨

⎪⎩

1
16 if x < 1

8
7
2 x − 3

8 if 1
8 ≤ x ≤ 1

4
1
2 if x > 1

4

Referring to items (1), (2) and (6) of the Example 1, F is L-expansive on [0, 1]. Now observe
that

• | f ′
0(x)| < 1 on

(
1
4 , 1

]
and f0

([
1
4 , 1

])
=

[
1
2 , 1

]
;

• | f ′
1(x)| < 1 on

(
1
4 , 1

]
and f1

([
1
4 , 1

])
=

[
0, 1

2

]
;
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• F(1) 
 f2(1) = 1
2 ;

• f (n)
0 (x) → 1 for all x ∈ (0, 1], and f2(0) > 0.

Hence the assumptions of Propositions 8 and 9 are satisfied, and thus Theorem 7 implies that
[0, 1] is the attractor of F|[0,1]. Hence, by Proposition 11, the interval [0, 1] is the attractor
of F .

Example 3 Consider the IFS F = { f0, f1, f2} on R consisting of maps:

f0(x) =

⎧
⎪⎨

⎪⎩

√
x if x ∈ [0, 1]

0 if x < 0

1 if x > 1

f1(x) =

⎧
⎪⎨

⎪⎩

1 − √
1 − x if x ∈ [0, 1]

0 if x < 0

1 if x > 1

f2(x) =

⎧
⎪⎨

⎪⎩

1
16 if x < 1

8
7
2 x − 3

8 if 1
8 ≤ x ≤ 1

4
1
2 if x > 1

4

As in the previous example, we can see that F is L-expansive and [0, 1] is its attractor

(observe that | f ′
1(x)| < 1 on

[
0, 3

4

)
and f1

([
0, 3

4

])
=

[
0, 1

2

]
).

Example 4 Consider the IFS F = { f0, f1, f2} on R consisting of maps:

f0(x) =

⎧
⎪⎨

⎪⎩

√
x if x ∈ [0, 1]

0 if x < 0

1 if x > 1

f1(x) =

⎧
⎪⎨

⎪⎩

√
1 − x if x ∈ [0, 1]

0 if x < 0

1 if x > 1

f2(x) =

⎧
⎪⎨

⎪⎩

1
16 if x < 1

8
7
2 x − 3

8 if 1
8 ≤ x ≤ 1

4
1
2 if x > 1

4

Proposition 12 The IFS of Example 4 is L-expansive, and [0, 1] is its attractor.
Proof As previously, F is L-expansive and condition (1) of Theorem 7 is satisfied. However,

here we cannot use Proposition 8 as | f ′
1(x)| < 1 on

[
0, 3

4

)
and f1

([
0, 3

4

])
=

[
0, 1

2

]
.

More delicate reasoning is required to show that assertion (1) of Theorem 7 is satisfied. As
previously, it is sufficient to show that S := ⋃

n≥0 F
(n)(1) is dense in [0, 1]. By way of

contradiction, assume that there is an open interval I1 ⊂ [0, 1], such that S ∩ I1 = ∅. By the
definition of the function f3, we have 1/2 ∈ S, hence 1/2 /∈ I1.We claim that also 1/

√
2 /∈ I1.

By way of contradiction, assume that 1/
√
2 ∈ I1. Since 1/2 ∈ S, also 1/

√
2 = f0(1/2) ∈ S.

Therefore 1/
√
2 ∈ S ∩ I1, contradicting S ∩ I1 = ∅.

Since 1/2 /∈ I1, there are two possibilities. Either I1 ⊂ [0, 1/2] or I1 ⊂ [1/2, 1]. Assume
that the first case holds, namely I1 ⊂ [0, 1/2]. Note that, for any open interval I ⊂ [0, 1], if
S∩ I = ∅, then S∩ f −1

i (I ) = ∅ for i = 0, 1. In particular, if I2 := f −1
1 (I1), then S∩ I2 = ∅

and I2 ⊂ [1/2, 1]. Therefore, there is no loss of generality in assuming that the second case
holds, namely I1 ⊂ [1/2, 1].

Now let I3 be an open interval in [1/2, 1] whose length |I3| is maximum among all
open intervals I ⊂ [1/2, 1] such that S ∩ I = ∅. Because 1/

√
2 /∈ I3, there are two

possibilities. Either I3 ⊂ [1/2, 1/√2] or I3 ⊂ [1/√2, 1]. In the first case let I0 := f −1
1 (I3),

and in the second case let I0 := f −1
0 (I3). In either case I0 ⊂ [1/2, 1] and S ∩ I0 = ∅.

Because the derivatives satisfy |( f −1
0 )′(x)| > 1 for x ∈ (1/

√
2, 1] and |( f −1

1 )′(x)| > 1 for
x ∈ (1/2, 1/

√
2), it must be the case that |I0| > |I3|, contradicting the maximality of |I3|. ��
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Fig. 2 Graphs of the functions in
the IFS of Example 5

In the example below, the attractor involves a Cantor set.

Example 5 Let F = { f1, f2, f3, f4, f5, f6} be the IFS on the interval [0, 1] consisting of the
six functions given by

f1(x) =

⎧
⎪⎨

⎪⎩

1
2

√
x if x < 1

4
1
3 x + 1

6 if x ∈ [ 14 , 3
4 ]

5
12 if x > 3

4

f2(x) =

⎧
⎪⎨

⎪⎩

1
4 if x < 0
1
4 − 1

2

√
x if x ∈ [0, 1

4 ]
0 if x > 1

4

f3(x) =

⎧
⎪⎨

⎪⎩

1
64 if x < 1

32
7
2 x − 3

32 if 1
32 ≤ x ≤ 1

16
1
8 if x > 1

16

f4(x) =

⎧
⎪⎨

⎪⎩

7
12 if x < 1

4
1
3 x + 1

2 if x ∈ [ 14 , 3
4 ]

1
4

√
4x − 3 + 3

4 if x > 3
4

f5(x) =

⎧
⎪⎨

⎪⎩

1 if x < 3
4

1 − 1
4

√
4x − 3 if x ∈ [ 34 , 1]

3
4 if x > 1

f6(x) =

⎧
⎪⎨

⎪⎩

49
64 if x < 25

32
7
2 x − 63

32 if x ∈ [ 2532 , 13
16 ]

7
8 if x > 13

16

The graphs of the functions in F are shown in Fig. 2.

Theorem 13 The IFS F of Example 5 has attractor A := [0, 1
4 ] ∪C ∪ [ 34 , 1], where C is the

Cantor ternary set built on the interval [ 14 , 3
4 ]. Moreover, F is L-expansive on A.

Proof Since all the maps in F are of the form of those in Example 1, the IFS F is L-expansive
on A (use items (1), (2), (6) and (7), for h1(x) = 1

4 x and h2(x) = 1
4 x + 3

4 ).
To show that A is the attractor, it is enough to prove that A is the attractor of the IFS G

on [0, 1] consisting of the restrictions of maps in F to the interval [0, 1]. Thus, in the rest of
the proof we deal with IFS G and use Theorem 10.

Set Il = [0, 1
4 ], Ic := [ 14 , 3

4 ] and Ir := [ 34 , 1] and consider the IFSs Fl = { f1, f2, f3},
Fr = { f4, f5, f6} and Fc = { f1, f4}. We will show that the IFSs Fl , Fr , Fc satisfy the
assumptions of Theorem 10. We first verify (1). Referring to Example 2 and Proposition 5,
we have the following:
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(L) The interval [0, 1
4 ] is the attractor of Fl (use h(x) = 1

4 x).
(R) The interval [ 34 , 1] is the attractor of Fr (use h(x) = 1

4 x + 3
4 ).

(C) The Cantor set C is the attractor of Fc (use h(x) = 1
2 x + 1

4 ).

Hence (1) is satisfied.
To verify (2) note that:

(L) For every x ∈ [0, 1] we have Fl(x) ∩ Il �= ∅ as f3([0, 1]) ⊂ Il .
(R) For every x ∈ [0, 1] we have Fr (x) ∩ Ir �= ∅ as f6([0, 1]) ⊂ Ir .
(C) For every x ∈ [0, 1] we have Fc(x) ∩ Ic �= ∅ as f1([ 14 , 1]) ⊂ Ic and f4([0, 3

4 ]) ⊂ Ic.

To show (3), take any nonempty and compact K ⊂ [0, 1]. We have

Fl(Ir ∩ K ) ⊂
[
0,

1

4

]
∪

{ 5

12

}
⊂ A,

Fl(Ic ∩ K ) ⊂
[
0,

3

4

]
∪ f1(Ic ∩ K ) ⊂ A ∪ Fc(Ic ∩ K ),

Fr (Il ∩ K ) ⊂
[3
4
, 1

]
∪

{ 7

12

}
⊂ A,

Fr (Ic ∩ K ) ⊂
[3
4
, 1

]
∪ f4(Ic ∩ K ) ⊂ A ∪ Fc(Ic ∩ K ),

Fc(Il ∩ K ) ⊂
[
0,

1

4

]
∪

{ 7

12

}
⊂ A,

Fc(Ir ∩ K ) ⊂
[3
4
, 1

]
∪

{ 5

12

}
⊂ A.

��

5 L-Expansive IFSs onR
2 Having an attractor

We begin with a lemma used in the proof of Theorem 15 below.

Lemma 14 ([21], Example 3.3) Let the IFS G = {g1, g2} on the unit circle S1 centered at
the origin in R2 be defined as follows in terms of the polar angle θ ∈ [0, 2π):

g1(θ) = 2θ, g2(θ) = 2θ + α,

where α/π is irrational. Then G is L-expansive and the attractor of G is S1.

The Möbius transformation M(z) = 2z+1
z+2 on the complex plane takes the unit disk D

centered at the origin onto itself and has attracting fixed point 1 and repelling fixed point −1
(see [9, Chap. 4.3]). Define

h0(z) =
{
M(z) if z ∈ D

M
(

z
|z|

)
if z /∈ D.
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Then −1 is a partially repelling fixed point of h0. Additionally, define the following four
functions on R2 in terms of polar coordinates (r , θ) as follows:

h1(r , θ) =
{

(2r , θ) if r < 1
4

( 12 , θ) if r ≥ 1
4

h2(r , θ) =
{

(1 − √
1 − r , 2θ) if 0 ≤ r ≤ 1

(1, 2θ) if r > 1

h3(r , θ) =
{

(
√
r , 2θ + α) if 0 ≤ r ≤ 1

(1, 2θ + α) if r > 1
h4(r , θ) =

{
(
√
r , 0) if 0 ≤ r ≤ 1

(1, 0) if r > 1

Theorem 15 The IFS H = {h0, h1, h2, h3, h4} with functions as defined above is L-
expansive on its attractor D.

Proof The function h0 is L-expansive by Proposition 3, since −1 is a partially repelling
fixed point. That h1 and h4 are L-expansive on the interval from (0, 0) to (1, 0) follows
from Example 1. Therefore h1 and h4 are L-expansive on D. The proof that h2 and h3 are
L-expansive on the circle S1 follows from Lemma 14. Therefore h2 and h3 are L-expansive
on D.

Theorem 7with x0 = (1, 0) (polar coordinates) will be used to prove that D is the attractor
of H restricted to D. Using Proposition 9 we see that condition (1) of Theorem 7 holds.

It remains to show that H (n)(x0) → D, where x0 = (1, 0). Because x0 ∈ H(x0), we have
H (n)(x0) ⊂ Hn+1(x0) for all n ∈ N. By Lemma 6 it is sufficient to show that

⋃
n≥1 H

(n)(x0)
is dense in D.

Consider the IFS Ĥ := {̂h0, ĥ1, ĥ2, ĥ4}, where the four functions ĥ0, ĥ1, ĥ2, ĥ4 are
h0, h1, h2, h4 with domain restricted to the interval [0, 1] on the x-axis. Using the IFS from
Example 3 (with functions h2, h4 playing the role of f0, f1) we get that

⋃
n≥1 Ĥ

(n)(x0) is

dense in [0, 1]. Therefore if H4 := {h0, h1, h2, h4}, then ⋃
n≥1 H

(n)
4 (x0) is dense in [0, 1].

This implies that h3
( ⋃

n≥1 H
(n)
4 (x0)

)
is dense in the ray from the origin to (1, α).

By Lemma 14 we know that
⋃

n≥1 G
(m)(x0) is dense in S

1, where G is the IFS in
Lemma 14. With h2, h3 playing the role of g1, g2 in Lemma 14, we conclude that if
H2 = {h2, h3}, then ⋃

m≥1 H
(m)
2 ([0, 1]) is dense in D. Therefore, using continuity of maps

from H , we have that
⋃

m≥1 H
(m)
2

( ⋃
n≥1 H

(n)
4 (x0)

)
is dense in D. Since

⋃

m≥1

H (m)
2

( ⋃

n≥1

H (n)
4 (x0)

)
⊂

⋃

n≥1

H (n)(x0),

it must be the case that H (n)(x0) is dense in D.
We have thus shown that H restricted to D is an L-expansive IFS with attractor D. Hence,

by Proposition 11, the disk D is the attractor of H . ��
Theorem 16 If A ⊂ R

2 is homeomorphic to the closed unit disk, then A is the attractor of
an L-expansive IFS on R2.

Proof Let D denote the closed unit disk in R2. By the Jordan-Schoenflies Theorem, there is
a homeomorphism h : R2 → R

2 such that h(D) = A. By Theorem 15 there is an IFS F ′
on R

2 which is L-expansive on its attractor D. Let F = hF ′h−1 := {h f h−1 : f ∈ F ′}. By
Lemma 2 and Proposition 5, A is the attractor of F , and F is L-expansive on A. ��

By Theorem 16, many fractal sets, the twin dragon for example, are the attractors of L-
expansive IFSs. The usual IFS used to generate the twin dragon, however, is not L-expansive.
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In [6, Theorem 2.1, Theorem 2.2], sufficient conditions are given for an affine digit tile, like
the twin dragon, to be a topological disk. Theorem 16 may fail in dimension greater than 2
because the Jordan-Schoenflies Theorem is not true in higher dimensions.

6 L-Expansive IFSs with Attractors on Cartesian Products

The metric space results in this section show, in particular, that the examples of IFSs on the
real line R in Sect. 4 can be lifted to examples on the Euclidean space Rs of any dimension
s ≥ 2. These results concern the product

∏s
j=1 X j of metric spaces X1, . . . ,X j . The metric

on the product space can be any metric that induces the product topology.

Proposition 17 Let f j : X j → X j , j ∈ {1, 2, . . . , s}, be continuous functions. Define
f̂ : X → X on the product X = ∏s

j=1 X j by

f̂ (x1, . . . , xs) := ( f1(x1), . . . , fs(xs)).

If

(1) One of the maps, say f j0 , is L-expansive, and
(2) Each map f j , j �= j0, has a fixed point in X j ,

then the product map f̂ is L-expansive.

Proof Let z j = f j (z j ) be a fixed point of f j for j �= j0, as warranted by (2). By way of
contradiction, suppose that f̂ is non-expansive under some metric d on X equivalent to the
initial metric on X. In particular,

d
(
(z1, . . . z j0−1, f j0(x), z j0+1 . . . , zs),(z1, . . . , z j0−1, f j0(y), z j0+1, . . . , zs)

)

= d
(
f̂ (z1, . . . , z j0−1, x, z j0+1, . . . , zs), f̂ (z1, . . . , z j0−1, x, z j0+1, . . . , zs)

)

≤ d
(
(z1, . . . , z j0−1, x, z j0+1, . . . , zs),(z1, . . . , z j0−1, y, z j0+1, . . . , zs)

)

for all x, y ∈ X j0 . Thus f j0 is non-expansive with respect to the following metric ρ, which
is equivalent to the original metric in X j0 :

ρ(x, y) := d((z1, . . . , x, . . . , zs), (z1, . . . , y, . . . , zs))

for x, y ∈ X j0 . This contradicts (1). ��

Theorem 18 (Cartesian product of IFSs) Let Fj = { f1, j , . . . , fN j , j }, j ∈ {1, . . . , s}, s ≥ 2,
be IFSs on metric spaces X j with attractors A j ⊂ X j . If

F := { f̂i1,...,is : (i1, . . . , is) ∈
s∏

j=1

{1, . . . , N j }}

is an IFS on the product X of the X j ’s, defined as follows:

fi1,...,is (x1, . . . , xs) := ( fi1,1(x1), . . . , fis ,s(xs))

for all (x1, . . . , xs) ∈ X, then
∏s

j=1 A j ⊂ X is the attractor of F.
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Proof Fix K ∈ K(X), n ∈ N, and choose an arbitrary (y1, . . . , ys) ∈ K . Then

s∏

j=1

F (n)
j (y j ) = F (n)(y1, . . . , ys) ⊂ F (n)(K ) ⊂ F (n)

⎛

⎝
s∏

j=1

π j (K )

⎞

⎠ =
s∏

j=1

F (n)
j (π j (K )),

where π j is the projection from X to X j . Since F (n)
j (y j ) → A j and F (n)

j (π j (K )) → A j ,
an application of a squeezed sequence argument, supported by standard properties of the
Hausdorff limit (see [16]), yields F (n)(K ) → ∏s

j=1 A j . ��

A more general version of the above theorem was established recently in [20]. As imme-
diate corollaries of Proposition 17 and Theorem 18, we obtain the following results.

Corollary 19 Let F = { f1, . . . , fN } be an L-expansive IFS on ametric spaceXwith attractor
A ⊂ X. If z2, . . . , zs ∈ X are given points, and F̃ := { f̃1, . . . , f̃N } is the IFS on the product
space Xs , s ≥ 2, defined as follows:

f̃i (x1, . . . , xs) := ( fi (x1), z2, . . . , zs)

for all (x1, . . . , xs) ∈ X
s , then F̃ is L-expansive and A× ∏s

j=2{z j } ⊂ X
s is the attractor of

F̃ .

Corollary 20 Let F = { fi : i ∈ I } be an L-expansive IFS on a metric space X with attractor
A ⊂ X so that each map fi has a fixed point. If F̂ := { f̂i1,...,is : (i1, . . . , is) ∈ I s} is an IFS
on the product space Xs defined as follows:

f̂i1,...,is (x1, . . . , xs) := ( fi1(x1), . . . , fis (xs))

for all (x1, . . . , xs) ∈ X
s , then F̂ is L-expansive and As ⊂ X

s is the attractor of F̂ .

Example 6 The lift of Example 5 from R to R
2, using Corollary 20, is shown in Fig. 1.

7 An Upper Bound on the Lipschitz Constant

Each IFS in Sects. 4, 5, and 6 is L-expansive, which means that, for any metric d that induces
the standard topology on Euclidean space, we have Lipd( f ) > 1 for every f ∈ F . According
to Proposition 22 below, it may be problematic to do much better in terms of expansiveness.

A function f is a Lipschitz function with respect to a metric d if Lipd( f ) < ∞. Let
Lipd(F) := max{Lipd( f ) : f ∈ F}, and call an IFS F on a metric space (X, d) a Lipschitz
IFS if Lipd(F) < ∞. For a metric d and real number p, we use the notation d p(x, y) :=(
d(x, y)

)p .

Lemma 21 (Snowflake transform, cf. ([13], Chap. 4.1, p.89)) If d is a metric on X, then for
every p ∈ (0, 1], d p is a metric on X equivalent to d. Moreover, (X, d p) is complete if and
only if (X, d) is complete.

Proposition 22 If F is a Lipschitz IFS on a metric space (X, d), then for every ε > 0, there
is an equivalent metric ρ on X such that Lipρ(F) < 1 + ε. Moreover, if d is complete, then
ρ is complete.
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Proof Since Lipd(F) < ∞, for any ε > 0, we can take p ∈ (0, 1] such that
(
Lipd(F)

)p ≤
(1 + ε). For every f ∈ F and x, y ∈ X, we have

d p( f (x), f (y)) ≤ (Lipd(F) d(x, y))p = (Lipd(F))p d p(x, y) ≤ (1 + ε) d p(x, y).

Hence we can take ρ = d p . ��
The hypothesis of Proposition 22 is that F is a Lipschitz IFS. This motivates the following

question.

Question 2 Let F be an IFS on a metric space (X, d). Under what conditions on (X, d) does
there exist an equivalent metric with respect to which F is a Lipschitz IFS?

For some results related toQuestion 2 see [12, Chap. 3.2] andRemark 2. It is not clear to us,
however, that standard remetrization techniques for turning continuous maps into Lipschitz
maps could be adapted to answer Question 2.

Theorem 23 is a partial answer to Question 2. It provides conditions on a single function
f on [0, 1] sufficient for f to be Lipschitz with respect to some metric equivalent to the
standard metric. In particular, it shows that the function x �→ √

x on [0, 1] is Lipschitz.
Theorem 23 Let f : [0, 1] → [0, 1] be a map that satisfies the following:

• f is a strictly increasing homeomorhism with f (0) = 0, and
• There is an a ∈ (0, 1) such that f (x) > x for all x ∈ (0, a] and f is continuously

differentiable on [ f −1(a), 1].
Then there is a metric d equivalent to the standard metric on [0, 1] such that f is Lipschitz.
Proof Let f be a function that satisfies the conditions of the theorem. For n ≥ 0, define
an = f (−n)(a) and In = (an+1, an], where f (−n) denotes the n-fold composition of f −1

with itself. Note that an → 0 as n → ∞. For x ∈ (0, a], let nx be the unique integer such
that x ∈ Inx . Note that n f (x) = nx − 1 for x ∈ (0, a1]. For x ∈ [0, a] define

g(x) =
{

1
2nx

(
f (nx )(x) + (a0 − 2a1)

)
if x ∈ (0, a]

0 if x = 0.

It is routine to check that g(x) is a continuous strictly increasing function on [0, a]. For all
x, y ∈ [0, a], define

d0(x, y) := |g(x) − g(y)|.
Then d0 is a metric on [0, a] equivalent to the standard metric and such that d0(x, y) =
d0(x, z) + d0(z, y) for x ≤ z ≤ y. We first show that f is a Lipschitz function, with
Lipd0( f ) = 2, on the interval [0, a1]. Assume that a1 ≥ x ≥ y > 0. Then

d0( f (x), f (y)) = g( f (x)) − g( f (y))

= 1

2n f (x)

(
f (n f (x)+1)(x) + (a0 − 2a1)

)
− 1

2n f (y)

(
f (n f (y)+1)(y) + (a0 − 2a1)

)

= 1

2nx−1

(
f (nx )(x) + (a0 − 2a1)

)
− 1

2ny−1

(
f (ny )(y) + (a0 − 2a1)

)

≤ 2
( 1

2nx
(
f (nx )(x) + (a0 − 2a1)

) − 1

2ny
(
f (ny)(y) + (a0 − 2a1)

))

= 2
(
g(x) − g(y)

)

= 2 d0(x, y).
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By passing to the limit as y → 0 in the inequality obtained above, we also get that
d0( f (x), f (0)) ≤ 2d0(x, 0) for x ≤ a1. Define d on [0, 1] by

d(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0(x, y) if x, y ≤ a

|x − y| if x, y ≥ a

(y − a) + d0(a, x) if x < a < y

(x − a) + d0(a, y) if y < a < x

It is routine to verify that d is a metric on [0, 1] equivalent to the standard metric. That f
is continuously differentiable on [a1, 1] implies that f is Lipschitz on [a1, 1] with respect to
the metric d . Therefore f is Lipschitz with respect to the metric d on [0, 1]. ��
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