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A graph is called locally homogeneous if the subgraphs induced at any two 
points are isomorphic. In this Note we give a method for constructing locally 
homogeneous graphs from groups. The graphs constructable in this way are 
exactly the locally homogeneous graphs with a point symmetric universal 
cover. As an example we characterize the graphs that are locally n-cycles. 

1. INTRODUCTION 

For a connected graph G and point v of G, let G, be the subgraph induced by 
the points adjacent to v .  This G is called locally Go if G, = Go for all points v 
of G. A graph is called locally homogeneous if it is locally Go for some Go. 
Recent work concerning local homogeneity has focused on two broad 
questions. First, for which Go does there exist a G that is locally Go? This has 
been settled for Go a cycle, linear forest, and certain trees [ 1, 21. Second is 
the question of characterization. For a specific graph Go, characterize all 
graphs G that are locally Go. For example, let K(n; t )  denote the complete 
multipartite graphK(n, n, . . . , n) ,  where there are t parts. When Go = K(n; t )  
there is a unique G, namely G =K(n; t + 1) .  A recent paper of Hall [4] 
classifies the graphs that are locally the Petersen graph. There are exactly 
three. 

In this Note, a large class of locally homogeneous graphs are obtained 
using groups. As a special case we characterize the graphs that are locally n- 
cycles. 

2. HOMOGENEOUS GRAPHS FROM GROUPS 

We begin with the construction of a graph G(T,A ,  B, T).  Later in this section 
we relate this construction to the concept of locally homogeneous graph. 
Let r be an arbitrary group, A and B subgroups of r and T a subset of l- with 
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the property that T = T.  Define G(T, A , B ,  T )  to be the graph whose points 
are the two sided cosets {BgA 1 g E T}, where two distinct points U and Y of 
G(T, A ,  B ,  T )  are defined to be adjacent if U-'Y n T # 0. 

For subsets X ,  Y c r ,  the set X Y  is b y  1 x E X ,  y E Y), and let 
( X >  denote the subgroup of generated by the elements ofX. The following 
proposition is routinely verified. 

Proposition 1. The graph G(T, A ,  B,  T )  is connected if and only if B ( T U 
A ) = r .  I 

When A = B = { l } ,  and T generates r, the definition of G(T, A ,  B, T )  
coincides with that of the Cayley graph of r with respect to the generating set 
T. Recall that the points of the Cayley graph are the elements of r with two 
points u ,  z, adjacent whenever ut = ti for some t E T .  

When A = { l}, G(r, A ,  B ,  T )  is the Schreier coset graph of with respect 
to the subgroup B.  The Schreier coset graph is a generalization of the Cayley 
graph, the points of the Cayley graph being regarded as cosets of the trivial 
subgroup { 1). The points of the Schreier coset graph are the right cosets ofB, 
where two points U ,  V are joined by a line whenever Ut = V for some t E T.  

Next consider the case B = { 1) .  As an abbreviation we denote G ( r ,  A ,  { l ) ,  
T )  by G(I', A , T). Recall that a graph ispoint symmetric if its automorphism 
group is transitive on points. The graphs G(T, A ,  T )  are exactly the point 
symmetric graphs. 

Theorem 2. A graph G is point symmetric if and only if G = G(T, A ,  T )  for 
some group r, subgroup A and subset T = T' . 

Proof. For arbitrary points U=gA and V = h A  of G(T, A ,  T )  the 
mapping G(T, A ,  T )  - G(T, A ,  T )  given by X - hg-IX defines an auto- 
morphism of G(T, A ,  T )  taking U to V. Conversely, given a point symmetric 
graph G, let r be its automorphism group,A the stabilizer subgroup of some 
point vo and T = (t E r) t(tio) or t-'(z,,) is adjacent to tio}. Consider the map 
I; from the points of G to those of G(T,A,  T )  given by F:  z, -, gJ, whereg, E 
r is any automorphism taking vo to v .  We claim that P is an isomorphism. 
Now gJi consists of all elements of T taking u0 to ti. Hence u and v are 
adjacent in G if and only if g;'g,(v,) is adjacent to v0. Equivalently, 
g;'gv E T. Thus F(u)  and P(v)  are adjacent in G(T, A ,  T) .  I 

A map rr : G - G from the points of graph G to the points of graph G is 
called a covering map if Go is mapped isomorphically onto G,, for all points ti 
of G. Let B be a subgroup of Aut G ,  the automorphism group of G .  The 
points of the quotient graph GIB are the orbits ( v  ) of points z, in G under the 
action of B ,  where distinct points U and V are adjacent in GIB whenever 
there are points u E U and ti E V adjacent in G. As an example, consider a 
group I?, subgroups A and B and subset T = T' . Then B can be regarded as a 
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subgroup of Aut G(T, A ,  T )  by defining b(V) = bV for b E B ,  in which case 
G(T, A ,  T)lB G(T, A ,  B ,  T).  In general, if the map 

f: G - GIB 

given by v -  ( v :  

is a covering, then B is calledproperly discontinuous with respect to G .  An 
equivalent formulation is the following: B is properly discontinuous if, for all 
points u ,  v , f ( u )  = f ( v )  implies that u and v are at a distance greater than 3 in 
G. The next proposition follows from the fact that a point symmetric graph is 
locally homogeneous. 

Proposition 3. IfB is a properly discontinuous group of automorphism with 
respect to a point symmetric graph G ,  then GIB is locally homogeneous. 1 

A sufficient condition for G(T,A , B ,  T )  to be locally homogeneous follows 
from Theorem 2 and Proposition 3. 

Corollary 4. If B i I', considered as a subgroup of Aut G(T, A ,  T), is 
properly discontinuous, then G ( r ,  A ,  B ,  T )  is locally homogeneous. I 

Moreover, every locally homogeneous graph that is a quotient GIB of a 
point symmetric graph G by a properly discontinuous subgroupB is obtained 
by th G(T, A ,  B,  T )  construction. 

Theorem 5 .  IfB is properly discontinuous with respect to a point symmetric 
graph G, then GI3 G(T, A ,  B ,  T ) ,  where T = Aut G, A is the stabilizer in T 
of any point v0 of G and T =  (t E T (  t(vo) or t ' ( t r o )  is adjacent tovo). 

€'roo$ For a point ( v  ) of GIB let g( ) be any automorphism of G 
taking oo to o. It is easy to show that Bg< ) A  depends only on the orbit ( v ) 
and not on the representative o, so that the function I;: GIB- G(T, A ,  B, 7') 
given by ( tr ) - Bg <". ) A  is well defined. The proof that F is an isomorphism 
proceeds exactly as in Theorem 2. I 

3. UNIVERSAL COVER 

The main result of this section utilizes a notion due to Ronan [ 6 ] .  For a graph 
G let AG be the 2-dimensional simplicia1 complex formed from G by adding 
a 2-simplex for each triple of mutually adjacent points gf G. Let ATT: A% - 
AG be the universal topological covering of ,hG and TT: G - G the restriction 
of Asr to the l-skeleton of L G .  The graph G will be called the A-universal 
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cover of G. (We remark that should not be confused with the univeLsa1 
cover of G regarded as a l-dime_nsional simplicia1 complex.) The graph G is 
universal in the sense that if q: G - G is any cover, then there is a cover @: 
G - G ,yielding a commutative diagram: 
- 

(P 

Denote by r(c, 9 the group of covering transformations of re - G, ie. the 
elements of Aut G preserving fikers. If Ar(AG, AG) denotes the group of 
coKering transformations of AT:A G - AG, then certainly AT(A G, AG) and 
T(G, G) are equal as permutation group2 acting on vertices. Hence, by 
standard results on covering spaces [?I, T(G, G) is transitive on the points of 
each fiber and is isomorphic to the fundamental group .,(AG). 

Lemma 6. If a graph G has a point symmetric cover, then c is point 
symmetric. 

ProoJ -Assume G is a point symmetric cover2f G. Let 0 ,  5Je arbitrary 
points of G and ii, 6 their images under the m s  $:G - G. Let $G ---t G be an 
automorphism such that f(i i)  = 6. Since *:G - G and f"$:c - G are both 
A-universal covers, there is a covering transformation I; yielding a 
commutative diagram: 

Because I) 0 F = y o @ ,  F ( 3  lies in the same fiber as 6 with respect to the 
covering map $. Since T(G, G) is transitive on the points of each fiber, there 
i s a m a p P ' : z -  GsuchthatF 'oF(0)=(5) .  I 

Theorem 7. If ,G has a Eoint symmetric cover, then G 2 G(r, A ,  B, T), 
where r = Aut G, B = T(G, G), A is the stabilizer of any point vo of G, and 
T =  {t E rl t(vo) or t- '(vo) is adjacent to uo}. 

Proof: Consider the group AB of covering transformations of AT-A-G - 
AG. A standard res$ in the theory of covering spaces is AG LZ A G/AB. 
This implies G Z  GIB. The theorem then follows from Theorem 5 and 
Lemma6. I 
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FIGURE 1 .  No point symmetric graph is locally Go. 

REMARK. It is not always true that if G is locally homogeneous, then is 
point symmetric. Blass, Harary, and Miller [ 11 state the existence of a graph 
that is locally the tree Go in Figure 1 .  However, their results imply that no 
point symmetric graph is locally Go. 

Example. Let C, be an n-cycle, n L 3, and G a connected graph thst is 
locally C,. Then AG is a connected 2-manifold without boundary and A G is 
the regular tessellation of a simply connected surface S into triangles with n 
triangles incident at each vertex. Coxeter [ 31 discusses these tessellations in 
detail. The surface S is the sphere, plane or unit disk (hyperbolic plane) 
depengng on whether n < 6 ,  n = 6 or n > 6, respectively. The A-universal 
cover G, is the graphznderlying the tessellation. Figure 2 shows G3 and part 
of the infinite graph Gs. 

Aut z,, is the well known triangle group having the presentation 

r, = ( X ,  y ,  z j x2 = y 2  = z 2  = = (YZ)" = ( z x ) ~  = 1 ) 

The graphs that are locally C, are exactly the quotient graphs zn/B, where B 
is a properly discontinuous subgroup of r,. By Theorem 7 these are the 
graphs 

It is not difficult to show that this representation is unique up to conjugacy of 
B in r,. The only locally C3, C4, and C, graphs are the 1-skeletons of the 
tetrahedron, octahedron and icosahedron, respectively. By a result of Ronan 
[6] there are infinitely many graphs locally C, for n 2 6. 

Gi3 
G6 

FIGURE 2. A-Universal covers. 
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