

6647 Author(s): Andrew Vince, O. P. Losers, Sharad Kanetkar Reviewed work(s): Source: The American Mathematical Monthly, Vol. 100, No. 2 (Feb., 1993), pp. 186-187 Published by: Mathematical Association of America Stable URL: <u>http://www.jstor.org/stable/2323787</u> Accessed: 25/04/2012 13:52

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



*Mathematical Association of America* is collaborating with JSTOR to digitize, preserve and extend access to *The American Mathematical Monthly*.

## NOTES

(10286) In the innermost sum, we employ the convention that a binomial coefficient  $\binom{h}{i}$  is zero unless  $0 \le i \le h$ . (10287) For a similar result in the traditional peg solitaire, see John D. Beasley, *The Ins & Outs of Peg Solitaire*, Oxford University Press, 1985, chapter 12. (10288) The number of balls, *b*, is fixed so its value may appear in the answer. For each *n*,  $X_n$  is a random variable whose expectation is denoted by  $E(X_n)$ . (10289) The case a = 1/2 appeared as problem 1365 in *Mathematics Magazine*.

## SOLUTIONS

## **Scrambling Points on the Unit Circle**

6647 [1991, 63]. Proposed by Andrew Vince, University of Florida, Gainesville, FL.

Let  $S_n = \{1, \zeta, \zeta^2, \dots, \zeta^{n-1}\}$  be the set of *n*-th roots of unity and suppose *f* is any function on  $S_n$  into the set of complex numbers of absolute value one. For every positive integer *k* less than n/2 prove that there exist integers *i* and *j* such that

$$|\zeta^i - \zeta^j| \ge |1 - \zeta^k| \ge \left| f(\zeta^i) - f(\zeta^j) \right|.$$

*Note*: The proposer had been confused with a different A. Vince in the original presentation of the problem.

The solution will be divided into two parts, called lemmas 1 and 2. In these proofs, distance will be the shortest distance measured along the unit circle in units of one-*n*-th of a circle, so that all the distances between points in  $S_n$  are integers. Since Euclidean distance is a monotonic function of this distance, the desired results can be obtained from the corresponding results for this distance. Also, the set of all images of points in  $S_n$  under f will be referred to as  $f(S_n)$ .

**Lemma 1.** There exists a closed arc of the unit circle of length k which contains at least k + 1 points of  $f(S_n)$ .

Solution I by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Netherlands. Let the elements of  $a_i \in f(S_n)$  be ordered by their arguments

$$0 \le a_0 \le \cdots \le a_{n-1} < n$$

and extend the indexing to all  $j \in \mathbb{Z}$  so that  $a_{i+n} = a_i$ . Then,

$$(a_k - a_0) + \cdots + (a_{nk} - a_{(n-1)k}) = nk$$

so at least one of the terms, say  $(a_{lk} - a_{(l-1)k})$ , has a value not exceeding the average of the *n* terms which is *k*. Now, the k + 1 points  $a_j$  with  $(l-1)k \le j \le lk$  all lie in the closed arc from  $a_{(l-1)k}$  to  $a_{lk}$ , which was chosen to have length at most *k*.

Solution II by Sharad Kanetkar, University of Massachusetts, Boston, MA. Consider *n* closed arcs on the unit circle, each of length *k*, chosen so that their beginning points are equally spaced (at distance 1) and so that at least one such beginning point coincides with one of the points of  $f(S_n)$ .

Each point of the circle lies in at least k such arcs, and the endpoints lie in k + 1 arcs. In particular, each point of  $f(S_n)$  lies in at least k arcs and at least one of them lies in k + 1 arcs. Thus the total number of incidences of points of  $f(S_n)$  with these arcs is at least nk + 1. For Lemma 1 to be false, however, each of these arcs would contain at most k elements of  $f(S_n)$  and the total number of incidents would be at most nk.

**Lemma 2.** If  $A \subset S_n$  has k + 1 elements, then there is a pair of elements in A whose distance is at least k.

Solution by the Editors, based on an idea of Sharad Kanetkar. For each element  $a_i \in A$ , there is a set  $A_i \subset S_n$  consisting of  $a_i$  together with the k - 1 consecutive elements of  $S_n$  clockwise from  $a_i$  and the k - 1 consecutive elements of  $S_n$  counterclockwise from  $a_i$ .

If, for any *i*, some element *a* of *A* lies outside  $A_i$ , then  $a_i$  and *a* are the desired elements. Otherwise, *A* lies wholly within each  $A_i$ . By DeMorgan's laws, this is equivalent to saying that the union of complements  $C_i$  of the  $A_i$  is a subset of the complement of *A* in  $S_n$ . However, the complement of *A* contains n - k - 1 elements and we shall show that the union of the  $C_i$  must contain at least n - k + 1 elements.

To prove the latter claim, note that each  $A_i$  contains 2k - 1 consecutive points of  $S_n$ , so that  $C_i$  contains n - 2k + 1 consecutive points of  $S_n$ . Start from a point not in the union of the  $C_i$  (if no such point exists, the claim is clearly true) and look at the  $C_i$  in clockwise order starting from this point. The first  $C_i$  gives us n - 2k + 1 points and each of the k subsequent  $C_i$  gives at least one point beyond (in the clockwise sense) the previous  $C_i$  since the  $C_i$  are distinct intervals.

*Editorial comment.* The result clearly follows from the lemmas: Lemma 1 gives a set A of k + 1 of the  $\zeta^i$  satisfying the condition on the  $f(\zeta^i)$  and Lemma 2 allows a pair of these elements to be selected to satisfy

$$|\zeta^i - \zeta^j| \ge |1 - \zeta^k|$$

as well.

All successful solvers except the proposer followed the outline presented here, although Lemma 2 seemed rather elusive.

Lemma 1 was obtained also by L. E. Mattics and R. Stong. The proposer's solution and one other were judged to be unconvincing.