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j(n) > pnXl = jx(n). To prove j agrees with jx through N, suppose there exists n < N 
such that j (n) > jx(n) = pnXl . so j(n) > nx + 1. When we express mn as n copies of m, 
the defining condition yields j(mn) < nj(m) = nmx. When we express mn as m copies 
of n, the defining condition yields j(mn) > mj(n)-(m-1) > mnx + 1, a contradiction. 

Editorial comment. Frank Schmidt pointed out that these sequences are characterized 
in R. L. Graham, S. Lin, and C.-S. Lin, "Spectra of numbers", Math. Mag. 51 (1978), 
174-176. Another reference, supplied by an editor, is M. Boshernitzan and A. S. Fraenkel, 
"Nonhomogeneous spectra of numbers", Discr. Math. 34 (1981), 325-327. 

Solved also by V. Bozin (student, Yugoslavia), H. von Eitzen (Germany), F. J. Flanigan, R. Holzsager, I. Kastanas, 
O. P. Lossers (The Netherlands), A. D. Melas (Greece), J. M. Santmyer, F. Schmidt, A. N. 't Woord (The Netherlands), 
GCHQ Problem Solving Group (U. K.), and the proposer. 

A Modular Power Series 

10314 [1993, 589]. Proposed by Andrew Hnce, University of Florida, Gainesville, FL. 

Let b be an integer greater than 1. Let S be a set of integers containing 0 such that no 
two members of S are congruent modulo b. If 

E Si o 

with si E S, prove that all si = °- 

Solation by A. N. 't Woord, University of Technology, Eindhoven, The Netherlands. 
Suppose that 5£,i°°1(si/bi) = O with si E S- We define a sequence {an}n°°=O such that 
Ein=l (Si /bi) = an/bn, by setting ao = 0 and an-bn- 151 + bn-2s2 + + bsn_ 1 + Sn 
for n > 1. Notice that an = ban-l + Sn for all n > 1. 

If an = O for some n > 1, then Sn --an --O mod b. This requires Sn = O and 
an_l = 0, and hence si = 0 for all i < n, inductively. If 1 < m < n and am = ans 
then Sm--am--an--Sn mod b. Therefore, Sm = Sn and am_l = an_l. By induction, 
an_m = ao = O. Hence si = 0 for all i < n-m. It suffices therefore to show that am = an 
occurs with the difference n-m arbitrarily large. 

By the congruence condition, S is finite. Choose M > 0 such that lsi l < M for all i. 
Now 

° = i b' > bn E b' = bn (lanl b-1)' 

sO lanl < M/(b-1) for all n. Therefore, the set {an: n > 0} is finite. Thus, for some k, 
we have an = k infinitely often, and the result follows. 

Solved also by K. L. Bernstein, W. Blumberg, S. M. Gagola Jr., R. Holzsager, N. Jensen (Germany), I. Kastanas, 
O. P. Lossers (The Netherlands), R. Martin (student), L. E. Mattics, the MMRS group of Oklahoma State University, 
bnd the proposer. Five incorrect soluiions were received. 

Integral Matrices with Integral Inverses 

10315 [1993, 589]. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let A and B be matrices with integer entries of sizes r by n and n by r, respectively, 
with r < n. Suppose that AB is an r by r identity matrix. Show that A can be enlarged to 
an n by n integral matrix having an integral inverse. 

Solution byAllan Pedersen, S0borg, Denmark. Let al, . . ., ar be the row vectors of A in 
order from top to bottom, and let bl, . . ., br be the column vectors of B in order from left to 
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