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Abstract

Because connectivity is such a basic concept in graph

theory, extremal problems concerning the average order of

the connected induced subgraphs of a graph have been of

notable interest. A particularly resistant open problem is

whether or not, for a connected graphG of order n, all of

whose vertices have degree at least 3, this average is at

least ∕n 2. It is shown in this paper that ifG is a connected,

vertex transitive graph, then the average order of the

connected induced subgraphs of G is at least ∕n 2.

The extremal graph theory problems mentioned above

lead to a broader theory. The concept of a Union‐
Intersection System (UIS)  ≔ P( , ) is introduced, P

being a finite set of points and a set of subsets of P called

blocks satisfying the following simple property for all

∈A B, : if ∩ ∈A B , then ∪ ∈A B . To generalize

results on the average order of a connected induced

subgraph of a graph, it is conjectured that if a UIS is, in

various senses, “connected and regular,” then the average

size of a block is at least half the number of points. We

prove that if a union‐intersection set system is regular,

completely irreducible, and nonredundant, then the

average size of a block is at least half the number of points.
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1 | INTRODUCTION

The average value of various graph invariants is currently a major research topic. In particular,
the average order of a connected induced subgraph of a graph has received considerable
attention recently; see, for example [2, 5–7, 10–14, 16–18] and references therein. Extremal
problems concerning the average order of a connected induced subgraph of a graph originated
in the 1983 and 1984 papers of Jamison [8, 9] on the average order of a subtree of a tree. For a
tree, a connected induced subgraph is simply a subtree. Jamison proved that the average order
of a subtree, over all trees of order n, is minimized by the path Pn.

For a graph G of order n, call a set U of vertices connected if U induces a connected
subgraph of G. Let  ≔ G( ) denoted the set of all connected sets of G, and let


≔ ≔∈

 av G
U

d G
av G

n
( ) and ( )

( )U

denote the average size of a connected set and the proportion of vertices in an average size
connected set. The parameter d G( ) is called the density of G and allows for the comparison of
the average size for graphs of different orders. For example, if ∕d G( ) = 1 2, then the average size
of a connected induced subgraph is half the order ofG. With this notation, the result of Jamison
is that ≥ ∕av T n( ) ( + 2) 3 for every tree T of order n with equality if and only if T P= n.
Therefore ∕d T( ) > 1 3 for every tree T . It had been open since Jamison's work, and conjectured
formally by Kroeker, Mol, and Oellermann in 2018 [10], that Pn minimizes the average size of a
connected set over all connected graphs of order n. This conjecture was proved in 2022:

Theorem 1.1 (Haslegrave [6] and Vince [15]). If G is a connected graph, then d G( ) >
1

3
.

With respect to the 1/3 bound in Theorem 1.1, vertices of degree 2 play a special role. It is
therefore natural to ask about a lower bound for graphs with no vertex of degree 2. For trees,
the following result appeared in 2010.

Theorem 1.2 (Vince and Wang [13]). For a tree T with no vertex of degree 2 we have

d T( ) >
1

2
, the bound being tight.

Concerning a lower bound for graphs in general, we posed the following conjectures in
2020. In the first, the hypothesis is combinatorial, in the second group theoretic.

Conjecture 1 (Vince [14]). If G is a connected graph, all of whose vertices have degree at
least 3, then ≥d G( )

1

2
.

Conjecture 2. If G is a connected, vertex transitive graph, then ≥d G( )
1

2
.

Although Conjecture 1 remains open, Conjecture 2 is confirmed in this paper. It is
statement (2) of Theorem 1.4. The proof of Theorem 1.4, which is provided in Section 3, relies
on a strong connection between the density d G( ) and the maximum of the ratio of the number
of connected sets of G containing a given vertex v to the total number of connected sets. With

 ∈ ∈   N G G N G v U G v U( ) = ( ) and ( , ) = { ( ) : } ,
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this maximum ratio is

≔
∈

R G
N G v

N G
( ) max

( , )

( )
.

v V G( )

The connection between d G( ) and R G( ) is made precise in Proposition 1.3, stated in a more
general setting.

A set system P( , ) consists of a finite nonempty set P of points and a nonempty collection 
of subsets of P called blocks. Call ≔  n P the order of the set system. Call a set system regular if
each point is contained in the same number of blocks. Extend notation from a graph to a set
system  of order n as follows. Let





≔ ≔∈

 av
X

d
av

n
( ) and ( )

( )X (1)

denote the average size of a block and the proportion of points in an average size block.
Further, for ∈x P, define

 

 






∈ ∈

∈

 
 

N

N x A x A

R
N x

N

( ) = ,

( , ) = { : } ,

( ) = max
( , )

( )
.

x P

(2)

In applying Proposition 1.3 to a graph G with vertex set V , the relevant set system is

 G V G( ) = ( , ( )).

Therefore N G N G( ) = ( ( )) and N G v N G v( , ) = ( ( ), ). Statement (1) in Proposition 1.3 can be
restated as follows: there is a point x such that the probability that a randomly selected block
contains x is at least α.

Proposition 1.3. For a regular set system  P= ( , ) of order n and a real number
≤ ≤α α, 0 1, the following statements are equivalent:

(1)  ≥R α( ) .
(2)  ∕ ≥N x N α( , ) ( ) for every ∈x P.
(3)  ≥d α( ) .

Proof. Because every point of  is contained in the same number of blocks, statements
(1) and (2) are equivalent.

Let ∈x P0 be an arbitrary point of  and count the number of elements in the set
∈ ∈x X x X{( , ) : } in two ways to obtain

  


∈ ∈
∈ ∈

    X x X x X N x nN x= {( , ) : } = ( , ) = ( , ).
X x P

0
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Therefore







 ≥ ≥∈

d
X

nN
α

N x

N
α( ) =

( )
if and only if

( , )

( )
.X 0

□

Theorem 1.4. Let G be a connected graph. Then

(1) ≥R G( )
1

2
;

(2) if G is vertex transitive, then ≥d G( )
1

2
;

(3) there is an edge of G that is contained in at least half of all connected (not necessarily
induced) subgraphs of G of order ≥2.

Remark 1.5. The 1/2 lower bound on R G( ) in statement (1) of Theorem 1.4 is the best
possible. For example, for the path Pn of even and odd orders n, it is not difficult to show
that for a “central” vertex v



 


 


 


N P v

N P n

N P v

N P n

( , )

( )
=

1

2
1 +

1

− 1
and

( , )

( )
=

1

2
1 +

1
,n

n

n

n

respectively.
The 1/2 lower bound in statement (2) of Theorem 1.4 is the best possible because it is

attained, for example, by complete graphs and by cycles.
The 1/2 lower bound in statement (3) is also the best possible. An example is the cycle

of order n. There are ( )2
n

2
connected subgraphs of order ≥2, and each edge is contained

in exactly ( )n2 of them.

For a tree with no vertex of degree 2, Theorem 1.6 is a much stronger result than statement
(1) of Theorem 1.4. Statement (1) of Theorem 1.4 states that ≥ ∕R G( ) 1 2 for any connected
graph G. Theorem 1.6 states that, for a tree T with no vertex of degree 2, the ratio
R T o( ) = 1 − (1). The proof of Theorem 1.6 appears in Section 3.

Theorem 1.6. If T is a tree of order n with no vertex of degree 2, then

R T
n

( ) > 1 −
9

2 + 10
.

The lower bound on R T( ) in Theorem 1.6 is not the best possible. We pose the following
conjecture concerning the extremal graph. An affirmative answer to Conjecture 3 would imply
that there is a constant c such that, for every tree T of order n with vertex set V and with no
vertex of degree 2,

≥
∕

R T
c

( ) 1 −
2

.
n 4

Conjecture 3. For every tree of T of order n with no vertex of degree 2, the ratio R T( ) is
minimized when T is one of the caterpillars in Figure 1, depending on n modulo 4.
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2 | A BROADER CONTEXT: UISs

If two connected sets of vertices of a graph have nonempty intersection, then their union is also
a connected set. That simple fact is the motivation for Definition 1.

Definition 1. A set system P( , ) is a UIS if the following property holds for all
∈A B, :

• ∪ ∈A B whenever ∩ ≠ ∅A B .

Example 1 (Graph UIS). For a graph G with vertex set V and collection  G( ) of
connected vertex sets, the set system  G V G( ) = ( , ( )) is a UIS, called a graph UIS.

Example 2 (Hypergraph UIS). A hypergraph H V E= ( , ) consists of a nonempty set V of
vertices and a set E of nonempty subsets of V called edges. See [1, 3] as references on
hypergraphs. Given a hypergraph H V E= ( , ), a hypergraph UIS  H( ) can be defined in a
manner analogous to a graph UIS. Given ⊆U V , the hypergraph H U( ) induced byU is the
hypergraph with vertex setU and edge set ∩ ∈e U e E{ : }. A hypergraph H is connected if,
for any pair x y, of vertices, there is a path which connects them, a path being a vertex‐edge
alternating sequence x x e x e x e x y= , , , , …, , , =s s s1 1 2 2 +1 such that ∈x x e,i i i+1 for
i s= 1, 2, …, . A set ⊆U V is said to be a connected set of vertices or simply a connected set
if the induced hypergraph H U( ) is connected. If  H( ) denotes the collection of all connected
vertex sets of H , then the UIS  H V H( ) = ( , ( )) will be referred to as a hypergraph UIS.

Remark 2.1 (Not every UIS is a hypergraph UIS). Not every UIS, not even every completely
irreducible UIS, is a hypergraph UIS. A simple example is  P= ( , ), where P = [5] and

 = {{1, 2, 3}, {3, 4, 5}, {1, 2, 3, 4, 5}}.

The UIS  is not a hypergraph UIS because if there exists a hypergraph H such that
  H= ( ), then the sets {1, 2, 3} and {3, 4, 5} would have to be edges of H . Hence the set
{2, 3, 4} would be a connected set in H and hence a block of  .

FIGURE 1 Conjectured extremal trees. The maximizing vertex v is colored red. [Color figure can be viewed
at wileyonlinelibrary.com]
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Call a set system P( , ) of order n trivial if all the blocks have size either n or 1. The notation
≔n n[ ] {1, 2, …, } will be used. Recall that a set system is regular if each point is contained in the

same number of blocks. In the graph case, it was always assumed that G is a connected graph.
This motivates the following generalization.

Definition 2. A nontrivial set system  P= ( , ) is called reducible if there is a partition
P P( , )1 2 of P into two nonempty parts such that if ∈ ⧹A P{ }, then ⊆A P1 or ⊆A P2. For
example, if  P= ( , )1 1 and  P= ( , )2 2 , where P = [4] and

 = {{1, 2}, {3, 4}} and = {{1, 2}, {3, 4}, {1, 2, 3, 4}},1 2

then both 1 and 2 are reducible. If  is not reducible, it is called irreducible.
If ∈Q and  ∈ ⊆Q A A Q( ) = { : }, then Q Q( , ( )) is called the subsystem induced

by block Q. A set system  is called completely irreducible if  itself and all subsystems
induced by its blocks are irreducible.

The automorphism group of a set system P( , ) is the group of all bijections →g P P: such
that ∈A if and only if ∈g A( ) . Call a set system transitive if its automorphism group acts
transitively on P. Note that a transitive set system is regular. Call a set system primitive if its
automorphism group acts primitively on P. Recall that a permutation group Γ acting on a set P
of size n is called primitive if the only partitions of P that are preserved by the Γ‐action are the
trivial partitions into either a single part of size n or into n parts of size 1. Primitive permutation
groups are transitive; otherwise orbits of the group Γ form a nontrivial partition preserved by Γ.

Proposition 2.2. Let G V E= ( , ) be a graph and  G V G( ) = ( , ( )) its UIS. Then

(1) G is a connected graph if and only if  G( ) is irreducible;
(2) the graph G is vertex transitive if and only if  G( ) is transitive; and
(3) the automorphism group of G acts primitively on the set of vertices of G if and only if

 G( ) is primitive.

Proof. Concerning statement (1), assume that G is not connected. Let V1 be the set of
vertices in a connected component ofG and ⧹V V V=2 1. If A is a connected set of vertices
of G, that is, a block of  G( ), then ⊆A V1 or ⊆A V2. Hence  is reducible.

Conversely assume that  is reducible in  G( ). Then there is a partition V V( , )1 2 ofV into
two nonempty parts such that if ≠A V is a connected vertex set then ⊆A V1 or ⊆A V2.
Therefore,V1 andV2 are unions of connected components ofG and henceG is not connected.

Statements (2) and (3) follow because a bijection →g V V: preserves adjacency in G
if and only if g preserves connectedness of subsets of vertices ofG, that is, if and only if it
takes blocks to blocks in  G( ). □

Proposition 2.3. If  P= ( , ) is a nontrivial, primitive UIS, then  is transitive and
irreducible.

Proof. It has already been mentioned that a primitive permutation group must be
transitive. By way of contradiction, assume that  is reducible. Because  is nontrivial,
there is a block of size at least 2 properly contained in P. Let A A A, , …, k1 2 be the maximal

6 | VINCE
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blocks of  in ⧹ P{ }. If  is not transitive, then  is not primitive, and we are done.
Hence, assume that  is transitive, which implies that ≥k 2 and that every point is
contained in a block Ai for some i. By Definition 1 and the fact that the Ai are maximal,
either (1) the Ai are pairwise disjoint or (2) there is a pair ≠A A i j, ,i j , such that
∩ ≠ ∅A Ai j and ∪A A P=i j . In case (2),  cannot be reducible, a contradiction. In case

(1), A A A( , , …, )k1 2 is a partition of P that is left invariant by the automorphism group of
 . Hence  is not primitive. □

Remark 2.4. That a UIS  is primitive does not necessarily imply that  is completely
irreducible. An example is  C( )n , where Cn is an n‐cycle. The dihedral group acts
primitively on the set of vertices of Cn. However, if u and v are adjacent vertices of Cn,
then u v u v{ }, { }, { , } are blocks of  C( )n , and the partition u v({ }, { }) shows that the block
u v{ , } is reducible, hence  C( )n is not completely irreducible.

The density d and parameter R were extended from graphs to set systems in Equations (1)
and (2). It is natural to ask what is true for d ( ) and R ( ) in this more general setting. We
formulate the following conjectures.

Conjecture 4. If  is a nontrivial, primitive UIS, then  ≥ ∕R ( ) 1 2.

Conjecture 5. If  is a completely irreducible UIS, then  ≥ ∕R ( ) 1 2.

Conjecture 6. If  is a completely irreducible UIS, then d ( ) >
1

3
.

Conjecture 7. If  is a nontrivial, primitive UIS, then  ≥d ( )
1

2
.

Conjecture 8. If  is a completely irreducible and regular UIS, then  ≥d ( )
1

2
.

Remark 2.5. In Conjecture 4, assuming only that the UIS  is nontrivial and transitive
is not sufficient to conclude that  ≥ ∕R ( ) 1 2. An example is   ∪n= ([2 ], )1 2 for
≥n 2, where 1 is the set of all subsets of n[ ] and 2 is the set of all subsets of
n n n{ + 1, + 2, …, 2 }. Each point is contained in only 2n−1 of the ⋅2(2 − 1) > 2 2n n−1

blocks.

Remark 2.6. Conjecture 5 may fail if  is not completely irreducible. An example is the
UIS  P= ( , ) with P = [5] and

 = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 2, 5}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}.

In this example,  itself is irreducible, but the subsystem induced by the block {1, 2, 3, 4}

is not. Each point of  is contained in at most 5 out of the ⋅11 > 2 5 blocks.

Remark 2.7. The statements of Conjectures 4 and 5 are similar in structure to that of the
well‐studied, but still open, Union‐Closed Sets Conjecture posed by Peter Frankl in 1979;
see the survey [4] and references therein. This paper, however, does not address the
Union‐Closed Sets Conjecture.

VINCE | 7
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Remark 2.8. The 1/3 lower bound on the density in Conjecture 6 is the best possible.
With the notation ≔a b a a a b[ , ] { , + 1, + 2, …, } for integers a b< , an example is the
UIS n([ ], ), where

 ≤ ≤a b a b n= {[ , ] : 1 < }.

In this example, the density is (1 + )
n

1

3

4 .

Remark 2.9. Conjecture 7 is, according to Proposition 1.3, equivalent to Conjecture 4.
Conjecture 5, if correct, implies Conjecture 8 via Proposition 1.3.

Remark 2.10. Assuming that Conjectures 7 and 8 are correct, the 1/2 lower bound on
the density is asymptotically best possible. An example is the UIS  n= ([ ], ), where 

consists of all nonsingleton subsets of n[ ]. The density is  ( )d ( ) = 1 +
n

n

1

2

− 2

2 −n
.

Although Conjectures 4, 5, 6, 7, and 8 remain open, several closely related results are
obtained. These results, Theorems 2.11 and 2.12, are stated below and proved in Section 3.
Moreover, if G is a graph, then Conjectures 4, 5, 6, and 7 are true for  G( ). Statement (1) of
Theorem 1.4, together with Propositions 2.2 and 2.3, implies the graph versions of Conjectures
4 and 5. Theorem 1.1 and Proposition 2.2 imply the graph version of Conjecture 6. Statement
(2) of Theorem 1.4, together with Propositions 2.2 and 2.3, imply the graph version of
Conjecture 7. Statements (1) and (2) of Theorem 1.4 are actually stronger than the graph
versions of the relevant conjectures because the assumption that the UIS  G( ) is completely
irreducible is not required, only that  G( ) be irreducible, that is, that G be connected.

Theorem 2.11. If H is a connected hypergraph, then

(1) There is a vertex that is contained in at least half of the connected vertex sets of H , and

(2) if H is vertex transitive, then ≥d H( )
1

2
.

For a UIS  P= ( , ), let  ≔ ( ) denote the set of all minimal blocks, where minimal is
with respect to containment. If ⊆′ , then define

 ∈ ⊆ A A P′ = { : ′} .

Call  redundant if there are distinct subsets 1 and 2 of  such that  =1 2 ;
otherwise nonredundant.

Theorem 2.12. If a UIS  is completely irreducible and nonredundant, then

(1) there is a block of  that is a subset of at least half the blocks of  , and

(2) if, in addition,  is regular, then  ≥d ( )
1

2
.

Theorem 2.12 gives the conclusions of Conjectures 5 and 8, but requires the additional
assumption that  is nonredundant. The conclusion of the statement (1) of Theorem 2.12 is

8 | VINCE
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somewhat stronger than the conclusion of Conjecture 5 in that a whole block, not just a single
point, is contained in half of the blocks of  .

3 | PROOFS OF THE THEOREMS

This section contains the proofs of Theorems 1.4, 1.6, 2.11, and 2.12, in that order.

3.1 | Theorem 1.4

The following notation is used in the proof, where G is a graph andU is a set of vertices of G.

N N G G

N U N G U G U

N U N G U G U

N U U G U U

= ( ) = the number of connected sets in ,

( ) = ( , ) = the number of connected sets in containing ,

( ) = ( , ) = the number of connected sets in disjoint from ,

( ¬ ′) = the number of connected sets in containing but disjoint from ′.

Lemma 3.1. If G is a connected graph of order n, then for every ≤ ≤k k n, 1 , there is a
connected set U of size k such that ≥N U N U( ) ( ).

Proof. Let G be a connected graph of order n. The proof is by backward induction on k.
The statement is clearly true for k n= , even counting the empty set as a connected set.
Assuming that the lemma is true for k with ≥k 2, we will prove that it is true for k − 1.

LetU be the connected set of size k such that ≥N U N U( ) ( ). Let ∈v v U,1 2 be such
that both ≔ ⧹U U v{ }1 1 and ≔ ⧹U U v{ }2 2 remain connected sets. For example, take v v,1 2

to be any two leaves in a spanning tree of the subgraph ofG induced byU . We claim that
≥N U N U( ) ( )1 1 or ≥N U N U( ) ( )2 2 , which would conclude the proof of the lemma.

To prove the claim, first note that, for i = 1, 2, we have

N U N U N U v

N U N U N v U

( ) = ( ) + ( ¬ ),

( ) = ( ) + ( ¬ ).

i i i

i i i

Subtracting the two equalities and using the induction hypothesis yields

≥

N U N U N U N U N U v N v U

N U v N v U

( ) − ( ) = ( ) − ( ) + ( ( ¬ ) − ( ¬ ))

( ¬ ) − ( ¬ ).

i i i i i i

i i i i

It is now sufficient to show that ≥N U v N v U( ¬ ) ( ¬ )i i i i for i = 1 or i = 2. By way of
contradiction, assume that N v U N U v( ¬ ) > ( ¬ )i i i i for i = 1, 2. Summing yields

N v U N v U N U v N U v( ¬ ) + ( ¬ ) > ( ¬ ) + ( ¬ ).1 1 2 2 1 1 2 2 (3)

For i = 1, 2, let i be the collection of all sets containing vi but disjoint fromUi; thus
  N v U= ( ¬ )i i i . Let i be the collection of all sets containing Ui but disjoint from vi;
thus   N U v= ( ¬ )i i i . Define a map  →ϕ :1 1 2 by ∪ ∈ϕ A A U( ) =1 2 2, and define a

VINCE | 9
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map  →ϕ :2 2 1 by ∪ ∈ϕ A A U( ) =2 1 1. Note that ∈ϕ A( )1 2 because ∈ ∩v A U1 2;
similarly ∈ϕ A( )1 1. Because both ϕ1 and ϕ2 are injections, we have

≥ ≥N U v N v U N U v N v U( ¬ ) ( ¬ ) and ( ¬ ) ( ¬ ),2 2 1 1 1 1 2 2

which contradicts inequality (3). □

Proof of Theorem 1.4. Concerning statement (1), by Lemma 3.1 with k = 1, there is a

vertex u such that ≥N u N u( ) ( ). Therefore ≥N u N u N u N2 ( ) ( ) + ( ) = and ≥
N u

N

( ) 1

2
.

Concerning statement (2), by statement (1) we have ≥ ∕R G( ) 1 2. By Proposition 2.2,G
vertex transitive implies that  G( ) is transitive, hence also regular. By Proposition 1.3

with ∕α = 1 2 and Proposition 2.2 this implies that  ≥d G d G( ) = ( ( ))
1

2
.

Concerning statement (3), let G* be the line graph of G. The vertices of G* are the
edges of G and two vertices of G* are adjacent if the corresponding edges of G are
incident. SinceG is connected,G* is also connected. For a connected vertex set H* ofG*,
let H be the corresponding (not necessarily induced) subgraph of G. Then the mapping

↦H H* is a bijection between the collection of connected vertex sets of G* and the
connected subgraphs of G of order ≥2. By statement (1) of Theorem 1.4 there is a vertex
ofG*, that is, an edge ofG, that is contained in at least half of the connected vertex sets of
G*, that is, half of the connected subgraphs of G of order ≥2. □

3.2 | Theorem 1.6

The following notation is used in the proof. For a vertex v of degree k inT letT T T, , …, k1 2 be the
connected components of ⧹T v, and let vi be the vertex of Ti adjacent to v. For ≤ ≤i k1 , denote
by N N,i i , and ni the number of subtrees of Ti containing vi, the number of subtrees of Ti not
containing vi, and the order of Ti, respectively.

Lemma 3.2. Let T be a tree of order n rooted at a vertex v of degree ≥k 2. If T has no

vertex of degree 2 except possibly the root, then ≥N v N v( ) ( ) +
n + 1

2
.

Proof. The proof is by induction on the order n of the tree. If n = 1 then
N v N v( ) = 1, ( ) = 0 and the statement is true. Assume the statement true for all such
trees of order less than n. For a tree of order n we have

≥ ≥ ≥

≥

   N v N N N N
n

N v
n k

N v
n

( ) = ( + 1) 2 ( + ) +
+ 1

2
( ) +

+ − 1

2

( ) +
+ 1

2
,

i

k

i
i

k

i

i

k

i i

i

k
i

=1 =1 =1 =1

where the second inequality is by the induction hypothesis. The first inequality, for
k = 2, is equivalent to ≥N N( − 1)( − 1) 01 2 . For ≥k 3, the inequality is easily proved by
induction on k. □

10 | VINCE

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23024 by A

ndrew
 V

ince - U
niversity O

f Florida , W
iley O

nline L
ibrary on [09/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Proof of Theorem 1.6. That there exists a vertex that satisfies the first inequality below is
[13, Lemma 5]. The second inequality is from Lemma 3.2; and the last inequality is
because ≥N n − 1.

≥ ≥

≥ ≥

≥

   





















 









 


 


 




























N v N N N N N N
n

N v
n k

N v
n

N v n N v
n

n N v n N v
n

n N v
n

( ) = ( + 1)
4

9
=

1

9
( + )

1

9
+ +

+ 1

2

=
1

9
( ) +

+ − 1

2

1

9
( ) +

+ 2

2

1

9
( ) + ( + 2) ( ) +

( + 2)

4

1

9
( − 1) ( ) + ( + 2) ( ) +

( + 2)

4
=

1

9
(2 + 1) ( ) +

( + 2)

4
.

i

k

i

i

k

i

i

k

i i

i

k

i i
i

=1 =1

2

=1

2

=1

2

2 2
2

2

2 2

Now

















n N v N v n N v

n N v n N v
n

n N
n

1

9
(2 + 10) ( ) = ( ) +

1

9
(2 + 1) ( )

=
1

9
(2 + 1) ( ) + (2 + 1) ( ) +

( + 2)

4

=
1

9
(2 + 1) +

( + 2)

4
.

2

2

Therefore

≥


 


N v

n
N

n

n
( ) 1 −

9

2 + 10
+

( + 2)

8( + 5)
.

2

□

3.3 | Theorem 2.11

Given a hypergraph H , the hypergraph UIS  H( ) was defined in Section 2. One might expect that
the collection of graph UISs is properly contained in the collection of hypergraph UISs. This is not
the case, as implied by Lemma 3.3. Two UISs are isomorphic if there is a bijection between their
point sets that preserves blocks. Isomorphism of 1 and 2 will be denoted by  =1 2.

Lemma 3.3. For every hypergraph H there is a simple graphG with the same vertex set as
H and such that  H G( ) = ( ). In particular, H is connected if and only if G is connected.

Proof. Given a hypergraph H V E= ( , ), define a graph
∼

G V E= ( , ), where
∈ ∈

∼
E u v u v e e E= {{ , } : , for some }. It is now sufficient to show that H and G have
the same collection of connected vertex sets.

If C is a connected set in H and ∈x y C, , then there is a path
x x e x e x e x y= , , , , …, , , =s s s1 1 2 2 +1 in the hypergraph H C( ) induced by C. For each edge
ei in the induced graph hypergraph, there is an edge ∈e E′i such that ⊆e e′i

i. Since there
is an edge e′i in the hypergraph H containing xi and xi+1, there must also be an edge
between xi and xi+1 in the associated graph G. Therefore C is a connected set in G.

VINCE | 11
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If C is a connected set in G and ∈x y C, , then there is a path
x x e x e x e x y= , , , , …, , , =s s s1 1 2 2 +1 in G, where ∈

∼
e Ei for all i. Each ⊆ ∩e e C′i i for

some edge ∈e E′i . Let ∩e e C″ = ′i i , which is an edge in H C( ). Now
x x e x e x e x y= , ″, , ″, …, , ″, =s s s1 1 2 2 +1 is a path joining x and y in H C( ). Therefore C is
connected in H C( ) and hence a connected set in H . □

Proof of Theorem 2.11. Concerning statement (1), letG be the graph associated withH as in
Lemma 3.3. By that lemma,G is connected because H is connected. By Theorem 1.4 there is a
vertex v inG that is contained in at least half of the connected vertex sets ofG. By Lemma 3.3
the collection of connected sets of G is the same as the collection of connected sets of H .
Therefore, there is a vertex ofH that is contained in at least half the connected vertex sets ofH .

Concerning statement (2), since H is vertex transitive, so is the graph G. By
Theorem 1.4 ≥ ∕d G( ) 1 2. Since the collection of connected sets of G is the same as the
collection of connected sets of H , we have ≥ ∕d H d G( ) = ( ) 1 2. □

3.4 | Theorem 2.12

Lemma 3.4. Let  P= ( , ) be a UIS. If  is irreducible, then P is a block.

Proof. By way of contradiction, assume that P is not a block. Since  is nonempty by the
definition of a set system, there is at least one block. Let A be a maximal block. Let

∈C . If ∩ ≠ ∅C A and ⊈C A, then ∪C A contradicts the maximality of A. Therefore,
either ⊆C A or ⊆ ⧹C P A, implying that  is reducible □

Let P( , ) be a set system. There is a unique minimal, with respect to containment,
collection   of subsets of P such that  ⊆   and   ≔  P( ) ( , ) is a UIS. This
unique minimum is given by

    ⊆ ⊆   P= { : 2 and ( , ) is a UIS}.P

Call  ( ) the UIS spanned by. This spanned UIS can also be obtained recursively by the
following simple routine:

Algorithm M

Input: A set of subsets of P

Output:  
Initialize: Set    =

While there exist ∈  A A,1 2 with ∩ ≠ ∅A A1 2 and ∪ ∉  A A1 2

 ← ∪ ∪    A A{ }1 2

If  P= ( , ) is a UIS and ⊆ , then  is said to be spanned by if   = ( ). If, in
addition, there is no set ∈X such that ∈ ⧹ X X{ } , then call a basis for  .

Proposition 3.5. For a UIS  P= ( , ), let ( ) be the set of all minimal blocks of  .
Then ( ) is a basis for  if and only if  is completely irreducible.

12 | VINCE
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Proof. By definition, the set ( ) of minimal blocks satisfies the property that there is
no set  ∈X ( ) such that  ∈ ⧹ X X( ) { } .

Assume, by way of contradiction, that  ≔ ( ) does not span  . Let B be a block
of  that is minimal among those such that ∉  B . Consider the set system
 B B B( ) = ( , ( )) induced by the block B (see Definition 2). Since ⊆  , the block

∉B . Therefore, there is a block in   that is properly contained in B. Let A be a
maximal block in   that is properly contained in B, and consider the partition of B
into A and ⧹B A. IfC is a block in properly contained in B, then ∈  C ; otherwiseC
would contradict the minimality of B. Also, either (1) ⊆C A or ⊆ ⧹C B A, or (2)
∩ ≠ ∅C A and ∩ ⧹ ≠ ∅C B A( ) . In case (1) B B( , ( )) is reducible, hence  is not

completely irreducible, and we are done. In case (2) either the set ∪ ∈  A C is
properly contained in B, contradicting the maximality of A, or ∪A C B= , contradicting

∉  B .
Conversely, assume that  is not completely irreducible, that  has a block A such

that  A A A( ) = ( , ( )) is reducible. Then  ≠ ∅A( ) and there is a partition A A( , )1 2 of A
into two nonempty parts such that if  ∈ ∩  C A( ) , then ⊆C A1 or ⊆C A2. It is then
impossible that ∈  A , that is,  is not spanned by. □

The intersection graph G ( ) of a UIS  P= ( , ) is the graph whose vertex set is ( ) and
where adjacency is defined as follows. If  ∈A ( ) is a minimal block of  , denote the
corresponding vertex in G ( ) by v A( ). Two vertices v A( ) and v B( ) of G ( ) are adjacent if
∩ ≠ ∅A B .
If U is a set of vertices of G ( ), let U* be the corresponding subset of ( ), and let

≔ ∈ ⊆U A A U P{ : *} .

If U u= { }, a single vertex, then we simplify the notation to u* and u .

Lemma 3.6. Let  P= ( , ) be a completely irreducible UIS and G ( ) the corresponding
intersection graph.

(1) If U is a connected vertex set of G ( ), then ∈U .
(2) If ∈A then there exists a connected vertex set U of G ( ) such that U A= .

Proof. Concerning statement (1), let ⊆U V be a connected vertex set of G ( ). The setU
can be obtained recursively, starting from a single vertex, adding one adjacent vertex at
each step, always leaving the subgraph connected, and terminating with all vertices of
G ( ). Since each vertex in G ( ) corresponds to a minimal set in and adjacent vertices

indicate nonempty intersection,U can be obtained using Algorithm M. This shows that
  ∈  U ( ) = , the equality from Proposition 3.5.

Concerning statement (2), let ∈A . We will prove by induction on ≔  k A that there
exists a connected vertex setU such thatU A= . If  ∈A ( ), then there is a single vertex v
in G ( ) such that v A= and a single vertex is connected. So assume that the statement (2) of
the lemma is true for all blocks A′ with  A k′ < , and assume that  A k= . Since ∈A ,
Proposition 3.5 implies that  ∈  A ( ) . Therefore A can be obtained by Algorithm M.
Thus there exists blocks A A,1 2 such that ∪ ∩ ≠ ∅  A A A A A A k= , , <1 2 1 2 1 , and  A k<2 .
By the induction hypothesis, there are connected vertex sets U U,1 2 of G ( ) such that (1)

VINCE | 13
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U A=1 1 and U A=2 2, and (2) there exists vertices ∈u U1 1 and ∈u U2 2 such that
∩ ≠ ∅u u* *1 2 (because ∩ ≠ ∅A A1 2 ). Let ∪U U U= 1 2. Now

∪ ∪ ∪U U U U U A A A= = = = .1 2 1 2 1 2

By the definition of the intersection graph, since ∩ ≠ ∅u u* *1 2 the vertices ∈u U1 1 and
∈u U2 2 are adjacent in G ( ). SinceU1 andU2 are connected vertex sets, and u1 and u2 are

adjacent, then also ∪U U U= 1 2 is a connected vertex set. □

Corollary 3.7. If  P= ( , ) is a completely irreducible UIS, then G ( ) is a connected
graph.

Proof. Given a completely irreducible UIS  P= ( , ), let  denote the set of all
connected vertex sets of G ( ). By Lemma 3.6, there is a surjective map  →p : defined
by ↦U U . By Lemma 3.4, the set P is a block of  . By statement (2) of Lemma 3.6, there
is a connected vertex set U such that U P= . Therefore U is a connected spanning set
(subgraph) of G ( ), that is, G ( ) is a connected graph. □

Proof of Theorem 2.12. We will prove statement (1); statement (2) then follows from
statement (1) and Proposition 1.3. By Corollary 3.7, G ( ) is connected. By statement (1)
of Theorem 1.4, there is a vertex v of G ( ) that is contained in at least half of the
connected vertex sets of G ( ).

Let  →p : be the surjective map used in the proof of Corollary 3.7. If p is also injective,
then the correspondence ↔U U is a bijection between the collection of connected vertex sets
of G ( ) and the blocks of  . In this case, ∈v* , where v is the vertex in the preceding
paragraph, is contained in half of the blocks of  , proving the theorem.

To see that p is injective, let ∈U U,1 2 and assume that p U p U( ) = ( )1 2 . Then
U p U p U U= ( ) = ( ) =1 1 2 2 . Therefore, by the definition of nonredundant U U* = *1 2 from
which U U=1 2 follows. □
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