6617
Author(s): Andrew Vince and Randall B. Maddox
Reviewed work(s):
Source: The American Mathematical Monthly, Vol. 103, No. 7 (Aug. - Sep., 1996), pp. 600-603
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2974678
Accessed: 25/04/2012 13:48

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

10542. Proposed by Jean Anglesio, Garches, France.

Let \mathcal{C} be the circumcircle of a triangle $A_{0} B_{0} C_{0}$ and \mathcal{J} the incircle. It is known that, for each point A on \mathcal{C}, there is a triangle $A B C$ having \mathcal{C} for circumcircle and \mathcal{J} for incircle. Show that the locus of the centroid G of triangle $A B C$ is a circle that is traversed three times by G as A traverses \mathcal{C} once, and determine the center and radius of this circle.

NOTES

(10538) Two versions of this problem, one by the first four named authors, and one by the last two, arrived within a short time. The similarity of the statements suggested that they be combined. The proposers noted that the case $n=2$ has appeared on various national selection tests for the International Mathematical Olympiad. (10542) The existence of $A B C$ is a special case of Poncelet's theorem. Details may be found in M. Berger, Geometry I, Springer-Verlag, 1987, p. 316

SOLUTIONS

The Superregular Graphs

6617 [1989, 942]. Proposed by Andrew Vince, University of Florida, Gainesville, FL.
A graph Γ is regular if each vertex has the same degree. For a vertex x let Γ_{x} and Δ_{x} denote the subgraphs of $\Gamma-x$ induced by the vertices adjacent to and nonadjacent to x, respectively. Define superregular recursively as follow. The empty graph is superregular and Γ is superregular if Γ is regular and both Γ_{x} and Δ_{x} are superregular for all x. Characterize the superregular graphs.

Solution by Randall B. Maddox, Pepperdine University, Malibu, CA. We adopt the following notation: K_{n} is the complete graph on n vertices, $m K_{n}$ is m disjoint copies of K_{n}, C_{n} is the cycle on n vertices, and G_{n} is the graph whose vertex set consists of n^{2} vertices arranged in an $n \times n$ square, with two vertices adjacent if and only if they are in the same row or column of the square. (The graph G_{n} is otherwise known as the Cartesian product of K_{n} with itself.) For any graph G, we let \bar{G} denote its complement.

The superregular graphs are precisely the following: $C_{5}, m K_{n}(m, n \geq 1), G_{n}(n \geq 1)$, and the complements of these graphs. Call this class of graphs S.

Theorem 1. Every graph in S is superregular.

Proof. It is easy to see that if a graph Γ is superregular, then so is its complement $\bar{\Gamma}$. The graph $\Gamma=K_{n}$ is certainly superregular, since for any $x, \Gamma_{x}=K_{n-1}$, which is superregular by induction, and Δ_{x} is empty. The graph $\Gamma=m K_{n}$ is then seen to be superregular, since for any $x, \Gamma_{x}=K_{n-1}$, which is superregular, and $\Delta_{x}=(m-1) K_{n}$, which is superregular by induction on m. The graph $\Gamma=G_{n}$ is superregular, since for any $x, \Gamma_{x}=2 K_{n-1}$, which is superregular, and $\Delta_{x}=G_{n-1}$, which is superregular by induction. Finally C_{5} is easily seen to be superregular.

What remains is to prove the converse. Before addressing this, we first point out two basic properties of superregular graphs.

Proposition 2. If Γ is a connected, superregular graph, then any pair of nonadjacent vertices of Γ have a common neighbor. If Γ is superregular and not connected, then $\Gamma=m K_{n}$ for some m and n.

Proof. Suppose that Γ is a superregular graph of degree r and that w, x, y, z is a path in Γ such that the distance from w to z is 3 . Then $y, z \in \Delta_{w}, y$ has no more than $r-1$ neighbors in Δ_{w}, and z has exactly r neighbors in Δ_{w}. The same conclusion holds if w, x, y is a path in Γ such that the distance from w to y is 2 , and z lies in a different component. Thus, in either case, Δ_{w} is not regular, which is a contradiction.

The remainder of the solution is devoted to the proof of the converse of Theorem 1.
Theorem 3. Every superregular graph is in S.
Proof. Suppose, in order to obtain a contradiction, that Γ is a superregular graph not in S and that, among all such graphs, Γ has the fewest vertices. Then Γ_{x} and Δ_{x} must be in S. The various possibilities for Γ_{x} will be considered in the following propositions. Note that, by Proposition 2, we may assume that Γ is connected.

Proposition 4. For all x, Γ_{x} is not C_{5}.
Proof. Suppose $\Gamma_{x}=C_{5}$. Then Γ is 5 -regular, so every vertex in Γ_{x} has exactly 2 neighbors in Δ_{x}. Thus there are exactly 10 edges between Γ_{x} and Δ_{x}. It follows that Δ_{x} has a number of vertices which divides 10 . Since this number must be even (the 5 -regular graph Γ must have an even number of vertices), it must be 2 or 10 . But if it is 2 , then Γ must be $\overline{K_{3}}$ joined to C_{5} with all possible edges, which is not superregular. So Δ_{x} must have 10 vertices and be 4-regular. The only such graph in S is $2 K_{5}$, but then again Γ is not superregular.

Proposition 5. For all x, Γ_{x} is not $\overline{G_{n}}$.
Proof. We prove the stronger result that if Γ is any superregular graph with $\Gamma_{x}=\overline{G_{n}}$ for some x and some $n \geq 2$, then $\Gamma=\overline{G_{n+1}}$. To prove this when $n=2$, one can follow a simple analysis analogous to the proof of Proposition 4. The choices for Δ_{x} are an edgeless graph on 2 vertices, a 2-regular graph on 4 vertices, or a 3-regular graph on 8 vertices. In the first and last case, the resulting graph Γ is not superregular. In the remaining case, $\Delta_{x}=C_{4}$ but there is only one way to join Δ_{x} to $\Gamma_{x} \cup\{x\}$ to obtain a superregular graph and the resulting graph is $\overline{G_{3}}$.

Suppose then that $\Gamma_{x}=\overline{G_{n}}$ for $n \geq 3$, and label the vertices of Γ_{x} with the elements of $\{1, \ldots, n\} \times\{1, \ldots, n\}$ so that

$$
\begin{equation*}
\left(i_{1}, j_{1}\right) \text { is adjacent to }\left(i_{2}, j_{2}\right) \text { if and only if } i_{1} \neq i_{2} \text { and } j_{1} \neq j_{2} \tag{1}
\end{equation*}
$$

The graph induced by neighbors of $(1,1)$ in Γ_{x} is $\overline{G_{n-1}}$, so $\Gamma_{(1,1)}$ must be $\overline{G_{n}}$ by the induction hypothesis. Thus $(1,1)$ has exactly $2(n-1)$ neighbors in Δ_{x} and these may be labeled $(i, 0)$ and $(0, j)(1 \leq i, j \leq n)$ with edges between $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ according to (1), as long as none of $i_{1}, i_{2}, j_{1}, j_{2}$ are 1 . Similarly, $\Gamma_{(2,2)}$ must be $\overline{G_{n}}$, and this requires two more vertices labeled $(1,0)$ and $(0,1)$, again with edges according to (1), as long as none of $i_{1}, i_{2}, j_{1}, j_{2}$ are 2 . Finally label x with $(0,0)$.

For $k \geq 3$, the neighbors of the vertex (k, k) are now all accounted for. The vertices of $\Gamma_{(k, k)}$ are $\{(i, j): 0 \leq i, j \leq n$ and $i, j \neq k\}$ and the edges are given by (1). There remains to show only that (1) holds for all $i_{1}, i_{2}, j_{1}, j_{2}$. If $n \geq 4$ or if $n=3$ and $i_{1}, i_{2}, j_{1}, j_{2}$ are not all different, this follows by consideration of $\Gamma_{(k, k)}$ where k is chosen to be different from all of $i_{1}, i_{2}, j_{1}, j_{2}$. If $n=3$ and $i_{1}, i_{2}, j_{1}, j_{2}$ are all different, a count of neighbors of (i_{1}, j_{1}) would come up shy of the required 9 unless (i_{2}, j_{2}) were included. Thus (1) governs in all situations, and so $\Gamma=\overline{G_{n+1}}$ as claimed.

Lemma 6. If Γ_{x} is $m K_{n}$ for some x, then Γ_{x} is $m K_{n}$ for all x.
Proof. Suppose that $\Gamma_{x}=m K_{n}$. Then $\Gamma_{y}=m K_{n}$ also for every vertex y in Γ_{x}, since Γ_{y} contains K_{n} as one component, has $m n$ vertices, and is in S. But then $\Gamma_{z}=m K_{n}$ for every vertex in Γ, since if $z \in \Delta_{x}$, then $m \geq 2$ and $z \in \Gamma_{y}$ for some $y \in \Gamma_{x}$ (by Proposition 2), and so the same argument applies.

We use Lemma 6 liberally in what follows.
Proposition 7. For all x, Γ_{x} is not $m K_{n}$.
Proof. We first address the case $m=1$. If $\Gamma_{x}=K_{n}$, then $\Gamma_{y}=K_{n}$ for every vertex y. It follows that $\Gamma=m K_{n+1}$, but this contradicts the fact that $\Gamma \notin S$.

We next address the case $m=2$. When $n=2$, this was already addressed at the beginning of the proof of Proposition 5, since $\overline{G_{2}}=2 K_{2}$. We proceed with $m=2$ and $n \geq 3$, proving the stronger result that any superregular graph Γ with $\Gamma_{x}=2 K_{n}$ for some x must be G_{n+1}.

Suppose that $\Gamma_{x}=2 K_{n}$. Let the two components of Γ_{x} be denoted A and B and let $A=\left\{y_{1}, \ldots, y_{n}\right\}$. Then, inside $\Delta_{x}, \Gamma_{y_{i}}$ has a component K_{n} which we denote B_{i}. The B_{i} must be disjoint, since $\Gamma_{y_{i}}=2 K_{n}$. Now suppose that z_{i} is a vertex in B_{i}. By repeatedly applying $\Gamma_{z}=2 K_{n}$ for various vertices z, one can infer that z_{i} has exactly $n-1$ neighbors in $\Delta_{x}-\Gamma_{y_{i}}$, none of which are adjacent to any vertices in $\Gamma_{y_{i}}-\left\{z_{i}\right\}$. Since Δ_{x} is superregular, the neighbors of z_{i} induce a $2 K_{n-1}$. By the induction hypothesis, $\Delta_{x}=G_{n}$. Finally, every vertex in B_{i} must have exactly one neighbor v in B, and the fact that $\Gamma_{v}=2 K_{n}$ forces $\Gamma=G_{n+1}$.

Last, we address the case $m \geq 3$. Assume that $\Gamma_{x}=m K_{n}$. We consider the possibilities for Δ_{x}. Applying Proposition 4 to $\bar{\Gamma}$ rules out $\Delta_{x}=C_{5}$ and applying Proposition 5 to $\bar{\Gamma}$ rules out $\Delta_{x}=G_{n}$.

Suppose that $\Delta_{x}=\overline{G_{t}}$ for some $t \geq 3$ and let y be a vertex in Δ_{x}, which we now view as $\bar{\Gamma}_{x}$. Then the neighbors of y in this G_{t} induce a $2 K_{t-1}$, so $\Delta_{y}=\overline{G_{t}}$ also. This Δ_{y} has $(t-1)^{2}$ vertices in Γ_{x} and these vertices do not form a clique. But Γ_{x} has no induced subgraphs whose components are not complete. So $\Delta_{x} \neq G_{t}$.

Suppose that $\Delta_{x}=s K_{t}$ for some $s, t \geq 1$. Let y be a vertex in Γ_{x} and z a neighbor of y in Δ_{x}. Since $\Gamma_{y}=m K_{n}$, there are at least $m-1$ neighbors of y in Δ_{x} that induce a graph with no edges. Thus $s \geq m-1$. Since $\Gamma_{z}=m K_{n}$, the neighbors of z in Δ_{x} must form one copy of K_{n}, so $t=n+1$. Now the number of edges from Γ_{x} to Δ_{x} is $m n^{2}(m-1)$, while the number of edges from Δ_{x} to Γ_{x} is $s t(m n-(t-1))=s(n+1)(m n-n)$. Equating these two counts yields $m n=s(n+1)$, which together with $s \geq m-1$ implies that $s=m-1=n$. Thus $\Gamma_{x}=m K_{m-1}$ and $\Delta_{x}=(m-1) K_{m}$. But since $m \geq 3, y$ has a neighbor y^{\prime} in Γ_{x}, and both y and y^{\prime} have $m-1$ neighbors in each copy of K_{m} in Δ_{x}. Hence y and y^{\prime} have a common neighbor, contradicting the fact that $\Gamma_{y}=m K_{m-1}$.

Finally, suppose that $\Delta_{x}=\overline{s K_{t}}$. The number of edges from Γ_{x} to Δ_{x} is $m n^{2}(m-1)$, while the number from Δ_{x} to Γ_{x} is $s t(m n-(s-1) t)$. Equating these yields $m n^{2}(m-1)=$ $s t(m n-(s-1) t)$. The fact that $\Gamma_{y}=m K_{n}$ and $\Gamma_{z}=m K_{n}$ implies that $n \leq s \leq n+1$ and $m-1 \leq t \leq m$, but it is then easy to rule out all the possibilities.
Proposition 8. For all x, Γ_{x} is not $\overline{m K_{n}}$.
Proof. Since $\overline{m K_{1}}=K_{m}$, the case $n=1$ is handled by Proposition 7. So take $n \geq 2$ and assume that $\Gamma_{x}=\overline{m K_{n}}$. An argument similar to Lemma 6 shows that all $\Gamma_{y}=\overline{m K_{n}}$. As in Proposition 7, one can then reduce to the case where $\Delta_{x}=s K_{t}$ or $\Delta_{x}=\overline{s K_{t}}$. The latter case is ruled out by applying Proposition 7 to $\bar{\Gamma}$, so we may assume $\Delta_{x}=s K_{t}$ with $t \geq 2$.

If $t=2$, then the number of edges from Γ_{x} to Δ_{x} is $m n(n-1)$ while the number of edges from Δ_{x} to Γ_{x} is $2 s(m n-1)$. Equating these yields $m n(n-1)=2 s(m n-1)$. This
requires that $2 s$ be a multiple of $m n$, but then the right-hand side becomes larger than the left. If $t \geq 3$, then let y be a vertex in Γ_{x} and z a neighbor of y in Δ_{x}. Since $\Gamma_{y}=\overline{m K_{n}}, z$ must be adjacent to the $m-1$ copies of K_{n} in $\overline{\Gamma_{x}-\Gamma_{y}}$. Since $\Gamma_{z}=\overline{m K_{n}}$, the remaining neighbors of z must induce a subgraph with no edges. But since $t \geq 3, z$ has a pair of adjacent neighbors in Δ_{x}, a contradiction.

Proposition 9. For all x, Γ_{x} is not G_{n}.
Proof. Since $\overline{G_{3}}=G_{3}$, we may assume $n \geq 4$. Assume that $\Gamma_{x}=G_{n}$. Then Γ is n^{2}-regular, and every vertex in Γ_{x} has exactly $(n-1)^{2}$ neighbors in Δ_{x}. So the number of edges from Γ_{x} to Δ_{x} is $n^{2}(n-1)^{2}$. Also, since Δ_{x} must be $\overline{G_{t}}$ for some $t \geq 4$, every vertex in Δ_{x} has exactly $n^{2}-(t-1)^{2}$ neighbors in Γ_{x}, so the number of edges from Δ_{x} to Γ_{x} is $t^{2}\left(n^{2}-(t-1)^{2}\right)$. Setting these equal yields

$$
\left(\frac{n-1}{t}\right)^{2}+\left(\frac{t-1}{n}\right)^{2}=1
$$

It is easy to see that this has no solutions in integers greater than 2.
Editorial comment. Five claimed solutions to this problem were available when the deadline for solutions was reached, but none turned out to be correct. Later, Douglas B. West solved the problem, but as a report on his solution was being prepared, a solution from Randall B. Maddox was received. What we have presented above is a digest of Maddox's proof. In order to illustrate the organization of the solution in limited space, many details are left to the reader. West's solution has been accepted for publication in J. Graph Theory.

A Square Crossing

10322 [1993, 688]. Proposed by Jiang Huanxin, student, FuDan University, ShangHai, China.

Let $A B C D$ and $A E F G$ be squares with the common vertex A and different edge lengths. Let $\theta=\angle E A D(0<\theta<\pi / 2)$. Suppose that $E F$ and $C D$ intersect at the point P. For which value of θ will $A P \perp C F$?

Solution by H. Sunil Gunaratne, Universiti Brunei Darussalam, Gadong, Brunei. Assume $|A E|:|A D|=\lambda: 1$, with $\lambda>0$ and $\lambda \neq 1$. Then there are two cases. Case (i): $A E F G$ has the same orientation as $A B C D$. Then $\theta=\pi / 4$ is the unique solution, independent of λ. Case (ii): $A E F G$ has the orientation opposite to that of $A B C D$. Then the solutions are of the form $\theta=\alpha \pm \beta$ where $-\pi / 2<\alpha, \beta<\pi / 2$ with $\cos \alpha=\left(\lambda^{2}+1\right)\left(2+\lambda^{4}\right)^{-1 / 2}$, $\cos \beta=2 \lambda\left(2+\lambda^{4}\right)^{-1 / 2}$. In addition, α and β should have the same sign, with $0<\alpha<\pi / 2$ if $\lambda>1$ and $-\pi / 2<\alpha<0$ if $0<\lambda<1$. It is also necessary that $\sqrt{2}-1<\lambda<\sqrt{2}+1$ in order to have $-\pi / 2<\theta<\pi / 2$.

To show this, assume without loss of generality that $|A D|=1,|A E|=\lambda$, and use vectors based at A. Thus, we write $\overrightarrow{A B}=\mathbf{i}, \overrightarrow{A D}=\mathbf{j}, \overrightarrow{A E}=\lambda \mathbf{e}, \overrightarrow{A G}=\lambda \mathbf{g}$, where $\mathbf{i}, \mathbf{j}, \mathbf{e}, \mathbf{g}$ are unit vectors and $\mathbf{i} \cdot \mathbf{j}=0$. Then we have

$$
\begin{aligned}
\mathbf{e} & =\mathbf{i} \sin \theta+\mathbf{j} \cos \theta \\
\pm \mathbf{g} & =-\mathbf{i} \cos \theta+\mathbf{j} \sin \theta
\end{aligned}
$$

with $-\pi / 2<\theta<\pi / 2, \theta \neq 0$. The plus sign is taken in Case (i) and the minus sign in Case (ii). Then $\overrightarrow{A P}=\overrightarrow{A D}+\overrightarrow{D P}=\mathbf{j}+t \mathbf{i}=\overrightarrow{A E}+\overrightarrow{E P}=\lambda \mathbf{e}+r \lambda \mathbf{g}$ for scalars r and t to be

