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The eigenvalue problem for a linear function L centers on solving

the eigen-equation Lx = λ x. This paper generalizes the eigenvalue

problem from a single linear function to an iterated function sys-

tem F consisting of possibly an infinite number of linear or affine

functions. The eigen-equation becomes F(X) = λ X , where λ > 0

is real, X is a compact set, and F(X) = ⋃
f∈F f (X). The main re-

sult is that an irreducible, linear iterated function system F has a

unique eigenvalue λ equal to the joint spectral radius of the func-

tions in F and a corresponding eigenset S that is centrally symmet-

ric, star-shaped, and full dimensional. Results of Barabanov and of

Dranisnikov–Konyagin–Protasov on the joint spectral radius follow

as corollaries.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let L : R
2 → R

2 be a linear map with no nontrivial invariant subspace, equivalently no real

eigenvalue. We use the notation L(X) := {Lx : x ∈ X}. Although L has no real eigenvalue, L does have

an eigen-ellipse. By eigen-ellipse we mean an ellipse E, centered at the origin, such that L(E) = λ E,

for some real λ > 0. An example of an eigen-ellipse appears in Example 1 of Section 2 and in Fig. 1.

Although easy to prove, the existence of an eigen-ellipse is not universally known.

Theorem 1. If L : R
2 → R

2 is a linear map with no real eigenvalue, then there is an ellipse E and a real

number λ > 0 such that L(E) = λ E.
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Proof. Using the real Jordan canonical form for L, there exists an invertible 2 × 2 matrix S such that

M := S−1LS =
⎛
⎝ a −b

b a

⎞
⎠ = λ

⎛
⎝ cos θ − sin θ

sin θ cos θ

⎞
⎠ ,

for some angle θ and λ > 0. If D is the unit disk centered at the origin and if E = S(D), then

L(E) = SMS−1(E) = SM(D) = λS(D) = λE.

Note that the eigenvalues of L are a ± b i. Therefore if z = a + b i, then the relationship between

the eigenvalues of L and the rotation angle θ and stretching factor λ is: θ = arg(z) and λ = |z|. �

The intent of this paper is to investigate the existence of eigenvalues and corresponding eigensets

in the context of fractal geometry.

Definition 1 (iterated function system). If fi : R
n → R

n, i ∈ I, are continuous mappings, then

F = (Rn; fi, i ∈ I) is called an iterated function system (IFS). The set I is the index set. Call IFS F

linear if each f ∈ F is a linear map and affine if each f ∈ F is an affine map.

In the literature the index set I is usuallyfinite. This is because, in constructingdeterministic fractals,

it is not practical to use an infinite set of functions. We will, however, allow an infinite set of functions

in order to obtain certain results on the joint spectral radius. In the case of an infinite linear IFS F we

will always assume that the set of functions in F is compact in the compact open topology. For linear

maps, this just means, regarding each linear map as an n × nmatrix, that the set F of linear maps is a

compact subset of R
n×n.

Let H = H(Rn) denote the collection of all nonempty compact subsets of R
n, and, by slightly

abusing the notation, let F : H → H also denote the function defined by

F(B) = ⋃
f∈F

f (B).

Note that, if B is compact and F is compact, then F(B) is also compact. Let Fk denote F iterated k times

with F0(B) = B for all B. Our intention is to investigate solutions to the eigen-equation

F(X) = λ X, (1)

where λ ∈ R, λ > 0, and X �= {0} is a compact set in Euclidean space.

Definition 2 (eigenvalue-eigenset). The value λ in Eq. (1) above will be called an eigenvalue of F , and

X a corresponding eigenset.

When F consists of a single linearmaponR
2, theeigen-ellipse is anexampleof aneigenset. Section2

contains other examples of eigenvalues and eigensets of linear IFSs. Section 3 contains background

results on the joint spectral radius of a set of linear maps and on contractive IFSs. Both of these topics

are germane to the investigation of the IFS eigenvalue problem. Section 4 contains the main result on

the eigenvalue problem for a linear IFS.

Theorem 2. A compact, irreducible, linear IFS F has exactly one eigenvalue which is equal to the joint

spectral radius ρ(F) of F. There is a corresponding eigenset that is centrally symmetric, star-shaped, and

full dimensional.

If F = (Rn; fi, i ∈ I) is an IFS, let Fλ := 1
λ
F = (Rn; 1

λ
fi, i ∈ I). Another way to view the above

theorem is to consider the family {Fλ : λ > 0} of IFSs. If λ > ρ(F), then the attractor of Fλ, defined
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Fig. 1. The eigen-ellipse in Example 1.

formally in the next section, is the trivial set {0}. If λ < ρ(F), then Fλ has no attractor. So λ = ρ(F)
can be considered as a “phase transition”, at which point a somewhat surprising phenomenon occurs

– the emergence of the centrally symmetric, star-shaped eigenset.

Theorems of Dranisnikov–Konyagin–Protasov and of Barabanov follow as corollaries of Theorem 2.

These results are discussed in Section 5. Because some of the material on joint spectral radius may

be unfamiliar to those whose background is mainly IFS theory, and because it does not take much

extra effort, we prove Theorem 2 from scratch. It would be shorter, but perhaps not necessarily more

illuminating, to give a proof assuming the Barabanov result.

No such transition phenomenon occurs in the case of an affine, but not linear, IFS. A result for the

affine case is the following, whose proof appears in Section 6.

Theorem 3. For a compact, irreducible, affine, but not linear, IFS F, a real number λ > 0 is an eigenvalue

if λ > ρ(F) and is not an eigenvalue if λ < ρ(F). There are examples where ρ(F) is an eigenvalue and

examples where it is not.

The transition phenomenon resurfaces in the context of projective IFSs, which will be the subject

of a subsequent paper.

2. Examples

Example 1. Fig. 1 shows the eigen-ellipse for the IFS F = (R2; L), where

L =
⎛
⎝0 −3

3 2

⎞
⎠ .

The eigenvalue is 3.
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Fig. 2. An eigenset of Example 2.

Example 2. Fig. 2 shows an eigenset for the IFS F = (R2; L1, L2), where

L1 =
⎛
⎝10 10

8 0

⎞
⎠ , L2 =

⎛
⎝ 8 0

10 10

⎞
⎠ .

The eigenvalue appears to be 5 + √
105, the value of the largest eigenvalue of L1. The part of the set

shown in red is, to viewing accuracy, the image of the whole set under L1. The part of the set shown

in blue is, similarly, the image of the whole set under L2. The coordinate axes are indicated in black.

(Colors appear in the online version.)

Example 3. Fig. 3 shows an eigenset for the IFS F = (R2; L1, L2), where

L1 =
⎛
⎝0.02 0

0 1

⎞
⎠ , L2 =

⎛
⎝0.0594 −1.98

0.495 0.01547

⎞
⎠ .

The eigenvalue is 1,whichwill be proved in thenext section after the joint spectral radius is introduced.

The coordinate axes are indicated in red. (Colors appear in the online version.)

3. Background

This section concerns the following three basic notions: (1) the joint spectral radius of an IFS,

(2) contractive properties of an IFS, and (3) the attractor of an IFS. Theorems 1 and 4 provides the

relationship between these three notions for a linear and an affine IFS, respectively.
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Fig. 3. An eigenset of Example 3.

3.1. Norms and metrics

Any vector norm ‖ · ‖ on R
n induces a matrix norm on the space of linear maps taking R

n to R
n:

‖L‖ = max

{‖Lx‖
‖x‖ : x ∈ R

n

}
.

Since it is usually clear from the context, we use the same notation for the vector norm as for the

matrix norm. This induced norm is sub-multiplicative, i.e., ‖L ◦ L′‖ � ‖L‖ · ‖L′‖ for any linear maps

L, L′.
Two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if there are positive constants a, b such that a‖x‖1 �

‖x‖2 � b‖x‖1 for all x ∈ R
n. Two metrics d1(·, ·) and d2(·, ·) are equivalent if there exist positive

constants a, b such that a d1(x, y) � d2(x, y) � b d1(x, y) for all x, y ∈ R
n. It is well known that any

two norms on R
n are equivalent [9]. This implies that any two n× nmatrix norms are equivalent. Any

norm ‖ · ‖ on R
n induces a metric d(x, y) = ‖x − y‖. Therefore any two metrics induced from two

norms are equivalent.

A set B ⊂ R
n is called centrally symmetric if −x ∈ B whenever x ∈ B. A convex body in R

n is a

convex set with nonempty interior. If C is a centrally symmetric convex body, define the Minkowski

functional with respect to C by

‖x‖C = inf {μ � 0 : x ∈ μC}.

The following result is well known.

Lemma 1. The Minkowski functional is a norm on R
n. Conversely, any norm ‖ · ‖ on R

n is the Minkowski

functional with respect to the closed unit ball {x : ‖x‖ � 1}.
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Given a metric d(·, ·), there is a corresponding metric dH, called the Hausdorff metric, on the col-

lection H(Rn) of all non-empty compact subsets of R
n:

dH(B, C) = max

{
sup
b∈B

inf c∈C d(b, c), sup
c∈C

infb∈B d(b, c)

}
.

3.2. Joint spectral radius

The joint spectral radius of a set L = {Li, i ∈ I} of linear maps was introduced by Rota and

Strang [12] and the generalized spectral radius by Daubechies and Lagarias [6,7]. Berger andWang [3]

proved that the two concepts coincide for bounded sets of linearmaps. The concept has receivedmuch

attention in the recent research literature; see for example the bibliographies of [13,14]; we note in

particular [4,10,5,15]. What follows is the definition of the joint spectral radius of L. Let Ωk be the set

of all words i1 i2 · · · ik , of length k, where ij ∈ I, 1 � j � k. For σ = i1 i2 · · · ik ∈ Ωk , define

Lσ := Li1 ◦ Li2 ◦ · · · ◦ Lik .

A set of linear maps is bounded if there is an upper bound on their norms. Note that if L is compact,

then L is bounded. For a linear map L, let ρ(L) denote the ordinary spectral radius, i.e., the maximum

of the moduli of the eigenvalues of L.

Definition 3. For any set L of linear maps and any norm, the joint spectral radius of L is

ρ̂ = ρ̂(L) := lim sup
k→∞

ρ̂
1/k
k where ρ̂k := sup

σ∈Ωk

‖Lσ ‖.

The generalized spectral radius of L is

ρ = ρ(L) := lim sup
k→∞

ρ
1/k
k where ρk := sup

σ∈Ωk

ρ(Lσ ).

The following are well known properties of the joint and generalized spectral radius:

1. The joint spectral radius is independent of the particular norm.

2. For an IFS consisting of a single linear map L, the generalized spectral radius is the ordinary

spectral radius of L.

3. For any real α > 0 we have ρ(α L) = α ρ(L) and ρ̂ (α L) = α ρ̂(L).
4. For any sub-multiplicative norm used to define ρ̂ and for all k � 1 we have

ρ
1/k
k � ρ � ρ̂ � ρ̂

1/k
k .

5. If L is bounded, then the joint and generalized spectral radius are equal.

From here on we always assume that L is bounded. So, in view of Property 5, we denote by ρ(L)
the common value of the joint and generalized spectral radius.

Example 3 (continued). Assuming Theorem 2, the eigenvalue of F equals the joint spectral radius ρ(F).
We will prove that ρ(F) = 1. First ρ(F) � 1 because L1 already has eigenvalue 1. To show that

ρ(F) � 1, we will find a norm with respect to which ρ̂k � 1 for all k � 1. Consider the convex hull C

in R
2 of the points ±e2, ±L2e2, ±L22e2, . . .. Since it is easy to check that the sequence {Lk2} converges

to 0, there is a K such that C is the convex hull (a polygon) of the points±e2, ±L2e2, ±L22e2, . . . , ±LK2 .

Clearly both L1 and L2 take C into C. Therefore ρ̂k � 1 with respect to the Minkowski norm ‖ · ‖C .

If F is an affine IFS, then each f ∈ F is of the form f (x) = Lx + a, where L is the linear part and a is

the translational part. Let LF denote the set of linear parts of F .
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Definition 4. The joint spectral radius of an affine IFS F is the joint spectral radius of the set LF of

linear parts of F and is denoted ρ(F).

Definition 5. A set {Li, i ∈ I} of linear maps is called reducible if these linear maps have a com-

mon nontrivial invariant subspace. The set is irreducible if it is not reducible. An IFS is reducible

(irreducible) if the set of linear parts is reducible (irreducible).

A set of linear maps is reducible if and only if there exists an invertible matrix T such that each Li
can be put simultaneously in a block upper-triangular form:

T−1LiT =
⎛
⎝ Ai ∗

0 Bi

⎞
⎠ ,

with Ai and Bi square, and ∗ is any matrix with suitable dimensions. The joint spectral radius ρ(F) is
equal to max (ρ({Ai}), ρ({Bi})).

3.3. A contractive IFS

Basic to the IFS concept is the relationship between the existence of an attractor and the contractive

properties of the functionsof the IFS. Theproofs of Theorems2and3dependon this relationship,which

is given by Theorem 4 and Corollary 1.

Definition 6 (contractive IFS). A function f : R
n → R

n is a contraction with respect to a metric d if

there is an s, 0 � s < 1, such that d(f (x), f (y)) � s d(x, y) for all x, y ∈ R
n. An IFS F = (Rn; fi, i ∈ I)

is said to be contractive if there is ametric d : R
n ×R

n → [0, ∞), equivalent to the standardmetric

on R
n, such that each f ∈ F is a contraction with respect to d.

Definition 7 (attractor). A nonempty compact set A ⊂ R
n is said to be an attractor of the affine IFS F

if

1. F(A) = A and

2. limk→∞ Fk(B) = A, for all compact setsB ⊂ R
n,where the limit iswith respect to theHausdorff

metric.

A proof of the equivalence of the first four conditions in the following theorem appears in [1] for

a finite IFS. Only the equivalence of condition (5) will be proved – and one modification needed to

extend the result from the finite case to the case of a compact IFS. The notation int(X) will be used to

denote the interior of a subset X of R
n and the notation conv(X) for the convex hull of X .

Theorem 4. If F = (Rn; fi, i ∈ I) is a compact, affine IFS, then the following statements are equivalent.

1. [contractive] The IFS F is contractive on R
n.

2. [F-contraction] The map F : H(Rn) → H(Rn) defined by F(B) = ⋃
L∈F L(B) is a contraction

with respect to a Hausdorff metric.

3. [topological contraction] There exists a compact set C such that F(C) ⊂ int(C).
4. [attractor] F has a unique attractor, the basin of attraction being R

n.

5. [JSR] ρ(F) < 1.

Proof. Concerning the equivalence of statements 1–4, the only modification required in going from

the finite to compact case is in the implication (1 ⇒ 2). In the case of an IFS F = (Rn; fi, i ∈ I),
where I is finite (and the fi are assumed only to be continuous), this is a basic result whose proof can
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be found is most texts on fractal geometry, for example [8]. Since F is assumed contractive,

sup

{
d(fi(x), fi(y))

d(x, y)
: x �= y

}
= si < 1,

for each i ∈ I. The only sticking point in extending the proof for the finite IFS case to the infinite IFS

case is to show that sup{si : i ∈ I} < 1. But if there is a sequence {sk} such that limk→∞ sk = 1, then,

by the compactness of F , the limit f := limk→∞ fk ∈ F . Moreover,

d(f (x), f (y))

d(x, y)
= lim

k→∞
d(fk(x), fk(y))

d(x, y)
= lim

k→∞ sk = 1,

contradicting the assumption that each function in F is a contraction.

Concerning the equivalence of statement (5) to the other statements, first assume that F is linear.

In one direction assume that F is contractive. Hence there is an 0 � s < 1 such that ‖Lx‖ � s ‖x‖ for

all x ∈ R
n and all L ∈ F . By Property (4) of the joint spectral radius

ρ(F) � ρ̂1 = sup
L∈F

‖Lx‖
‖x‖ � s < 1.

The last inequality is a consequence of the compactness of F , the argument identical to the one used

above in showing that (1 ⇒ 2).
Conversely, assuming

lim sup
k→∞

ρ̂
1/k
k = ρ(F) < 1,

we will show that F has attractor A = {0}. The inequality above implies that there is an s such that

ρ̂k
1/k � s < 1 for all but finitely many k. In other words

sup
σ∈Ωk

‖Lσ ‖ = ρ̂k � sk

for all but finitely many k. For k sufficiently large, this in turn implies, for any x ∈ R
n and any σ ∈ Ωk ,

that ‖Lσ x‖ � sk‖x‖. Therefore, for any compact set B ⊂ R
n, with respect to the Hausdorff metric,

limk→∞ Fk(B) = {0}. So {0} is the attractor of F .

For the more general affine case, assuming ρ(F) < 1 we show that F is contractive. Let F ′ be the

linear IFS obtained from F by removing the translational component from each function in F . By the

proof above for the linear case, the IFS F ′ is contractive. Hence there is a norm ‖ · ‖ with respect to

which each L ∈ F ′ is a contraction. Define a metric by d(x, y) = ‖x − y‖ for all x, y ∈ R
n. For any

f (x) = Lx + a ∈ F we have d(f (x), f (y)) = ‖f (x) − f (y)‖ = ‖(Lx + a) − (Ly + a)‖ = ‖L(x − y)‖.
Therefore each function f ∈ F is a contraction with respect to metric d.

Conversely, assume that the affine IFS F is contractive. With linear IFS F ′ as defined above, it is

shown in [1, Theorem 6.7] that there is a norm with respect to which each L ∈ F ′ is a contraction. It

follows from the linear case proved above that ρ(F) < 1. �

Note that this last equivalence implies that, if a linear IFS F has an attractor and F ′ is obtained from

F by adding any translational component to each function in F , then F ′ also has an attractor.

Corollary 1. For a compact, linear IFS F = (Rn; Li, i ∈ I) the following statements are equivalent:

1. [contractive] There exists a norm ‖ · ‖ on R
n and an 0 � s < 1 such that ‖Lx‖ � s ‖x‖ for all

L ∈ F and all x ∈ R
n.
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2. [F-contraction] The map F : H(Rn) → H(Rn) defined by F(B) = ⋃
L∈F L(B) is a contraction

with respect to a Hausdorff metric.

3. [topological contraction] There is a compact, centrally symmetric, convex body C such that F(C) ⊂
int(C).

4. [attractor] The origin is the unique attractor of F.

5. [JSR] ρ(F) < 1.

Proof. According to Theorem 4, any of the statements besides (3) implies that there is a compact set

such that F(C) ⊂ int(C). We must show that C can be chosen to be a symmetric, convex set with

nonempty interior.

Let B denote a closed unit ball centered at the origin. Since {0} is the attractor (statement 4),

limk→∞ dH(Fk(B), {0}) = 0, which implies that there is an integer m such that

Fm(B) ⊂ int(B)

and hence also

conv Fm(B) ⊂ int(B).

Consider the Minkowski sum

C :=
m−1∑
k=0

conv Fk(B).

For any L ∈ F

L(C) =
m−1∑
k=0

L
(
conv Fk(B)

)
=

m−1∑
k=0

conv
(
L

(
Fk (B)

))

⊆
m−1∑
k=0

conv Fk+1 (B) = conv Fm(B) +
m−1∑
k=1

conv Fk(B)

⊆ int (B) +
m−1∑
k=1

conv Fk(B)

= int(C).

The last equality follows from the fact that if K and K ′ are convex bodies in R
n, then int(K) + K ′ =

int
(
K + K ′). �

Corollary 2. If a compact, linear IFS F is contractive and F(A) = A for A compact, then A = {0}.
Proof. According to Corollary 1 the IFS has the F-contractive property. According to the Banach fixed

point theorem, F has a unique invariant set, i.e., a unique compact A such that F(A) = A. Since F is

linear, clearly F({0}) = {0}. �

4. The eigenvalue problem for a linear IFS

Just as for eigenvectors of a single linear map, an eigenset of an IFS is defined only up to scalar

multiple, i.e., if X is an eigenset, then so is α X for any α > 0. Moreover, if X and X′ are eigensets

corresponding to the same eigenvalue, then X ∪ X′ is also a corresponding eigenset. For an eigenvalue

of a linear IFS, call a corresponding eigenset X decomposable if X = X1 ∪ X2, where X1 and X2 are

also corresponding eigensets and X1 �⊆ X2 and X2 �⊆ X1. Call eigenset X indecomposable if X is not

decomposable.
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Example. It is possible for a linear IFS to have infinitelymany indecomposable eigensets corresponding

to the same eigenvalue. Consider F = {R2; L1, L2} where

L1 =
⎛
⎝0 −1

1 0

⎞
⎠ , L2 =

⎛
⎝1 0

0 0.5

⎞
⎠ .

Let

S(r) ={ (±1, ±r/2k), (±1, ∓r/2k), (±r/2k, 1), (±r/2k, ∓1),

(±r, ±1/2k), (±r, ∓1/2k), (±1/2k, r), (±1/2k, ∓r) : k � 0}.
It is easily verified that, for any 1 � r > 0, the set {α S(r) : 0 � α � 1} is an eigenset

corresponding to eigenvalue 1. In addition, the unit square with vertices (1, 1), (1, −1), (−1, 1),
(−1, −1) is also an eigenset corresponding to eigenvalue 1.

The proof of the following lemma is straightforward. A set B ⊂ R
n is called star shaped if λ x ∈ B

for all x ∈ B and all 0 � λ � 1.

Lemma 2

1. If {Ak} is a sequence of centrally symmetric, convex, compact sets and A is a compact set such that

limk→∞ Ak = A, then A is also centrally symmetric and convex.

2. If F is a compact, linear IFS, B a centrally symmetric, convex, compact set and A = limk→∞ Fk(B),
then A is a centrally symmetric, star-shaped, compact set.

Lemma 3. If F is an compact, irreducible, linear IFS with ρ(F) = 1, then there exists a compact, centrally

symmetric, convex body A such that F(A) ⊆ A.

Proof. Since, for each k � 2, we have ρ((1 − 1
k
)F) = 1 − 1

k
< 1, Corollary 1 implies that there is a

compact, centrally symmetric, convex body Ak such that

(
1 − 1

k

)
F(Ak) ⊆ int(Ak).

Since F is linear and the above inclusion is satisfied for Ak , it is also satisfied for α Ak for any α > 0.

So, without loss of generality, it can be assumed that max{‖x‖ : x ∈ Ak} = 1 for all k � 2. Since

the sequence of sets {Ak} is bounded in H(Rn), this sequence has an accumulation point, a compact

set A. Therefore, there is a subsequence {Aki} such that limi→∞ Aki = Awith respect to the Hausdorff

metric. Since(
1 − 1

ki

)
F(Aki) ⊆ int(Aki),

it is the case that
(
1 − 1

ki

)
f (Aki) ⊆ int(Aki) for all f ∈ F . From this it is straightforward to show that

f (A) ⊆ A for all f ∈ F and hence that F(A) ⊆ A. Moreover, by Lemma 2, since the Aki are centrally

symmetric and convex, so isA. Notice also thatA is a convexbody, i.e., has nonempty interior; otherwise

A spans a subspace E ⊂ R
n with dim E < n and F(A) ⊆ A implies F(E) ⊆ E, contradicting that F is

irreducible. �

The affine span aff(B) of a set B is the smallest affine subspace of Rn containing B. Call a set B ⊂ R
n

full dimensional if dim(aff(B)) = n. Given an affine IFS F = (Rn; fi, i ∈ I) let

Fλ =
(
R

n; 1

λ
fi, i ∈ I

)
.
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Lemma 4. If an irreducible, affine IFS F has an eigenset X, then X must be full dimensional.

Proof. Suppose that F(X) = λX , i.e. Fλ(X) = X . For x ∈ X , let g be a translation by −x. For the IFS

F , let Fg = (Rn; gfg−1, f ∈ Fλ). If Y = g(X), then 0 ∈ Y and Fg(Y) = Y . In particular, Y is full

dimensional if and only if X is full dimensional, and the affine span of Y equals the ordinary (linear)

span E = span(Y) of Y . Moreover, the linear parts of the affine maps in Fg are just scalar multiples of

the linear parts of the affine maps in F . Therefore Fg is irreducible if and only if F is irreducible.

Let f (x) = Lx + a be an arbitrary affine map in Fg . From Fg(Y) ⊂ Y ⊂ E it follows that L(Y) + a =
f (Y) ⊂ E. Since 0 ∈ Y , also a = L(0) + a = f (0) ∈ Y ⊂ E. Therefore L(Y) ⊂ −a + E = E. Since

E = span(Y), also L(E) ⊂ E. Because this is so for all f ∈ Fg , the subspace E is invariant under all

linear parts of maps in Fg . Because Fg is irreducible, dim(E) = n. Therefore Y , and hence X , must be

full dimensional. �

Proof of Theorem 2. Given F = (Rn; Li, i ∈ I), consider the family {Fλ} of IFS’s for λ > 0. Recall that

Fλ =
(
R

n; 1
λ
fi, i ∈ I

)
.

It is first proved that F has no eigenvalue λ > ρ(F). By way of contradiction assume that λ > ρ(F),
which implies that ρ(Fλ) < 1. According to Corollary 1 the IFS Fλ is contractive. By Corollary 2 the

only invariant set of Fλ is {0}, which means that the only solution to the eigen-equation F(X) = λ X is

X = {0}. But by definition, {0} is not an eigenset.

The proof that F has no eigenvalue λ < ρ(F) is postponed because the more general affine version

is provided in the proof of Theorem 3 in Section 6.

We now show that ρ(F) is an eigenvalue of F . Again let Fλ = 1
λ
F , so that ρ(Fλ) = 1. With A as in

the statement of Lemma 3, consider the nested intersection

S = ⋂
k�0

Fkλ(A) = lim
k→∞ Fkλ(A).

That S is compact, centrally symmetric, and star-shaped follows from Lemma 2. Also

Fλ(S) = Fλ

⎛
⎝⋂

k�0

Fkλ(A)

⎞
⎠ = ⋂

k�1

Fkλ(A) = S,

the last equality because A ⊇ Fλ(A) ⊇ F
(2)
λ (A) ⊇ · · · . From Fλ(S) = S it follows that F(S) = λ S.

It remains to show that S contains a non-zero vector. Since A is a convex body and determined only

up to scalar multiple, there is no loss of generality in assuming that A contains a ball B of radius 1

centered at the origin. Then

sup { ‖Lσ (x)‖ : σ ∈ Ωk, x ∈ B} = ρ̂k(Fλ) � (ρ(Fλ))
k = 1.

So there is a point ak ∈ Fkλ(A) such that ‖ak‖ � 1. If a is an accumulation point of {ak}, then ‖a‖ � 1,

and there is a subsequence {aki} of {ak} such that

lim
i→∞ aki = a.

Since the sets F
(ki)
λ (A) are closed and nested, it must be the case that a ∈ F

(ki)
λ (A) for all i. Therefore

a ∈ S.

That S is full dimensional follows from Lemma 4. �

5. Theorems of Dranisnikov–Konyagin–Protasov and of Barabanov

Important results of Dranisnikov–Konyagin–Protasov and of Barabanov on the joint spectral radius

turn out to be almost immediate corollaries of Theorem 2. The first result is attributed to Dranisnikov
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and Konyagin by Protasov, who provided a proof in [11]. Barabanov’s theorem appeared originally in

[2].

Corollary 3 (Dranisnikov–Konyagin–Protasov). If F = (Rn; Li, i ∈ I) is a compact, irreducible, linear

IFS with joint spectral radius ρ := ρ(F), then there exists a centrally symmetric convex body K such that

conv F(K) = ρK.

Proof. According to Theorem 2 there is a centrally symmetric, full dimensional eigenset S such that

F(S) = ρ S. If K = conv(S), then K is also centrally symmetric and

conv F(K) = conv F(conv S) = conv F(S) = conv (ρ S) = ρ conv S = ρ K.

The secondequality is routine to check. Since S is full dimensional,K is a convexbody, i.e., hasnonempty

interior. �

The original form of the Barabanov theorem is as follows:

Theorem 5 (Barabanov). If a set F of linear maps on R
n is compact and irreducible, then there exists a

vector norm ‖ · ‖B such that

for all x and all L ∈ F ‖Lx‖B � ρ(F) ‖x‖B,

for any x ∈ R
n there exists an L ∈ F such that ‖Lx‖B = ρ(F) ‖x‖B.

Such a norm is called a Barabanov norm. The first property says that F is extremal, meaning that

‖L‖B � ρ(F) (2)

for all L ∈ F . It is extremal in the sense that, by Property (4) of the joint spectral radius in Section 3,

sup
L∈F

‖L‖ � ρ(F)

for any matrix norm. Since F is assumed compact, the inequality (2) cannot be strict for all L ∈ F .

Hence there exists an L ∈ F whose Barabanov norm achieves the upper bound ρ(F). Furthermore, the

second property in the statement of Barabanov’s Theorem says that, for any x ∈ R
n, there is such an L

achieving a value equal to the joint spectral radius at the point x. See [16] for more on extremal norms.

In view of Lemma 1, Barabanov’s theorem can be restated in the following equivalent geometric

form. Here ∂ denotes the boundary.

Corollary 4. If F is a compact, irreducible, linear IFS with joint spectral radius ρ := ρ(F), then there exists

a centrally symmetric convex body K such that

F(K) ⊆ ρK,

and, for any x ∈ ∂K, there is an L ∈ F such that Lx ∈ ∂(ρ K).

Proof. Let Ft = (
R

n; Lti , i ∈ I
)
, where Lt denotes the adjoint (transpose matrix) of L. For a compact

set Y , the dual of Y (sometimes called the polar) is the set

Y∗ = {z ∈ R
n : 〈y, z〉 � 1 for all y ∈ Y}.

The first two of the following properties are easily proved for any compact set B:

1. B∗ is convex.
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2. If B is centrally symmetric, then so is B∗.
3. If L is linear and Lt(S) ⊆ S, then L(S∗) ⊆ S∗.

To prove the third property above, assume that Lt(S) ⊆ S. and let x ∈ S∗. Then

x ∈ S∗ ⇒ 〈x, y〉 � 1 for all y ∈ S

⇒ 〈x, Lty〉 � 1 for all y ∈ S

⇒ 〈Lx, y〉 � 1 for all y ∈ S

⇒ Lx ∈ S∗

Since F is a compact, irreducible, linear IFS, so is Ft . Let S be a centrally symmetric eigenset for Ft

as guaranteed by Theorem 2. By properties 1 and 2 above, S∗ is a centrally symmetric convex body.

From the eigen-equation Ft(S) = ρ S, it follows that 1
ρ
Lt(S) ⊆ S for all L ∈ F . From Property 3 above

it follows that 1
ρ
F(S∗) ⊆ S∗ or F(S∗) ⊆ ρ S∗. Setting K = S∗ yields

F(K) ⊆ ρ K.

Concerning the second statement of the corollary, assume that x ∈ ∂K = ∂S∗. Then 〈x, y〉 � 1 for

all y ∈ S and 〈x, y〉 = 1 for some y ∈ S. Since F(S) = ρ S, the last equality implies that there is an

L ∈ F such that 〈 1
ρ
Lx, z〉 = 〈x, 1

ρ
Ltz〉 = 1 for some z ∈ S. Now we have 〈 1

ρ
Lx, y〉 � 1 for all y ∈ S

and 〈 1
ρ
Lx, z〉 = 1 for some z ∈ S. Therefore, 1

ρ
Lx ∈ ∂S∗ = ∂K or Lx ∈ ρ(∂K) = ∂(ρ K). �

6. The eigenvalue problem for an affine IFS

For anaffine IFS F , there is no theoremanalogous toTheorem2.More specifically, there are examples

where ρ(F) is an eigenvalue of F and examples where ρ(F) is not an eigenvalue of F . For an example

where ρ(F) is an eigenvalue, let

F1 = (R2; f ), f (x) = Lx + (1, 0), L =
⎛
⎝0 −1

1 0

⎞
⎠ .

Note that L, a 90◦ rotation about the origin, is irreducible and ρ(F1) = 1. If S is the unit square with

vertices (0, 0), (1, 0), (0, 1), (1, 1), then F1(S) = S. Therefore ρ(F1) = 1 is an eigenvalue of F1. On

the other hand let

F2 = (R; f ), f (x) = x + 1.

In this case ρ(F2) = 1, but it is clear that there exists no compact set X such that F(X) = X . For the

affine case, Theorem 3, as stated in Section 1, does holds. The proof is as follows.

Proof of Theorem 3. If λ > ρ(F), then ρ(Fλ) < 1. According to Theorem 4, the IFS Fλ has an attractor

A so that Fλ(A) = A. Since at least one function in Fλ is not linear, A �= {0}. Since Fλ(A) = A, also

F(A) = λ A. Therefore λ is an eigenvalue of F .

Concerning the second statement in the theorem assume, by way of contradiction, that such an

eigenvalue λ < ρ(F) exists, with corresponding eigenset S. Then Fλ(S) = S and ρ(Fλ) > 1. According

to Lemma 4, since F is assumed irreducible, the eigenset S is full dimensional. Exactly as in the proof

of Lemma 4, using conjugation by a translation, there is an affine IFS F ′ and a nonempty compact set

S′ such that

1. F ′(S′) = S′.
2. 0 ∈ int(conv(S′)).
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3. The set LF ′ of linear parts of the functions in F ′ is equal to the set LFλ of linear parts of the

functions in Fλ.

4. ρ(F ′) = ρ(Fλ) > 1.

5. F ′ is irreducible.

In item 2 above, int(conv(S′)) denotes the interior of the convex hull of S′. If K = conv(S′) and

f (x) = Lx + a is an arbitrary affine function such that f (S′) ⊆ S′, then

f (K) ⊆ K.

This follows from the fact that f (S′) ⊆ S′ as follows. If z ∈ K , then z = α x + (1 − α) y where

0 � α � 1 and x, y ∈ S′. Therefore

f (z) = α Lx + (1 − α) Ly + a = α(Lx + a) + (1 − α)(Ly + a)

= α f (x) + (1 − α) f (y) ∈ conv(f (S′)) ⊂ conv(S′) = K.

Let r > 0 be the largest radius of a ball centered at the origin and contained in K and R the smallest

radius of aball centeredat theorigin andcontainingK . Let x ∈ K such that 0 < ‖x‖ � r. If f (x) = Lx+a

is any affine function such that f (S′) ⊆ S′, then we claim that ‖Lx‖ � R + r. To prove this, first note

that −x ∈ K . From f (K) ⊆ K it follows that

‖Lx + a‖ = ‖f (x)‖ � R

‖ − Lx + a‖ = ‖L(−x) + a‖ = ‖f (−x)‖ � R

‖2a‖ = ‖(Lx + a) + (−Lx + a)‖ � ‖Lx + a‖ + ‖L(−x) + a‖ � 2R

‖Lx‖ = ‖f (x) − a‖ � ‖f (x)‖ + ‖a‖ � R + r.

From the definition of the joint spectral radius, ρ(F ′) > 1 implies that there is an ε > 0 such

that (ρ̂k(Fλ))
1/k > 1 + ε for infinitely many values of k. This, in turn, implies that, for each such

k, there is an affine map fk ∈ {fσ : σ ∈ Ωk} and its linear part Lk ∈ {Lσ : σ ∈ Ωk} such that

‖Lk‖ � (1+ε)k . Choose k = k0 sufficiently large that ‖Lk‖ � (1+ε)k0 > R+r
r

. Then there is a y ∈ K ′
with ‖y‖ = r such that ‖Lk0y‖ > r R+r

r
= R+ r. Since Lk0 is the linear part of an affine function f with

the property f (S′) ⊆ S′ (Property 1 above), this is a contradiction to what was proved in the previous

paragraph. �

Acknowledgement

The authors thank the referee for valuable suggestions.

References

[1] R. Atkins, M.F. Barnsley, D.C. Wilson, A. Vince, A characterization of hyperbolic affine iterated function systems, Topology Proc.

36 (2010) 1–23.

[2] N.E. Barabanov, Lyapunov indicator of discrete inclusions, I, II, III, Autom. Remote Control 49 (1988) 152–157., 283–287, 558–565.
[3] M.A. Berger, Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 66 (1992) 21–27.

[4] V.D. Blondel, J. Theys, A.A. Vladimirov, An elementary counterexample to the finiteness conjecture, SIAM J. Matrix Anal. Appl.
24 (2003) 963–970.

[5] J. Bousch, J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture, J. Amer. Math.
Soc. 15 (2002) 77–111.

[6] I. Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl. 161 (1992) 227–263.
[7] I. Daubechies, J.C. Lagarias, Corrigendum/addendum to “Sets of matrices all infinite products of which converge", Linear Algebra

Appl. 327 (2001) 69–83.

[8] K. Falconer, Fractal Geometry – Mathematical Foundations and Applications, John Wiley & Sons, New York, 2000.
[9] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.

[10] L. Gurvits, Stability of discrete linear inclusions, Linear Algebra Appl. 231 (1995) 47–85.
[11] V.Yu. Protasov, The joint spectral radius and invariant sets of linear operators, Fundam. Prikl. Mat. 2 (1996) 205–231.



3138 M. Barnsley, A. Vince / Linear Algebra and its Applications 435 (2011) 3124–3138

[12] G.-C. Rota, W.G. Strang, A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 (1960) 379–381.

[13] G. Strang, The joint spectral radius, commentary by Gilbert Strang on paper number 5, Collectedworks of Gian-Carlo Rota, 2001.
[14] J. Theys, Joint Spectral Radius: Theory and Approximations, Ph.D. Thesis, Université Catholique de Louvain, 2005.

[15] A.A. Vladimirov, L. Elsner,W.-J. Beyn, Stability and paracontractivity of discrete linear inclusions, Linear Algebra Appl. 312 (2000)
125–135.

[16] F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl. 342 (2002) 17–40.


	The eigenvalue problem for linear and affine iterated function systems
	1 Introduction
	2 Examples
	3 Background
	3.1 Norms and metrics
	3.2 Joint spectral radius
	3.3 A contractive IFS

	4 The eigenvalue problem for a linear IFS
	5 Theorems of Dranisnikov--Konyagin--Protasov and of Barabanov
	6 The eigenvalue problem for an affine IFS
	Acknowledgement
	References


