Locally Homogeneous Graphs from Groups

Abstract

A graph is called locally homogeneous if the subgraphs induced at any two points are isomorphic. In this Note we give a method for constructing locally homogeneous graphs from groups. The graphs constructable in this way are exactly the locally homogeneous graphs with a point symmetric universal cover. As an example we characterize the graphs that are locally n-cycles.

1. INTRODUCTION

For a connected graph G and point v of G, let G_{v} be the subgraph induced by the points adjacent to v. This G is called locally G_{0} if $G_{v}=G_{0}$ for all points v of G. A graph is called locally homogeneous if it is locally G_{0} for some G_{0}. Recent work concerning local homogeneity has focused on two broad questions. First, for which G_{0} does there exist a G that is locally G_{0} ? This has been settled for G_{0} a cycle, linear forest, and certain trees [1, 2]. Second is the question of characterization. For a specific graph G_{0}, characterize all graphs G that are locally G_{0}. For example, let $K(n ; t)$ denote the complete multipartite graph $K(n, n, \ldots, n)$, where there are t parts. When $G_{0}=K(n ; t)$ there is a unique G, namely $G=K(n ; t+1)$. A recent paper of Hall [4] classifies the graphs that are locally the Petersen graph. There are exactly three.

In this Note, a large class of locally homogeneous graphs are obtained using groups. As a special case we characterize the graphs that are locally n cycles.

2. HOMOGENEOUS GRAPHS FROM GROUPS

We begin with the construction of a graph $G(\Gamma, A, B, T)$. Later in this section we relate this construction to the concept of locally homogeneous graph. Let Γ be an arbitrary group, A and B subgroups of Γ and T a subset of Γ with
the property that $T^{-1}=T$. Define $G(\Gamma, A, B, T)$ to be the graph whose points are the two sided cosets $\{B g A \mid g \in \Gamma\}$, where two distinct points U and V of $G(\Gamma, A, B, T)$ are defined to be adjacent if $U^{-1} V \cap T \neq \emptyset$.

For subsets $X, Y \subseteq \Gamma$, the set $X Y$ is $\{x y \mid x \in X, y \in Y\}$, and let $\langle X\rangle$ denote the subgroup of Γ generated by the elements of X. The following proposition is routinely verified.

Proposition 1. The graph $G(\Gamma, A, B, T)$ is connected if and only if $B<T \cup$ $A>=\Gamma$.

When $A=B=\{1\}$, and T generates Γ, the definition of $G(\Gamma, A, B, T)$ coincides with that of the Cayley graph of Γ with respect to the generating set T. Recall that the points of the Cayley graph are the elements of Γ with two points u, v adjacent whenever $u t=v$ for some $t \in T$.

When $A=\{1\}, G(\Gamma, A, B, T)$ is the Schreier coset graph of Γ with respect to the subgroup B. The Schreier coset graph is a generalization of the Cayley graph, the points of the Cayley graph being regarded as cosets of the trivial subgroup $\{1\}$. The points of the Schreier coset graph are the right cosets of B, where two points U, V are joined by a line whenever $U t=V$ for some $t \in T$.

Next consider the case $B=\{1\}$. As an abbreviation we denote $G(\Gamma, A,\{1\}$, $T)$ by $G(\Gamma, A, T)$. Recall that a graph is point symmetric if its automorphism group is transitive on points. The graphs $G(\Gamma, A, T)$ are exactly the point symmetric graphs.

Theorem 2. A graph G is point symmetric if and only if $G=G(\Gamma, A, T)$ for some group Γ, subgroup A and subset $T=T^{-1}$.

Proof. For arbitrary points $U=g A$ and $V=h A$ of $G(\Gamma, A, T)$ the mapping $G(\Gamma, A, T) \rightarrow G(\Gamma, A, T)$ given by $X \rightarrow h g^{-1} X$ defines an automorphism of $G(\Gamma, A, T)$ taking U to V. Conversely, given a point symmetric graph G, let Γ be its automorphism group, A the stabilizer subgroup of some point v_{0} and $T=\left\{t \in \Gamma \mid t\left(v_{0}\right)\right.$ or $t^{-1}\left(v_{0}\right)$ is adjacent to $\left.v_{0}\right\}$. Consider the map F from the points of G to those of $G(\Gamma, A, T)$ given by $F: v \rightarrow g_{v} A$, where $g_{v} \in$ Γ is any automorphism taking v_{0} to v. We claim that F is an isomorphism. Now $g_{v} A$ consists of all elements of Γ taking v_{0} to v. Hence u and v are adjacent in G if and only if $g_{u}^{-1} g_{\nu}\left(v_{0}\right)$ is adjacent to v_{0}. Equivalently, $g_{u}^{-1} g_{v} \in T$. Thus $F(u)$ and $F(v)$ are adjacent in $G(\Gamma, A, T)$.

A map $\pi: \hat{G} \rightarrow G$ from the points of graph \hat{G} to the points of graph G is called a covering map if \hat{G}_{v} is mapped isomorphically onto $G_{\pi v}$ for all points v of \hat{G}. Let B be a subgroup of Aut G, the automorphism group of G. The points of the quotient graph G / B are the orbits $\langle v\rangle$ of points v in G under the action of B, where distinct points U and V are adjacent in G / B whenever there are points $u \in U$ and $v \in V$ adjacent in G. As an example, consider a group Γ, subgroups A and B and subset $T=T^{-1}$. Then B can be regarded as a
subgroup of Aut $G(\Gamma, A, T)$ by defining $b(V)=b V$ for $b \in B$, in which case $G(\Gamma, A, T) / B \cong G(\Gamma, A, B, T)$. In general, if the map

$$
f: G \rightarrow G / B
$$

given by $\quad v \rightarrow\langle v$;
is a covering, then B is called properly discontinuous with respect to G. An equivalent formulation is the following: B is properly discontinuous if, for all points $u, v, f(u)=f(v)$ implies that u and v are at a distance greater than 3 in G. The next proposition follows from the fact that a point symmetric graph is locally homogeneous.

Proposition 3. If B is a properly discontinuous group of automorphism with respect to a point symmetric graph G, then G / B is locally homogeneous.

A sufficient condition for $G(\Gamma, A, B, T)$ to be locally homogeneous follows from Theorem 2 and Proposition 3.

Corollary 4. If $B \leq \Gamma$, considered as a subgroup of Aut $G(\Gamma, A, T)$, is properly discontinuous, then $G(\Gamma, A, B, T)$ is locally homogeneous.

Moreover, every locally homogeneous graph that is a quotient G / B of a point symmetric graph G by a properly discontinuous subgroup B is obtained by th $G(\Gamma, A, B, T)$ construction.

Theorem 5. If B is properly discontinuous with respect to a point symmetric graph G, then $G / B \cong G(\Gamma, A, B, T)$, where $\Gamma=$ Aut G, A is the stabilizer in Γ of any point v_{0} of G and $T=\left\{t \in \Gamma \mid t\left(v_{0}\right)\right.$ or $t^{-1}\left(v_{0}\right)$ is adjacent to $\left.v_{0}\right\}$.

Proof. For a point $\langle v\rangle$ of G / B let $g\langle v\rangle$ be any automorphism of G taking v_{0} to v. It is easy to show that $B g_{\langle v\rangle} A$ depends only on the orbit $\langle v\rangle$ and not on the representative v, so that the function $F: G / B \rightarrow G(\Gamma, A, B, T)$ given by $\langle v\rangle \rightarrow B g_{\langle v\rangle} A$ is well defined. The proof that F is an isomorphism proceeds exactly as in Theorem 2.

3. UNIVERSAL COVER

The main result of this section utilizes a notion due to Ronan [6]. For a graph G let ΔG be the 2 -dimensional simplicial complex formed from G by adding a 2 -simplex for each triple of mutually adjacent points of G. Let $\Delta \pi$: $\widetilde{\Delta G} \rightarrow$ ΔG be the universal topological covering of ΔG and $\pi: \widetilde{G} \rightarrow G$ the restriction of $\Delta \pi$ to the 1 -skeleton of $\widetilde{\Delta G}$. The graph \widetilde{G} will be called the Δ-universal
cover of G. (We remark that \widetilde{G} should not be confused with the universal cover of G regarded as a 1 -dimensional simplicial complex.) The graph \widetilde{G} is universal in the sense that if $\varphi: \widetilde{G} \rightarrow G$ is any cover, then there is a cover ψ : $\widetilde{G} \rightarrow \hat{G}$ yielding a commutative diagram:

φ
Denote by $\Gamma(\widetilde{G}, G)$ the group of covering transformations of $\pi: \widetilde{G} \rightarrow G$, ie. the elements of Aut \widetilde{G} preserving fibers. If $\Delta \Gamma(\Delta G, \Delta G)$ denotes the group of covering transformations of $\Delta \pi: \Delta G \rightarrow \Delta G$, then certainly $\Delta \Gamma(\Delta G, \Delta G)$ and $\Gamma(\widetilde{G}, G)$ are equal as permutation groups acting on vertices. Hence, by standard results on covering spaces [7], $\Gamma(\widetilde{G}, G)$ is transitive on the points of each fiber and is isomorphic to the fundamental group $\pi_{1}(\Delta G)$.

Lemma 6. If a graph G has a point symmetric cover, then \widetilde{G} is point symmetric.

Proof. Assume \hat{G} is a point symmetric cover of G. Let \tilde{u}, \tilde{v} be arbitrary points of \widetilde{G} and \hat{u}, \hat{v} their images under the map $\psi: \widetilde{G} \rightarrow \hat{G}$. Let $f: \widetilde{G} \rightarrow \hat{G}$ be an automorphism such that $f(\hat{u})=\hat{v}$. Since $\psi: \widetilde{G} \rightarrow \hat{G}$ and $f^{\circ} \psi: \widetilde{G} \rightarrow \hat{G}$ are both Δ-universal covers, there is a covering transformation F yielding a commutative diagram:

Because $\psi \circ F=f \circ \psi, F(\tilde{u})$ lies in the same fiber as \tilde{v} with respect to the covering map ψ. Since $\Gamma(\overparen{G}, \hat{G})$ is transitive on the points of each fiber, there is a map $F^{\prime}: \widetilde{G} \rightarrow \widetilde{G}$ such that $F^{\prime} \circ F(\tilde{u})=(\tilde{v})$.

Theorem 7. If G has a point symmetric cover, then $G \cong G(\Gamma, A, B, T)$, where $\Gamma=$ Aut $\widetilde{G}, B=\Gamma(\widetilde{G}, G), A$ is the stabilizer of any point v_{0} of G, and $T=\left\{t \in \Gamma \mid t\left(v_{0}\right)\right.$ or $t^{-1}\left(v_{0}\right)$ is adjacent to $\left.v_{0}\right\}$.

Proof. Consider the group ΔB of covering transformations of $\Delta \pi: \widetilde{\Delta G} \rightarrow$ ΔG. A standard result in the theory of covering spaces is $\Delta G \cong \widetilde{\Delta G} / \Delta B$. This implies $G \cong \widetilde{G} / B$. The theorem then follows from Theorem 5 and Lemma 6.

FIGURE 1. No point symmetric graph is locally G_{0}.
remark. It is not always true that if G is locally homogeneous, then \widetilde{G} is point symmetric. Blass, Harary, and Miller [1] state the existence of a graph that is locally the tree G_{0} in Figure 1. However, their results imply that no point symmetric graph is locally G_{0}.

Example. Let C_{n} be an n-cycle, $n \geq 3$, and G a connected graph that is locally C_{n}. Then ΔG is a connected 2 -manifold without boundary and $\widetilde{\Delta G}$ is the regular tessellation of a simply connected surface S into triangles with n triangles incident at each vertex. Coxeter [3] discusses these tessellations in detail. The surface S is the sphere, plane or unit disk (hyperbolic plane) depending on whether $n<6, n=6$ or $n>6$, respectively. The Δ-universal cover \widetilde{G}_{n} is the graph underlying the tessellation. Figure 2 shows \widetilde{G}_{3} and part of the infinite graph \widetilde{G}_{6}.
Aut \widetilde{G}_{n} is the well known triangle group having the presentation

$$
\Gamma_{n}=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=(x y)^{3}=(y z)^{n}=(z x)^{2}=1\right\rangle
$$

The graphs that are locally C_{n} are exactly the quotient graphs \widetilde{G}_{n} / B, where B is a properly discontinuous subgroup of Γ_{n}. By Theorem 7 these are the graphs

$$
G\left(\Gamma_{n},\langle y, z\rangle, B,\{x\}\right) .
$$

It is not difficult to show that this representation is unique up to conjugacy of B in Γ_{n}. The only locally C_{3}, C_{4}, and C_{5} graphs are the 1 -skeletons of the tetrahedron, octahedron and icosahedron, respectively. By a result of Ronan [6] there are infinitely many graphs locally C_{n} for $n \geq 6$.

\bar{G}_{6}
FIGURE 2. Δ-Universal covers.

References

[1] A. Blass, F. Harary and Z. Miller, Which trees are link graphs? J. Combinatorial Theory B. To appear.
[2] M. Brown and R. Connelly, On graphs with constant link. In New Directions in the Theory of Graphs. F. Harary, Ed. Academic, New York (1973) 19-51.
[3] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups. Springer-Verlag, New York (1965).
[4] J. I. Hall, Locally Petersen graphs. J. Graph Theory. 4 (1980) 173-187.
[5] J. I. Hall and E. E. Shult, Locally Cotriangular Graphs. To appear.
[6] M. A. Ronan, On the second homotopy group of certain simplicial complexes and some combinatorial applications. To appear.
[7] E. Spanier, Algebraic Topology. McGraw-Hill, New York (1966).
[8] A. A. Zykov, Problem 30. Theory of Graphs and Applications. Academia, Prague (1964) 164-165.

