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10542* Proposed by Jean Anglesio, Garches, France. 

Let (? be the circumcircle of a triangle AoBoCo and J the incircle. It is known that, for 

each point A on (S, there is a triangle ABC having (? for circumcircle and S for incircle. 

Show that the locus of the centroid G of triangle ABC is a circle that is traversed three times 

by G as A traverses (? once, and determine the center and radius of this circle. 

NOTES 

(10538) Two versions of this problem, one by the first four named authors, and one by the 

last two, arrived within a short time. The similarity of the statements suggested that they 

be combined. The proposers noted that the case n = 2 has appeared on various national 

selection tests for the International Mathematical Olympiad. (10542) The existence of ABC 
is a special case of Poncelet's theorem. Details may be found in M. Berger, Geometry 1, 
Springer-Verlag, 1987, p. 316 

SOLUTIONS 

The Superregular Graphs 

6617 [1989, 942]-. Proposed by Andrew Vince, University of Florida, Gainesville, FL. 

A graph r is regular if each vertex has the same degree. For a vertex x let rr and /\.s 

denote the subgraphds of r-x induced by the vertices adjacent to and nonadjacent to x, 

respectively. Define superregularrecursively as follow. The empty graph is superregular and 

r is superregular if r is regular and both r r and /\.s are superregular for all x . Characterize 

the superregular graphs. 

Solution by Randall B. Maddox, Pepperdine University, Malibu, CA. We adopt the fol- 

lowing notation: Kn is the complete graph on n vertices, mKn is m disjoint copies of Kn 
Cn is the cycle on n vertices, and Gn is the graph whose vertex set consists of n2 vertices 

arranged in an n x n square, with two vertices adjacent if and only if they are in the same 

row or column of the square. (The graph Gn is otherwise known as the Cartesian product 

of Kn with itself.) For any graph G, we let G denote its complement. 

The superregular graphs are precisely the following: Cs, mKn (m, n > 1), Gn (n > 1), 
and the complements of these graphs. Call this class of graphs S. 

Theorem 1. Every graph in S is superregular. 

Proof. It is easy to see that if a graph r is superregular, then so is its complement r. The 

graph r = Kn is certainly superregular, since for any x, rr = Kn_l r which is superregular 

by induction, and /\.s is empty. The graph r = mKn is then seen to be superregular, since 

for any x, rr = Kn_l r which is superregular, and /\.s = (m-l)Kn, which is superregular 

by induction on m. The graph r = Gn is superregular, since for any x, rt = 2Kn_1, which 

is superregular, and /\x = Gn_l which is superregular by induction. Finally Cs is easily 

seen to be superregular. 

What remains is to prove the converse. Before addressing this, we first point out two 

basic properties of superregular graphs. 
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Proposition 2. If r is a connected, superregular graph, then any pair of nonadjacent 
vertices of r have a common neighbor. If r is superregular and not connected, then 

r = mKn for some m and n. 

Proof. Suppose that r is a superregular graph of degree r and that w, x, y, z is a path in r 

such that the distance from w to z is 3. Then y, z E /w, y has no more than r-1 neighbors 
in /w, and z has exactly r neighbors in /w The same conclusion holds if w, x, y is a path 
in r such that the distance from w to y is 2, and z lies in a different component. Thus, in 
either case, /w is not regular, which is a contradiction. 

The remainder of the solution is devoted to the proof of the converse of Theorem 1. 

Theorem 3. Every superregular graph is in S. 

Proof. Suppose, in order to obtain a contradiction, that r is a superregular graph not in S 
and that, among all such graphs, r has the fewest vertices. Then rx and /x must be in S. 
The various possibilities for rx will be considered in the following propositions. Note that, 
by Proposition 2, we may assume that r is connected. 

Proposition 4. For all x, rX is not Cs. 

Proof. Suppose rx = Cs. Then r is 5-regular, so every vertex in rx has exactly 2 neighbors 
in /vx Thus there are exactly 10 edges between rx and /x It follows that /x has a number 
of vertices which divides 10. Since this number must be even (the 5-regular graph r must 
have an even number of vertices), it must be 2 or 10. But if it is 2, then r must be K3 joined 
to cf with all possible edges, which is not superregular. So /x must have 10 vertices and 
be 4-regular. The only such graph in S is 2Ks, but then again r is not superregular. 

Proposition 5. For all x, rx is not Gn 

Proof. We prove the stronger result that if r is any superregular graph with rx = Gn for 
some x and some n > 2, then r = Gn+l To prove this when n = 2, one can follow a 
simple analysis analogous to the proof of Proposition 4. The choices for /x are an edgeless 
graph on 2 vertices, a 2-regular graph on 4 vertices, or a 3-regular graph on 8 vertices. In the 
first and last case, the resulting graph r is not superregular. In the remaining case, /x = C4 
but there is only one way to join /x to rx U {x} to obtain a superregular graph and the 
resulting graph is G3. 

Suppose then that rx-Gn for n > 3, and label the vertices of rx with the elements of 
{l,...,n} x {l,...,n}sothat 

(il, il) is adjacent to (i2, i2) if and only if i1 + i2 and jl ¢ i2 (1) 

The graph induced by neighbors of (1,1) in rx is Gn_l sO r(l,l) must be Gn by the 
induction hypothesis. Thus (1, 1) has exactly 2(n-1) neighbors in /x and these may be 
labeled (i, O) and (O, j) (1 < i, j < n) with edges between (i1, il) and (i2, i2) according 
to (1), as long as none of i1, i2, il, i2 are 1. Similarly, r(2,2) must be Gns and this requires 
two more vertices labeled (1, O) and (O, 1), again with edges according to (1), as long as 
none of i1, i2, il, i2 are 2. Finally label x with (O, O). 

Por k > 3, the neighbors of the vertex (k, k) are now all accounted for. The vertices of 
r(ksk) are {(i, j): O < i, j < n and i, j ¢ k} and the edges are given by (1). There remains 
to show only that (1) holds for all i1, i2, il, i2. If n > 4 or if n-3 and i1, i2, il, i2 are not 
all different, this follows by consideration of r(ksk) where k is chosen to be different from 
all of i1, i2, il, i2. If n = 3 and i1, i2, il, i2 are all different, a count of neighbors of (i1, il) 
would come up shy of the required 9 unless (i2, i2) were included. Thus (1) governs in all 
situations, and so r = Gn+l as claimed. 
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Lemma 6. If rX is mKn for some x, then rx is mKn for all x. 

Proof. Suppose that rX = mKn. Then ry = mKn also for every vertex y in rX, since ry 

contains Kn as one component, has mn vertices, and is in S. But then rz = mKn for every 

vertex in r, since if z E /vx, then m > 2 and z E ry for some y E rX (by Proposition 2), 

and so the same argument applies. 

We use Lemma 6 liberally in what follows. 

Proposition 7. For all x, rx is not mKn n 

Proof. We first address the case m = 1. If rx = Kn then ry = Kn for every vertex y. It 

follows that r = mKn+l X but this contradicts the fact that r < s. 
We next address the case m = 2. When n = 2 this was already addressed at the 

beginning of the proof of Proposition 5, since G2 = 2K2. Weproceed with m = 2 and 

n > 3, proving the stronger result that any superregular graph r with rx = 2Kn for some 

x must be Gn+l X 

Suppose that rx = 2Kn. Let the two components of Inx be denoted A and B and let 

A = {Y1 . . . Yn}. Then, inside Ax ryi has a component Kn which we denote Bi. The Bi 

must be disjoint, since ryi = 2Kn. Now suppose that Zi is a vertex in Bi. By repeatedly 

applying rz = 2Kn for various vertices z, one can infer that Zi has exactly n-1 neighbors in 

Ax-ryi i none of which are adjacent to any vertices in ryi-{Zi }. Since AX is superregular, 

the neighbors of Zi induce a 2Kn_1 By the induction hypothesis, AX = Gn. Finally, every 

vertex in Bi must have exactly one neighbor v in B and the fact that rv = 2Kn forces 

r = Sn+l 
Last, we address the case m > 3. Assume that rX = mKn. We consider the possibilities 

for i\x. Applying Proposition 4 to r rules out Ax = Cs and applying Proposition 5 to r 
rules out AX = Gn 

Suppose that Ax = Gt for some t > 3 and let y be a vertex in Ax which we now view 

as rx. Then the neighbors of y in this Gt induce a 2Kt_1, so Ay = Gt also. This Ay 

has (t-1)2 vertices in rX and these vertices do not form a clique. But rx has no induced 

subgraphs whose components are not complete. So Ax 7& Gt 
Suppose that Ax = sKt for some s, t > 1. Let y be a vertex in rx and z a neighbor of y 

in Ax Since ry = mKn, there are at least m-1 neighbors of y in Ax that induce a graph 

with no edges. Thus s > m-1. Since rz = mKn the neighbors of z in Ax must form one 

copy of Kns so t = n + 1. Now the number of edges from rx to i\x is mn2(m-1), while the 

number of edges from i\x to rX is st (mn-(t-1)) = s(n Jf l )(mn-n). Equating these two 

counts yields mn = s(n + 1), which together with s > m-1 implies that s = m-1 = n. 

Thus rx = mKm_l and i\x = (m-l)Km. But since m > 3, y has a neighbor y' in rX 
and both y and y' have m-1 neighbors in each copy of Km in Ax Hence y and y' have a 

common neighbor, contradicting the fact that ry = mKm_l. 

Finally, suppose that Ax = sK. The number of edges from rX to Ax is mn2(m-1), 

while the number from Ax to rx is st (mn-(s-l )t). Equating these yields mn2(m-1) = 

st(mn-(s-l)t). The fact that ry = mKn and rz = mKn implies that n < s < n + 1 

and m-1 < t < m, but it is then easy to rule out all the possibilities. 

- 

Proposition 8. For all x, rx is not mKn- 

Proof. Since mKI = Kms the case n = 1 is handled by Proposition 7. So take n _ 2 and 

assume that rx = mKn. An argument similar to Lemma 6 shows that all ry _ mKn. As 

in Proposition 7, one can then reduce to the case where Ax = sKt or Ax = sKt. The latter 

case is ruled out by applying Proposition 7 to r, so we may assume i\x = sKt with t > 2. 

If t = 2, then the number of edges from rX to Ax is mn(n-1) while the number of 

edges from /\x to rX is 2s(mn-1). Equating these yields mn(n-1) = 2s(mn-1). This 
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requires that 2s be a multiple of mn, but then the right-hand side becomes larger than the 
left. If t > 3, then let y be a vertex in rx and z a neighbor of y in Ax Since ry = mKn, z 
must be adjacent to the m-1 copies of Kn in rx-ry. Since rz = mKn, the remaining 
neighbors of z must induce a subgraph with no edges. But since t > 3, z has a pair of 
adjacent neighbors in Ax, a contradiction. 

Proposition 9. For all x, rX iS not Gn 

Proof. Since G3 = G3, we may assume n > 4. Assume that rx = Gn. Then r is 
n2-regular, and every vertex in rX has exactly (n-1)2 neighbors in A.s So the number 
of edges from rX to A, is n2(n-1)2. Also, since A, must be Gt for some t > 4, every 
vertex in Ax has exactly n2 _ (t-1)2 neighbors in rx, so the number of edges from Ax to 
rx is t2(n2-(t-1)2). Setting these equal yields 

(n _ 1 )2 + (t _ 1)2 1 

It is easy to see that this has no solutions in integers greater than 2. 

Editorial comment. Five claimed solutions to this problem were available when the 
deadline for solutions was reached, but none turned out to be correct. Later, Douglas B. 
West solved the problem, but as a report on his solution was being prepared, a solution from 
Randall B. Maddox was received; What we have presented above is a digest of Maddox's 
proof. In order to illustrate the organization of the solution in limited space, many details 
are left to the reader. West's solution has been accepted for publication in J. Graph Theory. 

A Square Crossing 

10322 [1993, 688]. Proposed by Jiang Huanxin, student, FuDan University, ShangHai, 
China. 

Let ABCD and AEFG be squares with the common vertex A and di;gerent edge lengths. 
Let 0 = ZEAD (O < 0 < x/2). Suppose that EF and CD intersect at the point P. For 
which value of 0 will AP 1 CF? 

Solution by H. Sunil Gunaratne, Universiti Brunei Darussalam, Gadong, Brunei. Assume 
IAEl: IADI = A: 1, with X > O and X 7& 1. Then there are two cases. Case (i): AEFG 
has the same orientation as ABCD. Then 0 = x/4 is the unique solution, independent of 
A. Case (ii): AEFG has the orientation opposite to that of ABCD. Then the solutions are 
ofthe form 0 = xx zt ,8 where-x/2 < xx, ,8 < x/2 with cosxx = (X2 + 1) (2 + A4) 1/2, 

cos ,8 = 2X(2 + A4) 1/ . In addition, xx and ,8 should have the same sign, with O < xx < x/2 
if X > 1 and-x/2 < xx < OifO < X < 1. ItisalsonecessarythatX-1 < X < +1 
in order to have-x/2 < 0 < x/2. 

To show this, assume without loss of generality that lADl = 1, lAEl = A, and use 

vectors based at A. Thus, we write AB = i, ti = j, AE = Re, At = Ag, where i, j, e, g 
are unit vectors and i j = O. Then we have 

e = isinS + jcosS 

ig =-i cos 0 + j sin 0 

with-x/2 < 0 < x/2, 0 + O. The plus sign is taken in Case (i) and the minus sign in Case 
(ii). Then AP = AD + DP = j + ti = AE + EP = Re + rAg for scalars r and t to be 
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