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Abstract. Let M be a matroid and F the collection of all linear orderings of bases ofM. orflags 
of M. We define the flag matroid polytope A(F)- We determine when two vertices of A(F) are 
adjacent, and provide a bijection between maximal chains in the lattice of flats of M and certain 
maximal faces of A(F). 
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1. Introduction 

An appealing aspect ofmatroid theory is the multiple approaches to the subject. A ma- 
troid can be defined in terms of independent sets, bases, circuits, closure, rank, lattice 
of  flats, etc. In this paper, we concentrate on a less familiar characterization, but one 
deserving of  more attention. This approach is by way of  the matroid polytope, whose 
definition and properties are given in Section 2. The matroid polytope plays a special 
role in the subject of  Coxeter matroids [BGW2]. The results in this paper are an ex- 
ample of  how the machinery ofCoxeter matroids can motivate new insights to ordinary 
matroids. For basic definitions and notations concerning matroids, see [O,W]. 

The main concepts in this paper are a matroid M, its underlying flag matroid F 
defined in Section 3, and the respective matroid and flag matroid polytopes A(M) and 
A(F) .  The elements of  F (called its bases) are ordered bases of  the matroid M'. Thus, 
if the rank of M is k, then every basis in M gives rise to k! bases in F .  By the way 
the polytopes are constructed, the vertices of  A(M) are in one-to-one correspondence 
with the bases of  M and the vertices of  A(F)  are in one-to-one correspondence with the 
bases in F .  In this setting, 
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i f  two vern'ces 5F and St; of A(F) are connected by an edge, then 
the two corresponding bases F and G o f f  are either reorderings 
of  the same basis in M or span the same flag of  flats in M. 

Thus, two different aspects of  the matroid M, its bases, and its fiats are both encoded 
and interrelated in the adjacency graph of  the convex polytope A(F).  

The main results concerning this relationship between the lattice of flats of  M and 
the underlying flag matroid polytope A(F) are contained in Section 4. In particular, 
let L be the lattice of flats of M ordered by inclusion. Theorem 4.1 gives a bijection 
between the maximal flags in L and certain maximal faces of A(F). From this bijeetion, 
L can be retrieved from A(F).  This result implies (Corollary 4.3) the existence of  a 
covering map from A(F) onto A(M). 

2. The Matroid Polytope 

Let M be a matroid of rank k on the set [n] = { 1,2,... ,n} and B the collection of  bases 
of  M. One of the many equivalent definitions o fa  matroid is that, for any two distinct 
bases A and B in B and any element a E A \ B, there is an element b E B \A such that the 
set A \ {a} U {b} belongs to B. Note that this definition implies that all bases of  M have 
the same cardinality. The basis axiom is oRen referred to as the exchange property. We 
say that the basis A \ {a} U {b} is obtained from A by an elementary exchange (a, b). 

Construct the matroid polytope of M as follows. Let R n be n-dimensional Euclidean 
space with the canonical orthonormal basis sl , . . .  ,sn. For any k-element subset B of  
[n], set 

as = ~ ci. (2. l) 
iEB 

Let A(B) be the convex hull of  the points Be, B E B. I fB  is the set of bases o fa  matroid 
M, denote A(B) by A(M), called the matmidpolytope of M. Notice that A(M) lies in the 
hyperplane ~xi = k, which will be denoted H. In the matroid theory literature, the term 
matroid polytope usually refers to the convex hull of the points ~il for all independent 
sets I of M. Our matroid polytope is the face of the classical matroid polytope supported 
byH. 

The following central theorem concerning the matroid polytope is originally due 
to Gclfand, Goresky, MacPherson, and Scrganova [GGMS] and was subsequently gen- 
eralized by Gelfand and Scrganova [GS] (see also Serganova, Vince and Zelevinsky 
[SVZ]). 

Theorem 2.1. A set B of  subsets of  In] of the same cardinality are the bases of  a matroid 
if  and only i f  each edge of  A( B) is parallel to 8i - ~j for some i and j. Moreover, in the 
matroid case, vertices of  A( M) are adjacent i f  and only i f  the corresponding bases of  M 
can be obtained from each other by an elementary exchange. 

Because of this result, a matroid polytope can be taken as a fundamental matroid 
concept, like basis, independent set, circuit, etc. Consider the faces of dimension k -  1 
in the (n - l)-simplex A and let A t be the convex hull of the set of barycenters of  some 
set of such faces. Call A' a matroidpolytope (of rank k) if each edge of  A' is parallel to 
el - ~-j for some i and j .  This gives another equivalent definition of matroid. 
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3. Underlying Flag Matroid 

Aflag F in [n] is a strictly increasing sequence A I C A2 C ""  C Am of finite subsets of 
[n]. Denote by ki the cardinality of  the set Ai; the m-tuple (kl , . . .  ,ks) will be called the 
rank ofF .  A flag will be denoted by F = (At,. . .  ,Am), and the set Ai will be called the 
ith component of  the flag F. 

Let M and M ~ matroids be on the same set [n]. We say that M ~ is a quotient of  M 
if every circuit of  M is a union of  circuits of.M'. This is synonymous with the phrase 
that the identity map on [n] is a strong map from M to M'. There are many equivalent 
characterizations of  quotients or strong maps (see [W, Prop. 7.4.7 and Chpt. 8]). Every 
truncation of a matroid M is a quotient of  M, where, if k < rank(M), the truncation of  
M to rank k is the matroid whose bases are all independent sets of M of cardinality k. 

Let F be a set of  flags of the same rank (kt,k2,...,km). We say that F is af lag 
matroid if, for every i = 1,... ,m, the ith components of flags in F form a matroid Mi 
of  rank ki called the ith component matroid of  F ,  and furthermore, Mi is a quotient of 
Mi+t for all i, such that 1 < i < m - 1. Note that a matroid is a special case of a flag 
matroid. 

A polytope can be assigned to a set F of  flags of the same rank by generalizing 
the construction in Section 2. I f F  = (AI,...,A,,) E F,  let ci denote the number of  
components o f F  to which element i belongs and set 

B 

6F = ~,  ciei. (3.1) 
i =  1 

Note that formula (2.1) is the special case of  formula (3.1) when the flag has just one 
component. Let A(F)  be the convex hull of  the points ~e, F E F .  I f F  is a flag matroid, 
then A(F)  is called the matroidpolytope of  F .  

There is an equivalent way to understand the flag matroid polytope A(F) .  Consider 
the set of all flags of  [n]. This is an abstract simplicial complex A whose faces are the 
flags in In]. Combinatorially, this complex is isomorphic to the barycentric subdivision 
of  the regular (n - l)-simplex. Using this geometric realization of A, construct A(F)  
as follows. Identify each flag F E F with the barycenter 5F of the corresponding face 
of A. Then A(F) is the convex hull of {~SF: F E F} .  

Theorem 2.1 has the following generalization which is a special case of the Gelfand- 
Serganova Theorem [GS]. 

Theorem 3.1. Let F be a set of flags of  the same rank. Then F is a flag matroid if  and 
only if each edge of  A(F) is parallel to ci - ejfor some i and j. 

Given a matroid M of rank k on [n], there is a particular flag matroid associated 
with M that is important in the context of  this paper. Let B be the set of bases of 
M. I f B  = (bl , . . . ,bk)  is a basis in B written in some order, then consider the flag of 
independent sets 

{bl } C {b,,b2 } C "" C {bl,.. . ,b/~}, 

which will be denoted simply by [bl, . . .  ,bk]. Let F(M) be the set of  all flags obtained 
from all orderings of  bases of B. Then F(M)  is a flag matroid, since the lower com- 
ponent matroids are just truncations of  M, and we will call F(M) the underlying flag 
matroid of M. 
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A loop in M is an element of  In] that is dependent; in other words, a nonioop is an 
element that belongs to at least one basis. 

Theorem 3.2. l f  M is a matroid with p nonloops and F is its underlying flag matroid, 
then dimA(F) = p - I. 

Proof Let P _C [n] be the set of  nonloops of  B, and let U = attine span({ei l i E P}). With 
the 8F'S appropriately scaled, we can assume without loss of  generality that A(F)  C U. 
Suppose H is a hyperplane of  U which contains A(F).  I f j  E P, then there exists B E B, 
such that j E B. Let FB denote the set of  flags of  independent sets obtained from all 
orderings of  B. By definition, FB C_ F.  Let h,i E B. Then we may construct flags 
F ---- [h,i,...] and G = [i,h,...], where both are obtained from orderings of  B, and these 
two flags are equal after the first two entries. Then 5F -- 5C is a scalar multiple ofeh - el, 

which is a vector parallel to H. By adding appropriate scalar multiples of  ej - ei for 
various i to, say, 6c, we find that ey E H. Since this is true for all j E P, no such H 
exists, and it follows that dimA(F) = dimU = p -  1. II 

4. The Lattice of Flats of  a Matroid 

Let M be a rank k matroid on [n] and L its lattice of  flats, ordered by inclusion. The 
lattice s is a geometric lattice (semimodular, point lattice) and is ranked; the rank of  a 
flat being the cardinality of  any basis of  that flat. Let M denote the set of  all maximal 
flags o f  flats or maximal chains in L. I f F  = Fi C Fl C ... C Fk is such a maximal flag 
of  flats, then the flat F/has a basis {bl ,b2,. . . ,  bi}, each such basis obtained from the 
previous by extension: 

( b ,  } c c . . .  c 

This flag of independent sets has already been denoted [bl , . . . ,  b~]. Conversely, for any 
such flag of  independent sets [b i , . . . ,  bk], the closures 

} c {b,,b: } c - - - c  {b;,...,bk} 

form a maximal flag of  flats of  M. This flag of  flats is referred to as the flag of  flats 
spanned by the flag of  independent sets [bt , . . . ,  bk]. Of course, a given flag of flats can 
be spanned by many different fags of independent sets. 

Let M be a matroid, F the underlying flag matroid of  M, and A(F)  the matroid 
polytope o f F .  Thegraph ofapolytope means the l-skeleton, consisting of the vertices 
and edges. Recall that each vertex of  A(F)  corresponds to a flag of independent sets 
[bl,... ,bk]. Define an equivalence relation ,~ on the set of  vertices of  A(F)  by declaring 
u ,,~ v if u and v are adjacent in the graph of  A(F)  and the unordered bases associated 
with u and v are distinct; then take the transitive closure of this relation. Let Z(M) 
denote the set of convex hulls in A(F)  of  the equivalence classes. 

Theorem 4.1. Let M be a matroid and M the set o f  all maximal flags in its lattice of  
flats. With the above notation, 
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(1) the elements ofE(M) are faces of  A(5 r) of dimension p - k ,  where p is the number 
of  nonloops in M; 

(2) there is a bijection �9 between 9,f and E(M) defined as follows: I f  F E ~[ and -F 
denotes the set of  all flags of  independent sets that span F, then q~(F) = A(ff). 

Before giving the proof, we describe how the lattice of flats L can be reconstructed from 
the underlying flag matroid polytope. The two examples that follow are illustrative. For 
a matroid M of rank k on the set In] with underlying flag matroid .9", consider the 
underlying flag matroid polytope A(.9") with each vertex labeled by the appropriate flag 
of independent sets. Then the set of faces E(M) is determined. Define an equivalence 
relation on the set o f j th  components of the set of all flags of independent sets of M, for 
j = 0, 1,2,. . . ,k.  Declare two such j-subsets equivalent if these j th  components appear 
at vertices in the same element of Z(M); then take the transitive closure. Let L(M) 
denote the set of equivalence classes. Put an order on L(M) by declaring that ct < 13 if 
there are representatives A E ct and B E 13, such that A C B. 

Corollary 4.2. With the above notation, r~(M) is a lattice isomorphic to the lattice of  
flats of M. 

3 

2 {2.4) 4 

a. 

3 

2 [2.4] [4~1 4 

b. c. 

Figure I: Matroid Polytope, Underlying Flag Matroid Polytope, and Lattice of Flats 
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Example 1. Consider the rank 2 matroid M on the set [4] with bases B = { 12, 13,24, 34 }. 
Then the matroid polytope A(M) of M is a square inscribed in the tetrahedron whose 
vertices are labeled 1,2,3,4 (see Figure l(a)). The matroid polytope A(F) of the un- 
derlying flag matroid F has eight vertices. The convex hull of these vertices is combi- 
natorially equivalent to a cube, but has two rectangular faces and four trapezoidal faces 
(see Figure l(b)). The set of faces in E(M) are the rectangular faces, which correspond 
to two maximal flags of flats spanned by the flags of independent sets [12] and [21]. The 
equivalence classes that comprise the lattice L(M) are 

Rank 0. 0. 
Rank 1. {1,4} and {2,3}. 
Rank 2. {12, 13,24,34}. 

The Hasse diagram of the lattice L(M) is shown in Figure l(e). 

Example 2. Again with M a rank 2 matroid on [4], take B to consist of all 2-element 
sets in [4] with the exception of [23]. Then A(F), the underlying flag matroid polytope, 
has two hexagonal, two trapezoidal, one rectangular, and two triangular faces (see Fig- 
ure 2(a)). The faces of Y(M) are the two triangles, corresponding to the flags of flats 
spanned by [12] and [41], and the rectangular face, corresponding to the flag of flats 
spanned by [21]. The equivalence classes that comprise the lattice L(M) are 

Rank 0. 0. 
Rank 1. {1},{4} and {2,3}. 
Rank 2. {12, 13, 14,24,34}. 

The Hasse diagram of the lattice L(M) is shown in Figure 2(b). 

1,2 

2 [2,41 

3 

,4] 

[4,21 

a. b. 

Figure 2: Underlying Flag Matroid Polytope and Lattice of Flats 
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Proof of  Theorem 4.1. An outline of the proof is as follows. We will show that 

(I) if A and B are two different bases in B, the collection of bases of the matroid 
M, and [A] = [al,...,ak] and [B] = [bl,...,bk] are two corresponding flags of 
independent sets in the underlying flag matroid F ,  and if the vertices 6[A ] and ~5[s ] 
of the matroid polytope A(F) of the flag matroid F are adjacent in A(F),  then the 
flags of independent sets F and G span the same flag of flats of the matroid M; and 

(II) i f F  E M,  then A(ff) is a face of A(F). 

By statement (II), the mapping F ~ A(ff) defines a function from M to certain faces 
of A(F). 

Since two flags of flats spanned by different orderings of the same basis must be 
distinct, and each face is a polytope whose graph is connected, statement (I) implies 
that these certain faces are exactly the elements of Z(M) and �9 is injective. Since every 
flag of flats is spanned by some flag of independent sets, �9 is surjective. Next, we prove 
statements (I) and (II); the statement about dimension is considered at the end. 

Proof of  Statement (I). Let [A] = [al ,a2,. . .  ,ak] and [B] = [bl ,b2,... ,bk], with A ~ B. 
By the definition in Section 3, 6[A] = Y.i(k+ 1 - i)~.ai and 6[sl = ,Y__~(k+ 1 - i)eb~. Let L 
be a linear functional which attains its maximum on A(F) on the edge 6lAIr[s]. Since 
L is linear, it is determined by its values on the basis elements ~i,i E In]. For simplicity 
of notation, we will abbreviate L(ei) by L(i). Since A # B implies that [A] and [B] are 
not reorderings of each other, all reorderings of [A] or [B] must give a strictly smaller 
L-values. It follows that L(al) > L(a2) > ... > L(ak) andL(bl) > L(b2) > . . .  > L(hk). 

Since A r B, there exists aj E A \ 8. Without loss of  generality, we may assume 
ai = bi for all i < j .  By symmetric matroid basis exchange, there exists bt E B \ A, 
l > j ,  such that A' := (A \ {aj}) tA {bt}, f f  := (B\ {b/}) U {aj} E B. Let [A'] and [ff] be 
the flags obtained from [A] and [B] by interchanging aj and bt, but otherwise retaining 
the ordering of [A] and [B], and let [A"] and [B"] be obtained from [A'] and [B'] by 
reordering the elements according to descending L-values. Then 

L(~5[A,,1) > L(~5[A,]) = L(~5[A]) + (k+ 1 - j )(L(bl)  -L(a j )  ), 

L(6[g,]) > L(6[tr]) = L(f[e]) + (k+ 1 - l)(L(aj) - L(bt)); 

both cannot be strictly less than L(f[A]) = L(6[BI)- It follows that A' = B and B' = A, 
and that L(aj) = L(bl). 

Suppose 1 > j .  Then L(aj) = L(bt) < L(bj) and, hence, bj • A. This contradicts 
B' = A, and since we already had I > j ,  we now have l = j .  

Now, suppose {al ,a2,... ,aj,bj} is independent in the matroid M. Then, for some 
m, {al,a2,... ,aj,bj,a)+l,..~,a,,-i,a,,+l,...  ,ak} E B. Since L(bj) > L(am), we have 
a contradiction to the maximality of L(5[At). Therefore, {al ,a: , . . . ,a j ,bj}  is depen- 
dent in the matroid. On the other hand, {al ,a2, . . . ,aj- l ,bj}  = {bl ,bv, . . . ,bj}  c_ B 
is independent. From elementary matroid theory, it follows that {al,az, . . .  ,aj} and 
{bl,b2,. . . ,bi} have the same closure, and consequently, so do {aj,az . . . .  ,am} and 
(b i, b2,. . . ,  bm} for all m. Thus, [A] and [B] span the same flag of flats of the matroid. 

Proof of  Statement (II). Let F = Fi < / ~  < ... < Fk be a maximal flag of flats of M and 
ff the set of flags of bases that span F. Denote by PI the set of all nonloop elements 

a f  
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of [n] in Ft, and by Pj, j = 2,. . .  ,k, the sets of all elements in Fy \ Fj-l. Denote by Li 
the linear functional on R n, which takes value 1 on ej for j E Pt and 0 on other basis 
vectors ej. If [B] = [i t , . . . ,  ik] is an ordered basis in F ,  then the corresponding vertex of 
A ( f )  has the form 

5[S] = k~it -t- ( k -  I )ci 2 + . . -  + 28ik_ t + I elk. 

Notice that at most one of  the elements i l , . . . , ik  belongs to Pl. For this reason, the 
maximal value of the functional Li is reached only at those vertices ~5[s ] in A(F) which 
satisfy it E Pt; this maximum value is k. I f  At is the convex hull of all such vertices, 
then Ai is a face of A(9"). Consider a vertex ~5[s] in At. Notice again that at most 
one element in B belongs to P2, which means that the maximum of the functional L2 
restricted to At is reached at only those vertices ~5[s ] of At which satisfy i2 E P2. Denote 
by A2 the convex hull of  all these vertices; then A2 is a face of Ai and, hence, of  A(F).  
Continuing this process, we find that the face of A(F) obtained by maximizing the 
sequence of functionals Lt , . . .  ,Lk, is exactly the convex hull of all vertices ~5[s ] with 
[B] = [i t , . . . ,  ik] satisfying ij E Pj for all j = 1,... ,k, i.e., the polytope A(F). 

Concerning the statement about dimension, let p be the number of  nonloops of  the 
matroid M. Notice that, given a flag of  flats Ft < -.. < b'~, the set of  all flags of inde- 
pendent sets in F spanning this flag of fiats has the natural structure of the direct sum 
of the uniform rank 1 matroids on the sets PI,.-.  ,Pk, and for this reason, the statement 
about dimension p - k follows from Corollary 15 in [BGW2]. I 

Let M be a matroid on the set [n], ~- its underlying flag matroid, and A(M) and A(F) 
the respective matroid and flag matroid polytopes. If [at , . . . ,  ak] is a flag of independent 
sets, then [at, . . .  ,ak] ~-~ {at , . . .  ,ak} defines a map from the set of vertices of A(F) to 
the set of vertices of A(M). This map can be extended to a map ~ from the lattice of 
faces of A(F) to the lattice of faces of A(M). The last result gives several properties 
of this coveting map ~b. Two polytopes are combinatorially isomorphic if the respective 
lattices of faces are isomorphic. 

Corollary 4.3. With M a rank k matroid and with the above notation, the map tp from 
the lattice of faces of A( F ) to the lattice o f f  aces of A( M) has the following properties. 

(1) Each vertex of A(M) is the image of k! vertices of A(F). 
(2) The map d? takes each face in E(M) to a parallel face of the same dimenswn of 

A(M). 
(3) Corresponding edges o f f  and ~(F) are parallel for F E E(M). 
(4) The faces F and ~(F) are combinawrially isomorphic for F E E(M). 

Proof. Statement (1) is clear since there are k! permutations of {a I , . . . ,  ak }. Concerning 
statements (2) and (3), let Fi,.. .  ,Fro be the vertices of a face F in E(M), that is, the 
flags of independent sets spanning a given flag of flats F = FI </71 < ... < ~ of  M. 
Let At, . . .  ,Am be the corresponding (unordered) bases of M. All the bases A t , . . . ,At  
are distinct since two different orderings of the same basis produce distinct flags of 
flats. Hence, F and d~(F) have the same number of vertices. Denote by Pt the set of 
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all nonloop elements of  [n] in b], and by Pj, j = 2,. . .  ,k, the sets of all elements in 
Fj \ Fj_ I. Denote by Li the linear functional on R n which takes value I on cj for j E P/ 
and 0 on other basis vectors ej. This is the same sequence of linear functionals used in 
the proof of the second part of  Theorem 4.1. On A(M), using the same arguments as in 
that proof, the sequence of  functionals L i , . . .  ,Lk reach their maximum at the vertices 
fa~,-.-,fiat, and therefore, the convex hull of  these vertices is a face F t of  A(M) parallel 
to F. Now use formulas (2.1) and (3.1) in Sections 2 and 3 and the fact that the edges 
of A(F) and A(M) are parallel to ei - ej for some i and j  (Gelfand-Serganova Theorem 
[GS]) to conclude that the edges of F are parallel to the corresponding edges of F'. 
Moreover, the dimension of  F is equal to the dimension of F'. This is because the 
dimension of  either polytope equals the dimension of the vector space spanned by the 
vectors h'~ corresponding to all pairs of  adjacent vertices u, v in the polytope. 

Concerning statement (4), let A be the n-simplex with vertices at the origin and 
at the points el, i = l , . . . ,n .  The construction using the linear functionals Li,. . .  ,Lra 
implies that F is the intersection of  A with an affine subspace U parallel to some face of 
A. The same is true o f f  ~, for an affine subspace U ~ parallel to the same face of A. This 
implies that F and F' are combinatorially isomorphic, since the fact that the faces F and 
F' have the same number of vertices precludes any degeneracy. II 

There are open questions concerning the covering map in Corollary 4.3. Assume, 
for simplicity, that the matroid M has no loops or coioops (loops in the dual matroid). 
Then, in view of Corollary 4.3, the maximal flags of flats in M are represented by certain 
faces of A(M) of dimension n - k ,  those in the image ~(Z(M)). Let us call these faces 

flag faces. It is clear from formula (2.1) of Section 2 that the matroid polytope A(M*) of  
the dual matroid/14* is similar to A(M). Therefore, the maximal flags of flats in the dual 
matroid M* can be represented by certain faces of A(M) of dimension k (called coflag 
faces). Every vertex of A(M) belongs to k! flag faces and (n - k ) !  coflag faces (with 
repetition, since several distinct flags can be represented by the same face), and every 
edge of A(M) belongs to at least one flag and one-coflag face. It would be interesting to 
find a combinatorial criterion for recognizing the flag and coflag faces of A(M), and to 
study other properties of the mosaic of flag and coflag faces on A(M). For example, we 
have the following result. 

Corollary 4.4. Each flag face of a matroid polytope is combinatorially isomorphic to 
the product of  k simplices (of various dimensions). 

Proof. Let F be the flag of fiats in M corresponding to a flag face F' of  the matroid 
polytope and let PI . . . .  ,Pk be as in the proof of Corollary 4.3. Then the set of all ordered 
bases spanning F (corresponding to the set of vertices of F') has the natural matroid 
structure of the direct product of the uniform rank 1 matroids on the sets Pl , . . .  ,Pk. 
Hence, the vertices ofF '  are represented by the set of all k-sets a l , . . . ,  a, ,  where ai E Pi. 
By Theorem 2.1, two vertices of F' are adjacent if and only if they can be obtained 
from each other by an elementary exchange. This translates to the fact that two vertices 
a t , . . . ,  ak and b i , . . . ,  bk of F' are adjacent if and only if ai = bi for all i except one. This 
means that the graph of F ~ is the direct product of the graphs of simplices of dimensions 
JPII - 1, . . . ,  JPk[ - 1. However, such a direct product of simplices is a simple polytope, 
and hence, its combinatorial structure is completely determined by its graph IBM]. II 
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