Locally Homogeneous Graphs from Groups

Andrew Vince

UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109

ABSTRACT

A graph is called locally homogeneous if the subgraphs induced at any two points are isomorphic. In this Note we give a method for constructing locally homogeneous graphs from groups. The graphs constructable in this way are exactly the locally homogeneous graphs with a point symmetric universal cover. As an example we characterize the graphs that are locally n-cycles.

1. INTRODUCTION

For a connected graph G and point v of G, let G_v be the subgraph induced by the points adjacent to v. This G is called locally G_0 if $G_v = G_0$ for all points v of G. A graph is called locally homogeneous if it is locally G_0 for some G_0. Recent work concerning local homogeneity has focused on two broad questions. First, for which G_0 does there exist a G that is locally G_0? This has been settled for G_0 a cycle, linear forest, and certain trees [1, 2]. Second is the question of characterization. For a specific graph G_0, characterize all graphs G that are locally G_0. For example, let $K(n; t)$ denote the complete multipartite graph $K(n, n, \ldots, n)$, where there are t parts. When $G_0 = K(n; t)$ there is a unique G, namely $G = K(n; t + 1)$. A recent paper of Hall [4] classifies the graphs that are locally the Petersen graph. There are exactly three.

In this Note, a large class of locally homogeneous graphs are obtained using groups. As a special case we characterize the graphs that are locally n-cycles.

2. HOMOGENEOUS GRAPHS FROM GROUPS

We begin with the construction of a graph $G(\Gamma, A, B, T)$. Later in this section we relate this construction to the concept of locally homogeneous graph. Let Γ be an arbitrary group, A and B subgroups of Γ and T a subset of Γ with...
the property that $T^{-1} = T$. Define $G(\Gamma, A, B, T)$ to be the graph whose points are the two sided cosets $\{BgA \mid g \in \Gamma\}$, where two distinct points U and V of $G(\Gamma, A, B, T)$ are defined to be adjacent if $U^{-1}V \cap T \neq \emptyset$.

For subsets $X, Y \subseteq \Gamma$, the set XY is $\{xy \mid x \in X, y \in Y\}$, and let $\langle X \rangle$ denote the subgroup of Γ generated by the elements of X. The following proposition is routinely verified.

Proposition 1. The graph $G(\Gamma, A, B, T)$ is connected if and only if $B\langle T \cup A \rangle = \Gamma$. \blacksquare

When $A = B = \{1\}$, and T generates Γ, the definition of $G(\Gamma, A, B, T)$ coincides with that of the Cayley graph of Γ with respect to the generating set T. Recall that the points of the Cayley graph are the elements of Γ with two points u, v adjacent whenever $ut = v$ for some $t \in T$.

When $A = \{1\}$, $G(\Gamma, A, B, T)$ is the Schreier coset graph of Γ with respect to the subgroup B. The Schreier coset graph is a generalization of the Cayley graph, the points of the Cayley graph being regarded as cosets of the trivial subgroup $\{1\}$. The points of the Schreier coset graph are the right cosets of B, where two points U, V are joined by a line whenever $Ut = V$ for some $t \in T$.

Next consider the case $B = \{1\}$. As an abbreviation we denote $G(\Gamma, A, \{1\}, T)$ by $G(\Gamma, A, T)$. Recall that a graph is point symmetric if its automorphism group is transitive on points. The graphs $G(\Gamma, A, T)$ are exactly the point symmetric graphs.

Theorem 2. A graph G is point symmetric if and only if $G = G(\Gamma, A, T)$ for some group Γ, subgroup A and subset $T = T^{-1}$.

Proof: For arbitrary points $U = gA$ and $V = hA$ of $G(\Gamma, A, T)$ the mapping $G(\Gamma, A, T) \to G(\Gamma, A, T)$ given by $X \to hg^{-1}X$ defines an automorphism of $G(\Gamma, A, T)$ taking U to V. Conversely, given a point symmetric graph G, let Γ be its automorphism group, A the stabilizer subgroup of some point v_0 and $T = \{t \in \Gamma \mid t(v_0) \text{ or } t^{-1}(v_0) \text{ is adjacent to } v_0\}$. Consider the map F from the points of G to those of $G(\Gamma, A, T)$ given by $F : v \to g_vA$, where $g_v \in \Gamma$ is any automorphism taking v_0 to v. We claim that F is an isomorphism. Now g_A consists of all elements of Γ taking v_0 to v. Hence u and v are adjacent in G if and only if $g_u^{-1}g_v(v_0)$ is adjacent to v_0. Equivalently, $g_u^{-1}g_v \in T$. Thus $F(u)$ and $F(v)$ are adjacent in $G(\Gamma, A, T)$. \blacksquare

A map $\pi : \hat{G} \to G$ from the points of graph \hat{G} to the points of graph G is called a covering map if \hat{G}_v is mapped isomorphically onto G_{g_v} for all points v of \hat{G}. Let B be a subgroup of Aut G, the automorphism group of G. The points of the quotient graph G/B are the orbits $\langle v \rangle$ of points v in G under the action of B, where distinct points U and V are adjacent in G/B whenever there are points $u \in U$ and $v \in V$ adjacent in G. As an example, consider a group Γ, subgroups A and B and subset $T = T^{-1}$. Then B can be regarded as a
subgroup of Aut $G(\Gamma, A, T)$ by defining $b(V) = bV$ for $b \in B$, in which case $G(\Gamma, A, T)/B \cong G(\Gamma, A, B, T)$. In general, if the map

$$f: G \to G/B$$

given by

$$v \mapsto \langle v \rangle$$

is a covering, then B is called *properly discontinuous* with respect to G. An equivalent formulation is the following: B is properly discontinuous if, for all points $u, v, f(u) = f(v)$ implies that u and v are at a distance greater than 3 in G. The next proposition follows from the fact that a point symmetric graph is locally homogeneous.

Proposition 3. If B is a properly discontinuous group of automorphism with respect to a point symmetric graph G, then G/B is locally homogeneous.

A sufficient condition for $G(\Gamma, A, B, T)$ to be locally homogeneous follows from Theorem 2 and Proposition 3.

Corollary 4. If $B \leq \Gamma$, considered as a subgroup of Aut $G(\Gamma, A, B, T)$, is properly discontinuous, then $G(\Gamma, A, B, T)$ is locally homogeneous.

Moreover, every locally homogeneous graph that is a quotient G/B of a point symmetric graph G by a properly discontinuous subgroup B is obtained by the $G(\Gamma, A, B, T)$ construction.

Theorem 5. If B is properly discontinuous with respect to a point symmetric graph G, then $G/B \cong G(\Gamma, A, B, T)$, where $\Gamma = \text{Aut } G, A$ is the stabilizer in Γ of any point v_0 of G and $T = \{ t \in \Gamma | t(v_0) \text{ or } t^{-1}(v_0) \text{ is adjacent to } v_0 \}$.

Proof. For a point $\langle v \rangle$ of G/B let $g_{\langle v \rangle}$ be any automorphism of G taking v_0 to v. It is easy to show that $B_{g_{\langle v \rangle}}A$ depends only on the orbit $\langle v \rangle$ and not on the representative v, so that the function $F: G/B \to G(\Gamma, A, B, T)$ given by $\langle v \rangle \mapsto B_{g_{\langle v \rangle}}A$ is well defined. The proof that F is an isomorphism proceeds exactly as in Theorem 2.

3. UNIVERSAL COVER

The main result of this section utilizes a notion due to Ronan [6]. For a graph G let ΔG be the 2-dimensional simplicial complex formed from G by adding a 2-simplex for each triple of mutually adjacent points of G. Let $\Delta \pi: \Delta \tilde{G} \to \Delta G$ be the universal topological covering of ΔG and $\pi: \tilde{G} \to G$ the restriction of $\Delta \pi$ to the 1-skeleton of $\Delta \tilde{G}$. The graph \tilde{G} will be called the Δ-universal
cover of G. (We remark that \tilde{G} should not be confused with the universal cover of G regarded as a 1-dimensional simplicial complex.) The graph \tilde{G} is universal in the sense that if $\varphi: \tilde{G} \to G$ is any cover, then there is a cover $\psi: \tilde{G} \to \tilde{G}$ yielding a commutative diagram:

$$
\begin{array}{ccc}
\psi & \tilde{G} \\
\downarrow \pi & \downarrow \\
G & \to & G \\
\varphi
\end{array}
$$

Denote by $\Gamma(\tilde{G}, G)$ the group of covering transformations of $\pi: \tilde{G} \to G$, i.e., the elements of Aut \tilde{G} preserving fibers. If $\Delta \Gamma(\Delta G, \Delta G)$ denotes the group of covering transformations of $\Delta \pi: \Delta \tilde{G} \to \Delta G$, then certainly $\Delta \Gamma(\Delta G, \Delta G)$ and $\Gamma(\tilde{G}, G)$ are equal as permutation groups acting on vertices. Hence, by standard results on covering spaces [7], $\Gamma(\tilde{G}, G)$ is transitive on the points of each fiber and is isomorphic to the fundamental group $\pi_1(\Delta G)$.

Lemma 6. If a graph G has a point symmetric cover, then \tilde{G} is point symmetric.

Proof. Assume \tilde{G} is a point symmetric cover of G. Let \tilde{u}, \tilde{v} be arbitrary points of \tilde{G} and \tilde{u}, \tilde{v} their images under the map $\psi: \tilde{G} \to \tilde{G}$. Let $f: \tilde{G} \to \tilde{G}$ be an automorphism such that $f(\tilde{u}) = \tilde{v}$. Since $\psi: \tilde{G} \to \tilde{G}$ and $f \circ \psi: \tilde{G} \to \tilde{G}$ are both Δ-universal covers, there is a covering transformation F yielding a commutative diagram:

$$
\begin{array}{ccc}
\tilde{G} \\
\downarrow f \circ \psi \\
\tilde{G} \to \tilde{G} \\
\psi
\end{array}
$$

Because $\psi \circ F = f \circ \psi$, $F(\tilde{u})$ lies in the same fiber as \tilde{v} with respect to the covering map ψ. Since $\Gamma(\tilde{G}, \tilde{G})$ is transitive on the points of each fiber, there is a map $F': \tilde{G} \to \tilde{G}$ such that $F' \circ F(\tilde{u}) = (\tilde{v})$.

Theorem 7. If G has a point symmetric cover, then $G \cong G(\Gamma, A, B, T)$, where $\Gamma = \text{Aut} \tilde{G}$, $B = \Gamma(G, G)$, A is the stabilizer of any point v_0 of G, and $T = \{ t \in \Gamma | t(v_0) \text{ or } t^{-1}(v_0) \text{ is adjacent to } v_0 \}$.

Proof. Consider the group ΔB of covering transformations of $\Delta \pi: \Delta \tilde{G} \to \Delta G$. A standard result in the theory of covering spaces is $\Delta G \cong \Delta G/\Delta B$. This implies $G \cong \tilde{G}/B$. The theorem then follows from Theorem 5 and Lemma 6.
Remark. It is not always true that if G is locally homogeneous, then \tilde{G} is point symmetric. Blass, Harary, and Miller [1] state the existence of a graph that is locally the tree G_0 in Figure 1. However, their results imply that no point symmetric graph is locally G_0.

Example. Let C_n be an n-cycle, $n \geq 3$, and G a connected graph that is locally C_n. Then ΔG is a connected 2-manifold without boundary and ΔG is the regular tessellation of a simply connected surface S into triangles with n triangles incident at each vertex. Coxeter [3] discusses these tessellations in detail. The surface S is the sphere, plane or unit disk (hyperbolic plane) depending on whether $n < 6$, $n = 6$ or $n > 6$, respectively. The Δ-universal cover \tilde{G}_n is the graph underlying the tessellation. Figure 2 shows \tilde{G}_3 and part of the infinite graph \tilde{G}_6.

$\text{Aut} \tilde{G}_n$ is the well known triangle group having the presentation

$$\Gamma_n = \langle x, y, z \mid x^2 = y^2 = z^2 = (xy)^3 = (yz)^n = (zx)^2 = 1 \rangle$$

The graphs that are locally C_n are exactly the quotient graphs \tilde{G}_n/B, where B is a properly discontinuous subgroup of Γ_n. By Theorem 7 these are the graphs

$$G(\Gamma_n, \langle y, z \rangle, B, \{x\}).$$

It is not difficult to show that this representation is unique up to conjugacy of B in Γ_n. The only locally C_3, C_4, and C_5 graphs are the 1-skeletons of the tetrahedron, octahedron and icosahedron, respectively. By a result of Ronan [6] there are infinitely many graphs locally C_n for $n \geq 6$.

![Figure 1: No point symmetric graph is locally G_0.](image1)

![Figure 2: Δ-Universal covers.](image2)
References