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Abstract

Necessary and sufficient conditions for the symbolic dynamics of a given Lorenz map
to be fully embedded in the symbolic dynamics of a piecewise continuous interval map
are given. As an application of this embedding result, we describe a new algorithm for
calculating the topological entropy of a Lorenz map.

1. Introduction

Lorenz maps and their topological entropy have been and still are investigated intens-
ively, see [3, 10–15] and references therein. The simplest example of a Lorenz map is
a β-transformation. The topological entropy of such transformation is well known [20].
However, for a general Lorenz map the question of determining the topological entropy is
much more complicated. Glendinning [10] showed that every Lorenz map is semi-conjugate
to a β-transformation and thus some features of a Lorenz map can be understood via β-
transformations. In this paper, we investigate the relation between the symbolic dynamics of
a given Lorenz map and that of a β-transformation. In particular, this will allow us to obtain
upper and lower bounds on the entropy of a general Lorenz map. Let us now outline the
main results of this paper.

(i) Embedding dynamics: Our main results, Theorems 1 and 2, give necessary and sufficient
conditions for when the address space (Definition 4) of an arbitrary Lorenz system is a
forward shift sub-invariant subset (Definition 7) of the address space of a uniform Lorenz
system. (See Definition 1 for the definition of a Lorenz system.) These results complement
[3, theorem 6·5], [11, theorem 3] and [15, theorem 1 and corollary 3].

(ii) An algorithm: Based on (i), we provide, in Section 4, an algorithm for calculating the
topological entropy of a Lorenz system. This algorithm does not require previously used



2 T. SAMUEL, N. SNIGIREVA AND A. VINCE

techniques of finding zeros of a power series [1, 3, 11] nor does it require the calculation
of the zero of a pressure functional [9].

Before stating our main results formally we will briefly describe the main motivations for
investigating Lorenz maps.

1·1. Motivation and previous related results

A main motivation for the study of Lorenz maps is that they arise naturally in the
investigation of a geometric model of Lorenz differential equations which have strange
attractors, see [8, 16, 21, 22] and references therein. A second is that a β-transformation
(being the simplest example of a Lorenz map) plays an important role in ergodic theory, see
[7, 10, 13, 20] and references therein. A third motivation comes from the study of fractal
transformation, see [2].

Results from kneading theory are used in the study of Lorenz maps. In 1990, Hubbard and
Sparrow [15] showed that the upper and lower itineraries of the critical point fully determine
the address space of a Lorenz map. Moreover, Glendinning and Hall [11] showed that the
topological entropy of such a map is related to the largest positive zero of a certain power
series. Further results on the kneading sequences of Lorenz maps can be found, for instance,
in the works of Hofbauer and Raith [13, 14], Alsedá and Maños [1], Misiurewicz [19] and
Glendinning, Hall and Sparrow [10, 11, 12].

1·2. Main results

To formally state our main results we require the following notation and definitions.

Definition 1. An upper (or lower) Lorenz map with critical point q ∈ (0, 1) is a piecewise
continuous map T + (respectively T −) : [0, 1] � of the form

T +(x) :=
{

f0(x) if 0 � x < q,

f1(x) if q � x � 1,

(
respectively T −(x) :=

{
f0(x) if 0 � x � q,

f1(x) if q < x � 1,

)

where
(i) f0 : [0, q] → [0, 1] and f1 : [q, 1] → [0, 1] are continuous, strictly increasing,

functions, with f0(0) = 0 and f1(1) = 1 and either 1 > f0(q) > f1(q) � 0 or
1 � f0(q) > f1(q) > 0,

(ii) there exists s > 1 such that | fi (x) − fi (y)| � s|x − y|, for i ∈ {0, 1} and x ∈ [0, 1].
A Lorenz (dynamical) system with critical point q is defined to be a dynamical system
([0, 1], T ), where T is either an upper or lower Lorenz map with critical point q.

Definition 2. A pair of real numbers (a, p) is called admissible if it belongs to the set
{(z, w) ∈ (1, 2) × (0, 1) : 1 − z−1 � w � z−1}. An upper or lower Lorenz map with critical
point p is called uniform if (a, p) is admissible and if f ′

0(x) = a = f ′
1(y), for all x ∈ (0, p)

and y ∈ (p, 1). We denote such maps by the symbols U+
a,p or U−

a,p respectively. Specifically,
the maps U+

a,p and U−
a,p are given by,

U+
a,p(x) :=

{
ax if 0 � x < p,

ax + 1 − a if p � x � 1,
U−

a,p(x) :=
{

ax if 0 � x � p,

ax + 1 − a if p < x � 1.

Throughout we use the convention that ± means either + or −. Also, when we write,
‘given a Lorenz map T ± with critical point q’, we require both T + and T − to be defined
using the same functions f0 and f1. Further, let N denote the set of non-zero positive integers,
N0 denote the set of non-negative integers and R denote the set of real numbers.
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We let � := {0, 1}∞ denote the set of all infinite strings ω0 ω1 ω2 · · · consisting of ele-
ments of the set {0, 1}. It is well known that the set � is a complete compact metric space
with respect to the metric d : � × � → R given by

d(ω, σ ) :=
{

0 if ω = σ,

2−|ω∧σ | otherwise,

where |ω∧σ | := min { n ∈ N : ωn �σn}, for all ω := ω0 ω1 ω2 · · · , σ := σ0 σ1 σ2 · · · ∈ �

with ω � σ . Throughout we assume that � is equipped with the metric d and is endowed
with the lexicographic ordering which will be denoted by the symbols � and ≺.

Definition 3. The upper (or lower) itinerary τ+
q (x) (respectively τ−

q (x)) of a point x ∈
[0, 1] under T + (respectively T −) with critical point q is the string ω0 ω1 ω2 · · · ∈ � (re-
spectively σ0 σ1 σ2 · · · ∈ �), where

ωk :=
{

0 if (T +)k(x) < q

1 if (T +)k(x) � q.

(
respectively σk :=

{
0 if (T −)k(x) � q

1 if (T −)k(x) > q.

)
.

To distinguish the itinerary map of a uniform Lorenz map U±
a,p we use the symbol μ±

a,p.
Let (T +)n denote the n-fold composition of T + with itself, where (T +)0(x) := x for all

x ∈ [0, 1] and for all n ∈ N.

Definition 4. Given a Lorenz map T ± : [0, 1] � with critical point q, we let �±
q ⊂ �

denote the image of the unit interval [0, 1] under the mapping τ±
q . The set �±

q is called the
address space of the dynamical system ([0, 1], T ±). To distinguish the address space of a
uniform Lorenz system ([0, 1], U±

a,p), we we use the symbol �±
a,p.

Given a Lorenz map T ±, we let h(T ±) denote its topological entropy, which we will
define in Section 2·1. Since h(T +) = h(T −), we let h(T ) denote this common value, see
Remark 3.

Finally, let g0,a(x) := x/a and g1,a(x) := x/a + (1 − a−1), for each a ∈ (1, 2) and
x ∈ [0, 1]. The coding map πa : � → [0, 1] is defined by

πa(ω0 ω1 ω2 · · · ) := lim
n→∞ gω0,a ◦ gω1,a ◦ · · · ◦ gωn ,a(1) = (1 − a−1)

∞∑
k=0

ωk a−k . (1·1)

With the above we can now formally state our main results. For ease of notation we let
α := τ−

q (q) and β := τ+
q (q).

THEOREM 1. Let ([0, 1], T ±) denote a Lorenz system with critical point q such that
T −(q)� 1 and T +(q)� 0. Then the following statements are equivalent for each a ∈ R.

(i) The value a belongs to the open interval (exp(h(T )), 2).
(ii) The open interval (πa(α), πa(β)) � (1 − a−1, a−1) is non-empty and

α ≺ μ−
a,p(p) ≺ μ+

a,p(p) ≺ β,

for all p ∈ (πa(α), πa(β)) � (1 − a−1, a−1).
(iii) The open interval (πa(α), πa(β)) � (1 − a−1, a−1) is non-empty and

�−
q ⊂ �−

a,p and �+
q ⊂ �+

a,p,

for all p ∈ (πa(α), πa(β)) � (1 − a−1, a−1).
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THEOREM 2. Let ([0, 1], T ±) denote a Lorenz system with critical point q.
(i) If T −(q) = 1, then the following are equivalent:

(a) a ∈ (exp(h(T )), 2);
(b) there exists a unique p ∈ [1 − a−1, a−1], given by p = a−1, such that

α = μ−
a,a−1(a

−1) ≺ μ+
a,a−1(a

−1) ≺ β; (1·2)

(c) there exists a unique p ∈ [1 − a−1, a−1], given by p = a−1, such that

�−
q ⊂ �−

a,p and �+
q ⊂ �+

a,p.

(ii) If T +(q) = 0, then the following are equivalent:
(a) a ∈ (exp(h(T )), 2);
(b) there exists a unique p ∈ [1 − a−1, a−1], given by p = 1 − a−1, such that

α ≺ μ−
a,a−1(a

−1) ≺ μ+
a,a−1(a

−1) = β;
(c) there exists a unique p ∈ [1 − a−1, a−1], given by p = 1 − a−1, such that

�−
q ⊂ �−

a,p and �+
q ⊂ �+

a,p.

Remark 1. In Theorem 1 it is necessary to take the intersection of the intervals
(πa(α), πa(β)) and (1 − a−1, a−1) instead of only the interval (πa(α), πa(β)). Otherwise
the inequality πa(α) < 1 − a−1 or πa(β) > a−1 may occur, and so, the corresponding
uniform Lorenz system will not be well defined; see Example 1.

Remark 2. For each a > exp(h(T )), Theorems 1 and 2 fully classify the points p belong-
ing to the interval [1 − a−1, a−1], such that either

τ−
q (q) � μ−

a,p(p) ≺ μ+
a,p(p) ≺ τ+

q (q) or τ−
q (q) ≺ μ−

a,p(p) ≺ μ+
a,p(p) � τ+

q (q)

hold, which, as we will see, implies an embedding of address spaces, or more formally,
�−

q ⊂ �−
a,p and �+

q ⊂ �+
a,p.

In the final section of this paper we present a new algorithm, based on Theorems 1 and
2, which calculates the topological entropy of a Lorenz map. The main idea behind the
algorithm is the following. The algorithm first uses an efficient method to calculate the
address spaces of a given Lorenz system ([0, 1], T ). Then, in a systematic way, it com-
pares the address spaces of ([0, 1], T ) to the address spaces of a subclass of the family of
uniform Lorenz systems. By a well-known result of Parry [20] the topological entropy of
each member of this subclass of systems is known. Using Theorems 1 and 2 the algorithm
is then able to obtain an estimate of the topological entropy of the given system.

1·3. Outline

Section 2 contains necessary preliminaries. The concepts of topological entropy and
topological (semi-) conjugacy are introduced in Section 2·1; properties of itinerary maps
are presented in Section 2·2; and several required auxiliary results are proved in Section 2·3.
Section 3 contains the proofs of Theorems 1 and 2. We conclude with Section 4, where the
statement and a proof of validity of a new algorithm for computing the topological entropy
of a Lorenz (dynamical) system is given.

2. Preliminaries

In this section, various auxiliary results are proved in preparation for the proof of
Theorems 1 and 2.
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2·1. Entropy and topological conjugacy

Here we recall the definition of topological entropy and topological (semi-) conjugacy.

Definition 5. Let T ± be a Lorenz map with critical point q. For ω ∈ �, the string con-
sisting of the first n ∈ N symbols of ω is denoted by ω|n and ω|0 denotes the empty word.
We set �±

q,n := {ω|n : ω ∈ �±
q } and let |�±

q,n| denote the cardinality of the set �±
q,n , for each

n ∈ N. The topological entropy h(T ±) of ([0, 1], T ±) is defined by

h(T ±) := lim
n→∞

1

n
ln

(|�±
q,n|

)
.

Remark 3. It is well known that h(T +) = h(T −) � ln(2). Thus, for ease of notation, we
denote the common value h(T +) = h(T −) by h(T ).

THEOREM 3 [14, 20]. If (a, p) is an admissible pair, then h(U+
a,p) = h(U−

a,p) = ln(a).

Definition 6. Two maps R : X � and S : Y � defined on compact metric spaces are
called topologically conjugate if there exists a homeomorphism h̄ : X → Y such that
S ◦ h̄ = h̄ ◦ R. If h̄ is continuous and surjective, then R and S are called semi-conjugate.

When we write, ‘two dynamical systems are topologically (semi-) conjugate’, we mean
that the associated maps are topologically (semi-) conjugate.

LEMMA 1 ([10]).
(i) If two Lorenz systems ([0, 1], T ±) and ([0, 1], R±) are topologically conjugate, then

the address spaces are equal and hence, h(T ) = h(R).
(ii) If a Lorenz system ([0, 1], T ±) with critical point q is semi-conjugate to a Lorenz

system ([0, 1], R±) with critical point p, then �±
q ⊆ �±

p and h(T ) = h(R).

2·2. Properties of itinerary maps

We next state properties of the itinerary maps μ±
a,p of uniform Lorenz systems. Through-

out this section (a, p) will denote an admissible pair.

LEMMA 2 ([3]).
(i) The map [0, 1] � x �→ μ+

a,p(x) is strictly increasing and right-continuous. Moreover,
for all x ∈ (0, 1), we have that

μ−
a,p(x) = lim

ε↘0
μ+

a,p(x − ε).

(ii) The map [0, 1] � x �→ μ−
a,p(x) is strictly increasing and left-continuous. Moreover,

for all x ∈ (0, 1), we have that

μ+
a,p(x) = lim

ε↘0
μ−

a,p(x + ε).

(iii) The map p �→ μ+
a,p(p) is strictly increasing and right-continuous.

(iv) The map p �→ μ−
a,p(p) is strictly increasing and left-continuous.

Finally, we conclude with the a result which links the coding map πa , defined in (1·1),
and the itinerary maps μ±

a,p. This requires the following definition.

Definition 7. The continuous map S : � � defined by S(ω0 ω1 ω2 · · · ) := ω1 ω2 ω3 · · · ,
is called the shift map and a subset 
 of � is called forward shift sub-invariant if S(
) ⊆ 
.
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PROPOSITION 1. We have that πa(μ
±
a,p(x)) = x, for all x ∈ [0, 1], and that the following

diagram commutes

�±
a,p

S−→ �±
a,p

πa ↓ ↓ πa

[0, 1] −→
U±

a,p

[0, 1].

Proof. The result is readily verifiable from the definitions of the maps involved. Also a
sketch of the proof of the result appears in [3, section 5] and [11, section 2·2].

2·3. Auxiliary results

In the following auxiliary results, which are used in the proofs of Theorems 1 and 2,
let ([0, 1], T ±) denote a Lorenz system with critical point q, let τ±

q denote the associated
itinerary map, and let �±

q denote the associated address space.

LEMMA 3. The address space �±
q is forward shift sub-invariant, that is S(�±

q ) ⊆ �±
q .

Proof. This is a direct consequence of Proposition 1.

A partial version of the following result can be found in [13, lemma 1]. However, to the
best of our knowledge, Theorem 3 first appeared in [15, theorem 1].

Definition 8. The strings α := τ−
q (q) and β := τ+

q (q) are called the critical itineraries.

THEOREM 4. The spaces �+
q and �−

q are uniquely determined by α and β as follows:

�+
q = {ω ∈ � : Sn(ω) ≺ α or β � Sn(ω), for all n ∈ N0}

and

�−
q = {ω ∈ � : Sn(ω) � α or β ≺ Sn(ω), for all n ∈ N0}.

COROLLARY 1. Let a ∈ (1, 2) be fixed.

(i) If there exists p such that (a, p) is admissible and α � μ−
a,p(p) ≺ μ+

a,p(p) � β, then
h(T ) � ln(a).

(ii) If there exists p such that (a, p) is admissible and μ−
a,p(p) � α ≺ β � μ+

a,p(p), then
h(T ) � ln(a).

Proof. This is a direct consequence of Definition 5 and Theorems 3 and 4.

In the proofs of some of the following results we let 0 denote the element 0 0 0 · · · ∈ �

and 1 the element 1 1 1 · · · ∈ �,

LEMMA 4. Given a ∈ (1, 2), there exists p such that (a, p) is admissible and either

α � μ−
a,p(p) ≺ μ+

a,p(p) � β (2·2a)

or

μ−
a,p(p) � α ≺ β � μ+

a,p(p). (2·2b)

Hence, in the first case h(T ) � ln(a), and in the second case h(T ) � ln(a).
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Proof. Since a lower itinerary always starts with 0 and an upper itinerary always starts
with 1, we have that

α � 01 = μ−
a,a−1(a

−1) and μ+
a,1−a−1(1 − a−1) = 10 � β.

Hence, the inequalities given in (2·2a) hold for p = 1 − a−1, unless

μ−
a,1−a−1(1 − a−1) ≺ α, (2·3)

and, similarly, the inequalities given in (2·2a) hold for p = a−1, unless

μ+
a,a−1(a

−1) � β. (2·4)

If the inequalities given in (2·2a) are false for both p = 1 − a−1 and p = a−1, then the
inequalities of both (2·3) and (2·4) hold. Let

p1 := sup{p : μ−
a,p(p) � α and μ+

a,p(p) � β},
p2 := inf{p : μ−

a,p(p) � α and μ+
a,p(p) � β}.

Lemma 2 implies that p2 � p1 and that if p2 > p > p1, then either the inequalities given in
(2·2a) or the inequalities given in (2·2b) hold for p. If p1 = p2, then Lemma 2 implies that
the inequalities given in (2·2b) hold at p = p1 = p2.

The remaining assertion follows from Corollary 1.

LEMMA 5. Let a ∈ (exp(h(T )), 2) be fixed. If T −(q) � 1 and T +(q) � 0, then there
exists a non-empty open interval V ⊆ [1 − a−1, a−1], such that

α ≺ μ−
a,t(t) ≺ μ+

a,t(t) ≺ β,

for all t ∈ V . Moreover, letting

p1(a) := max

{
1 − a−1, sup

{
p ∈ [1 − a−1, a−1] : μ−

a,p(p) � α and μ+
a,p(p) � β

} }
(2·6a)

and

p2(a) := min

{
a−1, inf

{
p ∈ [1 − a−1, a−1] : μ−

a,p(p) � α and μ+
a,p(p) � β

} }
, (2·6b)

we have that V ⊆ (p1(a), p2(a)) and hence p1(a) < p2(a).

Proof. Since ln(a) > h(T ), by Lemma 4, there exists p such that (a, p) is admissible
and that least one of the following sets of inequalities hold:

α ≺ μ−
a,p(p) ≺ μ+

a,p(p) � β, (2·7a)

or

α � μ−
a,p(p) ≺ μ+

a,p(p) ≺ β. (2·7b)

(Observe that the situation in which α = μ−
a,p(p) and μ+

a,p(p) = β cannot occur since
ln(a) > h(T ).) Let such a p be fixed. If p = 1 − a−1, then, by the definition of the itinerary
map and the fact that T +(q) � 0, we have that β � 10 and that μ+

a,p(p) = 10. Hence, the

inequalities given in (2·7b) hold. Similarly, if p = a−1, then α ≺ 01 and μ−
a,p(p) = 01,

hence the inequalities given in (2·7a) hold.
Suppose that p � {1 − a−1, a−1} and that the inequalities given in (2·7a) hold. Let r :=

d(μ−
a,p(p), α) > 0. By Lemma 2 (ii), we have

lim
ε↘0

d(μ−
a,p−ε(p − ε), μ−

a,p(p)) = 0.
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Therefore, there exists δ = δ(r) ∈ (0, p − 1 + a−1) such that d(μ−
a,p−ε(p − ε), μ−

a,p(p)) <

r/2 for all ε < δ. Now, Lemma 2 (iv), the definition of the metric d and that of the lex-
icographic ordering, together with the above inequality, imply that α ≺ μ−

a,p−ε(p − ε) ≺
μ−

a,p(p), for all ε < δ. Thus, by Lemma 2 (iii), we have that μ+
a,p−ε(p−ε) ≺ μ+

a,p(p), for all
ε < δ. Therefore, by the definition of the itinerary maps t �→ μ±

a,t(t) and by the assumption
that the inequalities given in (2·7a) hold, we have that, for all ε < δ,

α ≺ μ−
a,p−ε(p − ε) ≺ μ+

a,p−ε(p − ε) ≺ μ+
a,p(p) ≺ β.

Futhermore, since δ ∈ (0, p − 1 + a−1) and since p ∈ (1 − a−1, a−1], it follows that
(p − δ, p) ⊂ (1 − a−1, a−1). Setting V = (p − δ, p) yields the required result.

A similar argument will yield the required result under the assumption that the inequalities
given in (2·7b) hold for our fixed p.

The remaining assertion is an immediate consequence of the definitions of p1(a) and
p2(a) and Lemma 2.

LEMMA 6. The restriction of the coding map πa to the set �+
a,p and the restriction of

πa to the set �−
a,p are strictly increasing, for all admissible pairs (a, p). Furthermore, the

restriction of the coding map πa to the set �+
a,p � �−

a,p is increasing.

Proof. The first statement follows from Lemma 2 and Proposition 1.
To show that the restriction of πa to the set �+

a,p � �−
a,p is increasing, let ω, ω′ ∈ �+

a,p �
�−

a,p be such that ω � ω′. One of the following situations must now occur.
(i) ω, ω′ ∈ �+

a,p or ω, ω′ ∈ �−
a,p

(ii) ω ∈ �−
a,p \ �+

a,p and ω′ ∈ �+
a,p \ �−

a,p

(iii) ω ∈ �+
a,p \ �−

a,p and ω′ ∈ �−
a,p \ �+

a,p
If (i) occurs, then by the fact that the restriction of πa to the set �+

a,p is strictly increasing
and the restriction of πa to the set �−

a,p is strictly increasing, it follows that πa(ω) < πa(ω
′).

Suppose that (ii) occurs. Let y := πa(ω) and z := πa(ω
′). By way of contradiction,

assume that y > z. By Lemma 2, we have that

μ+
a,p(z) = lim

ε↘0
μ−

a,p(z + ε). (2·8)

Now

ω′ = μ+
a,p(z) = lim

ε↘0
μ−

a,p(z + ε) ≺ μ−
a,p(y) = ω, (2·9)

where the first equality holds since ω′ ∈ �+
a,p, and so there exists x ∈ [0, 1] such that

ω′ = μ+
a,p(x). Then, by Proposition 1, we have z := πa(ω

′) = πa(μ
+
a,p(x)) = x . Hence

ω′ = μ+
a,p(x) = μ+

a,p(z). The second equality in (2·9) follows from (2·8); the following
inequality is due to Lemma 2 and the fact that y > z + ε for all sufficiently small ε > 0;
and the last equality follows in exactly the same way as the first equality. Therefore, ω′ ≺ ω,
which contradicts our hypothesis, namely that ω � ω′.

If (iii) occurs, then similar arguments to those above will yield that πa(ω) � πa(ω
′).

LEMMA 7. If 2 > a > exp(h(T )), T −(q)� 1 and T +(q)� 0, then πa(α) < πa(β) and

�� (p1(a), p2(a)) ⊆ (πa(α), πa(β)) � (1 − a−1, a−1),

where p1(a) and p2(a) are the real numbers defined in (2·6) respectively.

Proof. Suppose that a ∈ (exp(h(T )), 2). By Lemma 4, there exists p such that (a, p) is
admissible and either one of the following sets of inequalities hold,
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(i) α ≺ μ−
a,p(p) and μ+

a,p(p) � β, or
(ii) α � μ−

a,p(p) and μ+
a,p(p) ≺ β.

Note that the situation where α = μ−
a,p(p) and μ+

a,p(p) = β cannot occur as a > exp(h(T )).
Assume that (i) occurs. By Theorem 4 it follows that �−

q ⊂ �−
a,p and �+

q ⊆ �+
a,p. In

particular, α ∈ �−
a,p and β ∈ �+

a,p. Since, by Lemma 6, the coding map πa is strictly
increasing on the set �+

a,p and on the set �−
a,p, we have that

πa(α) < πa(μ
−
a,p(p)) = p = πa(μ

+
a,p(p)) � πa(β). (2·10)

If (ii) occurs, then essentially the same arguments as those above yield

πa(α) � πa(μ
−
a,p(p)) = p = πa(μ

+
a,p(p)) < πa(β). (2·11)

Hence, πa(α) < πa(β) and [πa(α), πa(β)] � [1 − a−1, a−1]��.
We now show that the open interval (πa(α), πa(β))�(1−a−1, a−1) is non-empty. For this,

observe that, by Lemma 2 and the definition of p1(a) and p2(a), for all t ∈ (p1(a), p2(a)),
there are two possible sets of inequalities that can occur:

(a) α � μ−
a,t(t) and β ≺ μ+

a,p(t), or
(b) α ≺ μ−

a,t(t) and β � μ+
a,p(t).

The set of inequalities in (a), however, cannot occur. If they did, then by Theorems 3 and 4
and the definition of topological entropy, we would have that ln(a) � h(T ), contradicting
the hypothesis of the lemma. Thus, by (2·10) and (2·11) we have that

(p1(a), p2(a)) ⊆ [πa(α), πa(β)] � [1 − a−1, a−1]. (2·12)

Since our hypothesis is the same as that of Lemma 5, we have that p1(a) < p2(a), and so,
the open interval (p1(a), p2(a)) is non-empty. This, in tandem with (2·12), implies that the
open interval (πa(α), πa(β)) � (1 − a−1, a−1) is non-empty.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. We proceed by showing that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). Let a ∈ (exp(h(T )), 2) be fixed. By Lemma 7,

�� (p1(a), p2(a)) ⊆ (πa(α), πa(β)) � (1 − a−1, a−1).

Moreover, for each p ∈ (p1(a), p2(a)) ⊆ (πa(α), πa(β)) � (1 − a−1, a−1),

α ≺ μ−
a,p(p) and μ+

a,p(p) ≺ β. (3·1)

(We remind the reader that α := τ−
q (q) and β := τ+

q (q) are the critical itineraries of
([0, 1], T ±).) Let such a p be fixed. By Theorem 4 and the inequalities given in (3·1) we
have

�−
q ⊂ �−

a,p and �+
q ⊂ �+

a,p. (3·2)

By Theorem 4, the inclusions in (3·2), and the fact that the map πa|�+
a,p��−

a,p
is increasing

(Lemma 6), we have that πa(ω) ∈ [0, πa(α)] � [πa(β), 1], for all ω ∈ �+
q � �−

q . In other
words

πa(�
+
q � �−

q ) ⊆ [0, πa(α)] � [πa(β), 1]. (3·3)

We claim that, for each x ∈ πa(�
+
q ��−

q ) and for every p′ ∈ (πa(α), πa(β))�(1−a−1, a−1),

U±
a,p(x) = U±

a,p′(x) and U±
a,p′(πa(�

+
q � �−

q )) ⊆ πa(�
+
q � �−

q ).
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It follows from this claim that, for all p′ ∈ (πa(α), πa(β)) � (1 − a−1, a−1),

μ±
a,p′(x) = μ±

a,p(x) for all x ∈ πa(�
+
q � �−

q ). (3·4)

To prove the claim, let p′ ∈ (πa(α), πa(β)) � (1 − a−1, a−1) and x ∈ πa(�
+
q � �−

q ). In light
of the inclusion given in (3·3) there are two cases, either

x ∈ πa(�
+
q � �−

q ) � [0, πa(α)] or x ∈ πa(�
+
q � �−

q ) � [πa(β), 1].
As the proofs are essentially the same, we take x ∈ πa(�

+
q � �−

q ) � [0, πa(α)]. Since
p, p′ ∈ (πa(α), πa(β)) � (1 − a−1, a−1), we have that πa(α) < min{p, p′}. Moreover,
x � πa(α) < min{p, p′}; in particular x � p and x � p′. From this and the definition of
the functions U±

a,p, it can be concluded that

U±
a,p(x) = U±

a,p′(x). (3·5)

Since x ∈ πa(�
+
q � �−

q ) � [0, πa(α)], there exists ω ∈ �+
q � �−

q such that x = πa(ω), and
so

U±
a,p′(x) = U±

a,p(x) = U±
a,p(πa(ω)) = πa(S(ω)) ∈ πa(�

+
q � �−

q ),

where the first equality follows from (3·5); the second equality follows from the fact that
x = πa(ω); the final equality follows from the inclusions given in (3·2) and Proposition 1;
and the inclusion πa(S(ω)) ∈ πa(�

+
q � �−

q ) is due to that fact that �+
q � �−

q is forward shift
sub-invariant (Lemma 3). Thus the claim is proved.

By the inclusion given in (3·2) we have that α ∈ �−
a,p and β ∈ �+

a,p. So there exist
x, y ∈ [0, 1] such that α = μ−

a,p(x) and β = μ+
a,p(y). Therefore, by Proposition 1 we have

that

μ−
a,p(πa(α)) = μ−

a,p(πa(μ
−
a,p(x)) = μ−

a,p(x) = α

and

μ+
a,p(πa(β)) = μ+

a,p(πa(μ
+
a,p(y)) = μ+

a,p(y) = β.

This, in combination with (3·4), implies that μ−
a,p′(πa(α)) = α and μ+

a,p′(πa(β)) = β, for
all p′ ∈ (πa(α), πa(β)) � (1 − a−1, a−1). Hence, α ∈ �−

a,p′ and β ∈ �+
a,p′ . It follows from

Theorem 4 that α ∈ [0, μ−
a,p′(p′)] � (μ+

a,p′(p′), 1]. (We remind the reader that 0 denotes the

element 0 0 0 · · · ∈ � and 1 to denotes the element 1 1 1 · · · ∈ �.) Since α begins with 01,
it must be the case that α ∈ [0, μ−

a,p′(p′)]. Moreover, α � μ−
a,p′(p′), since if α = μ−

a,p′(p′),
then by Proposition 1 we would have that πa(α) = πa(μ

−
a,p′(p′)) = p′, which contradicts

that p′ ∈ (πa(α), πa(β))� (1−a−1, a−1). A similar argument shows that β ∈ (μ+
a,p′(p′), 1].

Therefore, α ≺ μ−
a,p′(p′) and β � μ+

a,p′(p′), for all p′ ∈ (πa(α), πa(β)) � (1 − a−1, a−1).
(ii) ⇒ (iii). This is an immediate consequence of Theorem 4.
(iii) ⇒ (i). If �−

q ⊂ �−
a,p and �+

q ⊂ �+
a,p for p ∈ (πa(α), πa(β)) � (1 − a−1, a−1), then

by Theorem 4 we have that

α � μ−
a,p(p) ≺ μ+

a,p(p) ≺ β or α ≺ μ−
a,p(p) ≺ μ+

a,p(p) � β,

and so by Corollary 1 we have that exp(h(T )) � a. We will now show that exp(h(T )) � a
if �±

q ⊂ �±
a,p. In order to reach a contradiction, suppose that exp(h(T )) = a and that

�+
q ⊂ �+

a,p and �−
q ⊂ �−

a,p, for some p ∈ (πa(α), πa(β)) � (1 − a−1, a−1). Therefore, fix
p, such that either

α � μ−
a,p(p) ≺ μ+

a,p(p) ≺ β or α ≺ μ−
a,p(p) ≺ μ+

a,p(p) � β (3·7)



Embedding the symbolic dynamics of Lorenz maps 11

holds. By [10] our given Lorenz system ([0, 1], T ±) is semi-conjucate to some uniform
Lorenz system ([0, 1], U±

s,p′). Moreover, since the semi-conjugacy preserves topological
entropy (Lemma 1) and since by Theorem 4 we have that h(U±

s,p′) = ln(s), it follows that
s = exp(h(T )) = a. Hence, by Lemma 1, we have that �±

s,p′ ⊆ �±
q and therefore,

μ−
a,p′(p′) � α and β � μ+

a,p′(p′). (3·8)

Combining (3·8) with (3·7) and then applying Lemma 2 gives a desired contradiction.

Before presenting the proof of Theorem 2 we given the following example which illus-
trates the importance of taking the intersection of (πa(α), πa(β)) with the (1 − a−1, a−1) in
Theorem 1 (ii) and (iii).

Example 1. An instance of when the inequality πa(β) > a−1 can occur is when T ± is a
Lorenz map where the first branch is a linear function with gradient close to 1 and the second
branch is a function of high polynomial or exponential growth. An explicit example of such
a map is the Lorenz map with critical point 1/2 given by the functions f0(x) := 1.001x and
f1(x) := exp(x + ln(2) − 1) − 1. In this case the inequality πa(α) < 1 − a−1 is satisfied for
a = 3/2 > exp(h(T )) ≈ 1.00125. (This latter value was calculated using an implemented
version of the algorithm presented in Section 4, with a tolerance ε = 0.0001 and a truncation
tern n =25,000.) By reversing the roles of the first and second branch one obtains a Lorenz
map with πa(β) > a−1.

Proof of Theorem 2. Since the proofs for (i) and (ii) are essentially the same, we only
include a proof of (i). The result is proved by showing the following set of implications
(a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b). Let a ∈ (exp(h(T )), 2) and suppose that the inequalities given in (1·2) do
not hold for p = a−1. Then by definition we have that τ−

q (q) = μa,a−1(a−1) = 01. An
application of Corollary 1 then leads to a contradiction to how the parameter a was originally
chosen. The uniqueness follows directly from Lemma 2.

(b) ⇒ (c). This is a direct consequence of Theorem 4 and the fact that a > exp(h(T )).
(c) ⇒ (a). The proof is essentially the same as the proof of (iii) ⇒ (i) of Theorem 1.

4. An algorithm to compute the topological entropy of a Lorenz map

The numerical computation of topological entropy of one dimensional dynamical systems
has received much attention; see for instance [4, 5, 9, 17]. Based on Theorems 1 and 2, we
next provide a new algorithm to compute the topological entropy of a Lorenz system. The
algorithm is stated assuming infinite arithmetic precision. However, with straightforward
modifications, the algorithm can be practically implemented. Such an implementation was
used in obtaining the sample results presented at the end of this section. After the statement
of algorithm a proof of its validity is given. (We remind the reader that h(T ) denotes the
common value h(T +) = h(T −), for a given Lorenz system ([0, 1], T ±).)

Input: A Lorenz map T ± with critical point q and a tolerance ε ∈ (0, 1).

Output: An estimate to h(T ) within a tolerance of ε.

(1) Compute: α := τ+
q (q) and β := τ−

q (q).
(2) Initialise: a1 = 1 and a2 = 2.
(3) Set a = (a1 + a2)/2.
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(4) If both α � 01 and β � 10 , then go to Step (5), else go to Step (4)(a).
(a) If both α = 01 and β � 10, then compute μ+

a,a−1(a−1) and go to Step (11), else
go to Step (4)(b).

(b) Compute μ−
a,1−a−1(1 − a−1) and go to Step (12).

(5) Compute: πa(α) and πa(β).
(6) Compute: t1(a) := max{πa(α), 1 − a−1} and t2(a) := min{πa(β), a−1}.
(7) If t1(a) � t2(a), then a1 ← a and go to Step (13), else go to Step (8).
(8) Set p = (t1(a) + t2(a))/2.
(9) Compute: μ+

a,p(p) and μ−
a,p(p).

(10) If α ≺ μ−
a,p(p) and μ+

a,p(p) ≺ β, then go to Step (10)(a), else go to Step (10)(b).
(a) a2 ← a and go to Step (13).
(b) a1 ← a and go to Step (13).

(11) If μ+
a,a−1(a−1) ≺ β, then a2 ← a and go to Step (13), else a1 ← a and go to Step (13).

(12) If α ≺ μ−
a,1−a−1(1 − a−1), then a2 ← a and go to Step (13), else a1 ← a and go to

Step (13).
(13) If a2 − a1 < ε/2, then return

h(T ) ∈ [ln((a1 + a2)/2 − ε/4), ln((a1 + a2)/2 + ε/4)]
and terminate the algorithm, else go to Step (3).

Proof of the validity of the Algorithm. The variable a in the algorithm is the midpoint of
the interval [a1, a2] which is initialized at [a1, a2] = [1, 2], and so, ln(a1) � h(T ) < ln(a2).
We will show that, throughout the algorithm, the following inequality is maintained,

ln(a1) � h(T ) � ln(a2). (4·1)

A tolerance ε > 0 is fixed at the start. At each iteration (Step (3) to Step (13)) of the
algorithm, the length of this interval [a1, a2] is halved until, at Step (13), we arrive at a2 −
a1 < ε/2. According to (4·1), at this point we have estimated the entropy within the desired
tolerance ε ∈ (0, 1), specifically

ln ((a1 + a2)/2 − ε/4) � h(T ) � ln ((a1 + a2)/2 + ε/4) .

Suppose, in Step (4), that α � 01 and β � 10, namely, that the critical point q is such
that f0(q) � 1 and f1(q) � 0. (Here, we remind the reader that f0 : [0, q] → [0, 1] and
f1 : [q, 1] → [0, 1] are the expanding maps which define the given T ±; see Definition 1.)
At Step (7) or Step (10) the interval [a1, a2] will be replaced by either [a1, a] or [a, a2],
where a has the value (a1 + a2)/2. It will now be proved that at each iteration (Step (3)
to Step (13)), the inequalities given in (4·1) are maintained. To see this we will follow the
steps of the algorithm. At Step (3), the value of a is set to the value of the midpoint of the
interval [a1, a2]. In Step (5), the images of the critical itineraries α and β of the given Lorenz
system ([0, 1], T ±) under πa are computed. In Step (6), the values of t1(a) and t2(a) are set
to the left and right endpoints, respectively, of an interval which, according to Lemma 7, has
non-empty interior provided that h(T ) < ln(a). Thus, if t1(a) � t2(a), then h(T ) � ln(a).
In this case, the value of a1 is reset to the value of a in Step (7) and the inequalities in (4·1)
are maintained. The algorithm then proceeds to Step (13).

On the other hand, if t2(a) > t1(a), then in Step (8) the value of p is set to the midpoint of
the interval [t1(a), t2(a)]. In Step (9) the algorithm computes the critical itineraries, μ+

a,p(p)
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and μ−
a,p(p), of the uniform Lorenz systems ([0, 1], U±

a,p). In Step (10) the algorithm com-
pares μ−

a,p(p) with α and compares μ+
a,p(p) with β. There are two possibilities, either both

μ−
a,p(p) � α and μ+

a,p(p) ≺ β hold or not.
(i) If μ−

a,p(p) � α and μ+
a,p(p) ≺ β, then h(T ) � ln(a), see Corollary 1. Therefore, to

maintain the inequalities given in (4·1), the value of a2 is reset to the value of a.
(ii) Otherwise, we have h(T ) � ln(a). Since, if this was not the case, then this would

contradict Theorem 1. Therefore, to maintain the inequalities given in (4·1), the value
of a1 is reset to the value of a.

In either of the above two case, the algorithm then proceeds to Step (13).
Returning to Step (4), suppose that α = 01 and β � 10. Observe, for each a ∈ (1, 2), that

μ−
a,a−1(a−1) = α = 01. There are now two possibilities, either μ+

a,a−1(a−1) ≺ β or not.

(iii) If μ+
a,a−1(a−1) ≺ β, then, by Corollary 1 and since μ−

a,p(p) = α = 01, we have that
h(T ) � ln(a). Therefore, to maintain the inequalities given in (4·1), the value of a2

is reset to the value of a. The algorithm then proceeds to Step (13).
(iv) If μ+

a,a−1(a−1) � β, then, by Corollary 1 and since μ−
a,p(p) = α = 01, we have that

h(T ) � ln(a). Therefore, to maintain the inequalities given in (4·1), the value of a1

is reset to the value of a. The algorithm then proceeds to Step (13).
At Step (13), provided that a2 − a1 � ε/2, the algorithm proceeds to the next iteration,
otherwise the algorithm returns the following value and terminates,

h(T +) = h(T −) ∈ [ln((a1 + a2)/2 − ε/4), ln((a1 + a2)/2 + ε/4)].
Similarly, if α � 01 and β = 10, then in Step (4)(b) of the algorithm the value of p is set
to 1 − a−1 and the itinerary μ−

a,1−a−1(1 − a−1) is computed. The algorithm then proceeds to
Step (12), where, to maintain the inequalities in (4·1), the algorithm either

(v) resets the value of a2 to the value of a, if α ≺ μ−
a,1−a−1(1 − a−1), or

(vi) resets the value of a1 to the value of a, if α � μ−
a,1−a−1(1 − a−1).

The algorithm then goes to Step (13); here it either goes to the next iteration or terminates.
Observe that the situation where α = 01 and β = 10 cannot occur, since by definition of

the itineraries, this would immediately imply that f0(q) = 1 and f1(q) = 0. Thus, the given
system is not a Lorenz system as it would violate condition (i) of Definition 1.

4·1. Sample results

Presented below are two examples that demonstrates an implemented version of our
algorithm. These examples indicate that the algorithm returns an accurate estimate for the
entropy of a Lorenz system. To practically implement the algorithm, itineraries are com-
puted to a prescribed length n � 3, which is called the truncation term and is an additional
input to the algorithm.

Example 2. Consider the Lorenz map T ± with critical point q given by the functions
f0(x) = a

√
x and f1(x) = bx + 1 − b, where a = 1.25, b = (a−6 − 1)/(a−2 − 1) and q =

1/a2. The reason for this choice of a, b, q is that, in this case, there is a theoretical method for
determining the topological entropy of the map T ±. This allows us to compare the estimated
value for the entropy given by our algorithm to the actual value. To be more precise, to
theoretically determine the topological entropy we use the fact that, for this choice of a, b, q,
the critical itineraries are periodic and therefore this Lorenz map is Markov. For Markov
maps the topological entropy is the logarithm of the maximum eigenvalue of the associated
adjacency matrix [6, proposition 3·4·1]. Using this method we obtain that h(T ±) = ln((1 +
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√

5)/2) ≈ 0.4812118251. The following table gives the output of a practically implemented
version of our algorithm for this map, where ε denote the tolerance term and n denotes the
truncation term.

ε = 10−2 ε = 10−4 ε = 10−6

n = 10 0.4831010758 0.4811979105 0.4812117615
n = 100 0.4831010758 0.4811979105 0.4812117615
n =1,000 0.4831010758 0.4811979105 0.4812117615
n =10,000 0.4831010758 0.4811979105 0.4812117615

Example 3. Here we consider the uniform Lorenz map U±
a,1/2 and the uniform Lorenz map

U±
a,a−1 for a = √

2, which, by Lemma 1, both have topological entropy equal to log(
√

2) ≈
0.34657359023. The following table gives the output of a practically implemented version
of our algorithm for these maps, where ε denote the tolerance and n denotes the truncation
term.

p = 1/2 p = a−1 = 1/
√

2

ε = 10−3 ε = 10−6 ε = 10−3 ε = 10−6

n = 10 0.3652803888 0.3655560121 0.3475021428 0.3471925188
n = 100 0.3468120116 0.3465736575 0.3468120116 0.3465736575
n =1,000 0.3468120116 0.3465736575 0.3468120116 0.3465736575
n =10,000 0.3468120116 0.3465736575 0.3468120116 0.3465736575

Acknowledgements. The first author was supported by EPSRC:EP/PHDPLUS/AMC3/

DTG2010 and partially by ARC:DP0984353. The second author was partially supported by
ARC: DP0558974. Our thanks also go to M. Barnsley for hosting us at ANU and for providing
the initial motivation, and to J. Keesling for his initial indispensable suggestions. Finally the
authors thank the unknown referees for their valuable suggestions.

REFERENCES
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