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Abstract 

The non-revisiting path conjecture for polytopes, which is equivalent to the Hirsch conjecture, 
is open. However, for polyhedral maps on surfaces, we have recently proved the conjecture false 
for all orientable surfaces of genus g/> 2 and all nonorientable surfaces of nonorientable genus 
h/>4. In this paper, a unified, elementary proof of the non-revisiting path conjecture is given for 
the sphere, projective plane, toms and Klein bottle. Only the case of the connected sum of three 
copies of the projective plane remains open. In connection with the notion of the representativity 
p of a surface embedding, it is shown that the non-revisiting path property holds for all surfaces 
of representativity p>~4, but there is a polyhedral map with representativity 3 for which the 
non-revisiting path property fails. 

I. Introduction 

One of the most well-known open problems in the combinatorial theory of polytopes 
is the Hirsch conjecture, which gives an upper bound on the diameter of the graph of 

a polytope. The graph of a polytope P is the 1-skeleton of P. More specifically, the 
Hirsch conjecture states that A(d,n)<<.n-d, where A(d,n) is the maximum diameter 

among the graphs of d-dimensional polytopes with n facets. A facet is a ( d -  1)- 

dimensional face. The Hirsch conjecture was formulated by Hirsch in 1957 and re- 
ported by Dantzig in his book Linear Programming and Extensions [5]. The conjecture 
has implications for the complexity of  linear programming algorithms like the simplex 

method. Since the diameter of the graph of a polytope P is an upper bound on the num- 
ber of iterations of the best possible edge-following algorithm for an LP problem with 
feasible region P, the diameter A(d, n) gives the worst possible complexity of  the best 

possible edge-following algorithm for LP problems with n constraints and d variables. 
A nice survey on the Hirsch conjecture is the paper by Klee and Kleindschmidt [9]. 

Equivalent to the Hirsch conjecture is the non-revisiting path conjecture of Klee and 
Wolfe [8]. I f  p is a path in the graph of a polytope, a revisit of p to a face F is 

* Corresponding author. 

0012-365X/98/$19.00 Copyright (~) 1998 Elsevier Science B.V. All rights reserved 
PH S001 2-365X(97)001 51-9 



268 1-1. Pulapaka, A. Vince / Discrete Mathematics 182 (1998) 267-277 

a pair of vertices (x, y)  such that p[x, y] N F = {x, y) ,  where p[x, y] is the path along 
p from x to y. In other words, p visits F at x, leaves F and, subsequently, revisits F 
at y. The revisit (x ,y)  is said to involve x and y. 

Non-Revisiting Path Conjecture. Any two vertices of a polytope P can be joined by 
a path that does not revisit any facet of P. 

The non-revisiting path conjecture is known to be true for three-dimensional poly- 
topes [1] and is open in higher dimensions. Klee and Walkup [10] showed it to be 
false, in general, for unbounded polyhedra. Klee [7] has asked about the validity of the 
non-revisiting path conjecture for more general complexes. Since the underlying topo- 
logical space of the boundary complex of a polytope is a sphere, it is natural to ask 
whether the conjecture is true for cell complexes whose underlying space is a sphere. 
In this regard, the conjecture is true for 2-spheres, but there is a counterexample due 
to Mani and Walkup [11] for the 3-sphere. 

This paper concems the non-revisiting path conjecture for polyhedral maps. Unless 
otherwise stated, by a surface S, we mean a connected, compact 2-manifold without 
boundary. These comprise the orientable surfaces T O of genus g, which are the con- 
nected sums of g tori, and the nonorientable surfaces Uh, of nonorientable genus h, 
which are the connected sums of h projective planes. Let G be a graph embedded on 
a surface S. The closure of a connected component of S \ G  is called a face. If the 
faces are all simply connected and the intersection of any two distinct faces is either 
a common edge, common vertex or empty, then M = (G, S) is called a polyhedral map. 
Two distinct faces that satisfy the condition stated above are said to meet properly; 
otherwise the faces are said to meet improperly. 

A surface S has the non-revisiting path property if, for any polyhedral map M on S 
and any two vertices x and y on M, there is a path joining x to y that does not revisit 
any face. Clearly, if faces were allowed to meet improperly, the non-revisiting path 
property would fail. Recent research has been directed toward the following question. 

Question. Which surfaces possess the non-revisiting path property? 

It has long been known that the non-revisiting path property holds for the 
sphere [1,8]. Bamette gave two separate proofs for the projective plane [2] and 
toms [4]. Very complicated proofs were given for the Klein bottle and double toms [6]; 
however, at least the double toms proof has a flaw, since a result of Pulapaka and 
Vince [12] gives counterexamples to the non-revisiting path property for all orientable 
surfaces of genus g/> 2 and all nonorientable surfaces of nonorientable genus h >t 4. The 
main result of this paper is an elementary, unified proof of the fact that the surfaces 
U1, U2, To and Tl satisfy the non-revisiting path property. Therefore the only case that 
now remains open is U3, the connected sum of three projective planes. 

The concept of representativity of a surface embedding was developed by Robertson 
and Seymour [14] in connection with the subject of graph minors. A nice survey paper 
is by Robertson and Vitray [15]. Circuits in a surface S are homeomorphic images 
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of the unit circle. I f  C is a circuit in a surface S, then S \C  is obtained by cutting S 

along C. I f  one component of S \C  is homeomorphic to an open disk, then C is trivial; 
otherwise C is essential. If  ~ is a graph embedding on a surface S that is not the 

sphere and G(~U) is the graph of ~, then the representativity of ~ is defined to be 

p ( ~ ) = m i n { j C N G ( ~ ) l : C  is an essential circuit in S}. 

By elementary topology, in the definition of representativity it suffices to consider 

essential circuits in S that pass through only vertices and faces of 7 t and which use no 
vertex or face more than once. In Section 4 of this paper a short proof is given for the 

fact that, for polyhedral maps of representativity p ~> 4, the non-revisiting path property 

holds for all surfaces. This is best possible in the sense that there is a polyhedral 

map on the double toms that does not possess the non-revisiting property but has 

representativity 3. The proof of the result for representativity 4 is essentially the same 
as Richter and Vitray [13]. The proof here is shorter, probably due to the fact that 

the Richter-Vitray proof is in the dual form. They prove, given any two faces of 
a polyhedral map of representativity at least 4, there is a cycle in the embedded graph 
that bounds a disk and contains the two faces. 

2. Prefiminary results 

Our proof of the non-revisiting path property for the low genus cases (Theorem 1) 
relies on three lemmas, the first two due to Barnette [2,3]. For the first lemma we 

supply a simplified proof. Let (x, y)  be a revisit of a path p to a face F. If  the two 

paths along F from x to y are denoted F[x, y] and l~[x, y], then the revisit (x, y) is 
said to be planar if  either Fix, y] U p[x, y] or Fix, y] U p[x, y] bounds a cell on the 

surface. (Note that if one does then so does the other.) The notation p(u,v] denotes 
the path from the vertex succeeding u to vertex v. 

Lemma 1. Let M be a polyhedral map with vertices u and v. I f  there is a path in 
M joinin9 u and v all o f  whose revisits are planar, then there is a non-revisitin9 path 
between u and v. 

Proof. Let p[u, v] be a path in M all of whose revisits are planar. I f  p[u, v] is not 
a non-revisiting path, then there is a vertex x on p[u, v] with the following properties: 
(1) There is a non-revisiting path po[u,x] between u and x. 
(2) The path po[u,x] U p[x,v] has only planar revisits. 
A path satisfying (1) and (2) exists; simply take x = u .  
(3) Among all choices for x satisfying (1) and (2), choose the one which is furthest 

along the path p[u,v]. 
If  x = v, we are done; otherwise we will obtain a contradiction. There must exist 

a revisit (z ,y)  of the path po[u,x] U p[x, v] to a face F of M such that z E po[u,x] and 
y C p(x, v]. Otherwise, if  both y and z lie in po[u,x] then statement (1) is contradicted; 
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if both y and z lie in p0(x, v] then statement (3) is contradicted. Among all revisits by 

po[u,x]Up[x,v] we choose F so that z is nearest to u along po[u,x]. Now consider 

the path Pl = po[u,z] U F[z, y] U p[y, v] from u to v and observe the following: 

(i) Pz is a path from u to v all of  whose revisits are planar. To see this note that 
P0 itself has no revisits. A revisit involving vertices of  p[y, v] alone has to be planar 

since p has only planar revisits. A non-planar revisit by p~ cannot involve vertices 

of  F[z,y] since the closed path F[z,y]Up[y,x]Upo[x,z] bounds a cell. Finally, if 

a revisit by pl involves a vertex of p and a vertex of p0, then it must be planar since 

po[u,x] Up[x, v] admits only planar revisits. 

(ii) Pl [u, y] does not revisit any face of  M. A revisit by Pl [u, y] to a face F1 must 

involve y and a vertex E of po[u,z). Note that £:fiz; otherwise F and F1 meet improp- 
erly at y and z. Now (£,y) is a revisit of  the path po[u,x]Up[x,v]. This contradicts 

the choice of  F with z nearest to u on po[u,x]. 
The existence of y contradicts the choice of  x as the vertex that was furthest along 

p[u, v] satisfying conditions (1) and (2). [] 

Similar to the notion of a path in a polyhedral map having a disconnected intersection 

with a face of  the polyhedral map, one may consider a cycle of  a polyhedral map 

that has a disconnected intersection with a face of  the polyhedral map. A cycle of  
a polyhedral map refers to a cycle in the underlying graph of the polyhedral map. 

Let M = ( G , S )  be a polyhedral map and C a cycle in M. Then C is said to be 
non-planar if  it does not bound a cell on S. A cycle is non-revisiting if it does not 

have any revisits; in other words, for each face F of M, C N F is either empty, or 

connected. 

Lemma 2 (Bamette [3]). Every polyhedral map M on the projective plane, torus or 
Klein bottle has a non-planar, non-revisiting cycle C. In the case of  the torus or Klein 
bottle, cutting M along C yields an annulus. 

In the definition of a polyhedral map M = ( G , S ) ,  in the case that the surface has 

a non-empty boundary OS, we require that G N t3S = t3S. 

Lemma 3. Let S be a surface with boundary OS and M = (G,S) a polyhedral map on 
S such that the intersection of  any face of  M with OS is either empty or connected 
Then any two vertices of M that lie in the interior of S can be joined by a path in 
M that is contained in the interior of S. 

Proof. Let p be the path from u to v with the least number of  vertices on 0S. Let 
x be the first vertex of p on t3S. Further let w be the vertex preceding x on p and 
y the point of  p succeeding x on p. Let R be the union of the faces of  M incident 
with x such that p[w, y] is part of  the boundary of R. By the assumption of properly 
meeting faces and proper intersection of any face of  M with 0S, R is topologically 
a disk. Therefore there are two paths from w to y along the boundary of  R. Consider 
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the path V not containing x. Again, under the assumptions o f  the lemma, V does not 

meet ~S. Let a be the first vertex of  p on V and z the last vertex o f  p on V. Now 

the path p[u ,a]OT[a ,z]Up[z ,v  ] meets aS in fewer vertices than p, contradicting the 

minimality of  p. [] 

3. The main theorem 

Theorem 1. The sphere, torus, projective plane and Klein bottle satisfy the non- 

revisiting path property. 

Proof.  Let M be a polyhedral map on the sphere, projective plane, toms or Klein bottle 

and u and v be vertices o f  M. We will show that u and v can be joined by a path in M, 

all o f  whose revisits are planar. Consequently, by Lemma 1, there is a non-revisiting 

path joining u and v. That all revisits are planar is automatically true for the sphere. 

For the remaining three surfaces, Lemma 2 implies that M has a non-revisiting cycle 

C such that cutting M along C yields a cell H in the case o f  a projective plane and 

an annulus A in the case of  the toms or Klein bottle. The proof consists o f  three main 

cases and several subcases. The main cases are classified according to whether both, 

one, or neither o f  u and v lie on C. 

Case 1. u and v lie on C. Since C is non-revisiting, either o f  the two paths along 

C from u to v must be non-revisiting. 

Case 2. u lies on C and v does not lie on C. Since every vertex of  M has degree 

at least three, there must be a vertex Ul o f  M that lies in the interior of  H or A, 

respectively, such that uul is an edge o f  M. Since the cycle C is non-revisiting, by 

Lemma 3, there is a path P0 from Ul to v that lies in the interior o f  H or A, respectively. 

Define p = Po tA UUl. Thus p is a path joining u and v that meets the boundary of  H 

or A at u only. I f  p has only planar revisits, we are done. So assume that p has 

a non-planar revisit (s , t )  to a face F with the vertex s closer to v than the vertex t 

is to v. Among all non-planar revisits of  p, choose F so that s is nearest to v along 

p. Of  all such non-planar revisits with s nearest to v, choose one with t nearest to u. 

The strategy from here on will be to alter the path p,  perhaps several times, until it 

can be shown that all revisits are planar. 

First consider the case of  the projective plane. For the revisit to be non-planar, F 

must contain u; thus t = u. Replace p by the path Pl =F[u,s]  tA p[s, v]. I f  Pl has only 

planar revisits, we are done. On the other hand, if pl has a non-planar revisit to a 

face Fl, then it must involve a vertex s 1 of  Pl (s, v] and a vertex o f  Pl N ~3H. Among 

all choices for F1, choose the one for which Sl is nearest to v along Pl. Since C 

is non-revisiting, F1 f3 OH is connected. Let tl be the vertex on F~ f7 pl  N t3H that is 

nearest to u. Replace Pl by the path p2 = Pl[U, tl] U Fl[tbsl] U Pl[Sl,V]. Now P2 can 
have only planar revisits. 

Next consider the case where M is a polyhedral map on the toms or Klein 

bottle. Our arguments will pertain to the annulus A. Let C~ and C2 denote the 
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bounding cycles of  A. Without loss of generality, assume that p meets C1 at only u 

and avoids C2. Since C is non-revisiting, F cannot meet both Cl and C2. The 

proof is now divided into two cases, denoted (A) and (B), depending on whether 
or not F contains u. 

Case A. F contains u. Since the vertex u lies on the non-revisiting cycle C, the 

face F must meet either C1 or C2, but not both. Fig. l(a)  shows a situation where 

F meets u at C2. Cases where F meets u at CI are shown in Figs. l(b) and (c). 
This classification into two cases is based on the fact that the removal of  the cycle 

p[s, t] U F[t,s] divides the annulus into two components, one containing C1, the other 

containing C2. The two possbilities are that vertex v lies in the C1 component or the C2 
component. Since C is non-revisiting, F n C2 is connected. We now consider separately 

the subcases that (a) F meets u on C2 and (b) F meets u on C1. 
Case a. F meets u on C2 (Fig. l(a)). Replace p by the path from u (on C2) to an 

endpoint to of  F N  C2; then along the face F from to to the first point so on the path 
p; then from so to v along p. Such a path is not unique. Choose the one, denoted pt,  

for which the point so is closest to v along the path p. So So is at least as close to v 

along the path p as is s. 

If  Pt has only planar revisits, we are done; so assume that pt has a non-planar 
revisit to a face Ft. Such a revisit cannot involve two vertices on pl[u, so] since this 
would mean that the faces F and Ft meet improperly. Otherwise, the only possibility 

for a non-planar revisit (that does not contradict the minimality of  s for the revisit to F )  
is for it to involve a vertex st of pl(so, v] and a vertex of pl[u, to]. (Note that, by the 

minimality of  s, this latter vertex is located on C1.) Among all choices for Fl, choose 

the one for which Sl is nearest to v along pl.  Let tl be the vertex on F~ fq Ct that is 

nearest to u (on Ct). Replace pl by the path p2 = pt[u, t l]UFl[t t ,s t]Upl[st ,v] .  Using 
the minimality of  s, so and st, the path p2 can have only planar revisits. 

Case b. F meets u on C1 (Fios. l(b) and (c)). Replace p by the path pl =F[u , s ]U 
p[s, v] (the dotted path in Fig. l(b)). I f  pt has only planar revisits, we are done; so 

assume that Pt has a non-planar revisit to a face F1. Such a revisit cannot involve a 

ver tex  o f  pt(s,v] and u (on C2) since this would contradict the minimality of s. 
First consider the case in Fig. l(b). The only possibility is for the revisit to 

involve a vertex st of  pl(s,v] and a vertex tl of  pt[u,t]. Among all choices for 

Ft, choose the one for which st is nearest to v along pl .  Replace Pt by the path 

P2 ----- Pt [u, tl ] I J F t [tl, st] tA Pl [st, v]. ( If  there are two possibilities for El [h, sl ], choose 
one such that P2 is a path that meets OA only at u.) By the minimality of s and Sl, 
the path p2 can have only planar revisits. 

Next consider the case in Fig. l(c). By the minimality of s, the only possibility 
for a non-planar revisit of Pl is for it to involve a vertex of pl(s,v] and a vertex 
of pl(s,t). Let tl be the vertex on  FI N p l  that is nearest to u (on C1) and let s2 
be the vertex on F I n  PI that is nearest to v (see Fig. 2). Replace pt by the path 

P2 ~ Pl [U, tl ] I_J FI [tl, s2] 13 Pl [$2, v]. By the minimality of s, S 1 and sz, the path P2 can 
have only planar revisits. 

Now return to case (B). 
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Case B. F does not contain u. Recall that F can meet at most one o f  C1 or C2. 

Again, there are two possibilities for F ,  depending on whether (a) F does not meet 

C2 or (b) F does not meet C1. 

Case ea F may  meet  C1 but not C2. Replace p by the path pl = p[u, t] U F[t,s] U 

p[s,v] where F[t,s] avoids OA. I f  pl has a non-planar revisit to a face F1, let sl be 

the vertex o f  the revisit that is closer to v along pl than the other vertex o f  the revisit. 

Among all choices for F1, choose the one for which sl is nearest is v along pl .  Now 
there are three possibilities for such a non-planar revisit. The revisit either involves 
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u 

/ 
Fig. 2. 

(i) a vertex tl on pl[u,t] and the vertex S 1 on pl(s,v], (ii) the vertex s 1 on pl[s,t] 
and u (on C2), or (iii) the vertex Sl on pl(s,v] and a vertex on pl[s,t]. 

In case (i), replace p l  by the path p2 = pl  [u, tl ] k_l f l  [tl ,  s1 ] U P l  [Sl, o] that avoids 
OA. Now the only possbility for a non-planar revisit o f  p2 to a face F2 is if  F does 

not meet C1 and s coincides with the vertex st. In this case the revisit would involve 

sl and a vertex t2 of  p2(tl,u]. Now, for the first time, we use the minimality o f  t 

being nearest to u for the original revisit (s, t). The involvment o f  the vertex t2 in the 

revisit (Sl, t2) would contradict this minimality o f  t. 

In case (ii), note that Sl is the vertex on pl  ff l f l  that is nearest to u along Pl. 

Replace Pl by the path P2 =Fl[U, Sl]Upi[sbv]. (There are two choices for the path 

Fl[U, Sl]; chose the one for which p2 is a path.) Since C is non-revisiting, F1 NC2 is 

connected. Let to be the vertex of  F l n  C2 that is nearest to sl along P2. Now there are 

two possibilities for a non-planar revisit o f  p2 to a face F2. The first is for the revisit to 

involve a vertex s3 of  p2(sl,v] and a vertex t2 o f  p2[to, sl], while the second is for the 

non-planar revisit to involve a vertex s2 o f  p2(sl, v] and a vertex t2 (on C1 ) o f  p2(u, to]. 
In either case, among all choices for F2, choose the one for which s2 is nearest to v 

on P2. Replace P2 by the path P3 =p2[u, t2]UF2[t2,s2]Up2[s2,v], so that P3 avoids 
0.4. By the minimality o f  s, Sl and s2, the path P3 can have only planar revisits. 

Case (iii) is identical to the case in Fig. 2. 

Case b. F may meet C2, but not C1. Let so and to be the vertices on F N p that are 

nearest to v and u, respectively. Replace p by the path pl  = p[u, to] UF[to,so] U p[so, v]. 
Note that Pl avoids gA. There are now two possibilities for a non-planar revisit o f  

pl  to a face F1. Such a revisit must either involve (i) a vertex t~ o f  pl[u, to) and a 

vertex Sl of  pl[so, v], or (ii) a vertex tl o f  pl[u, to) and a vertex sl o f  pl[to,So]. In 
either case, among all choices for F1, choose the one for which Sl is nearest to v along 

pl ,  and among all such choices, choose the one for which tl is nearest to u (on C1). 
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In both cases, replace pl  by the path p2 = P l  [U, t 1] L.J F l [ t l ,  Sl] [3 Pl [sl, v]. Of  the two 
possibilities for F l [ t l , S 1 ]  , choose the one for which there can be no face of  M that 

meets both Fl( t l , s l )  and pl[u,h) .  
In case (i), by the minimality of  so, s1 and tl and the assumption that F does not 

contain u, the path p2 can have only planar revisits. 

In case (ii), the only possibility for a non-planar revisit of  P2 to a face F2 is for 

it to involve Sl on pE(so, to) and a vertex t2 on p2[u, tl). Among all choices for F2, 
choose the one for which t2 is nearest to u (on C1) along P2. Replace p2 by the 

path P3 -- p2[u, t2] tO F2[t2,sl] t3 p2[sl, v]. Of  the two choices for Fz[t2,Sl], choose one 

in such a way that there can be no face of  M that meets both F2(tz,Sl) and p3[u, t2). 
By the minimality of  So,Sl,tl and t2, the path P3 can have only planar revisits. 

We now return to the third main case. 

Case 3. Neither u nor v lie on C. By Lemma 3, there is a path p between u and 
v that is contained in the interior of  H or A. In the case of  the projective plane, H is 

a cell and hence p can have only planar revisits. Next consider the case of  the toms 

or Klein bottle. I f  p has only planar revisits, we are done; so assume that p has a 

non-planar revisit (s, t) to a face F.  Among all choices for F,  choose one for which s 

is nearest to v along p. Again consider the two cases, where (a) F does not meet C1 
and where (b) F does not meet C2. 

Case a. F may meet C2 but not C1. Let So and to be the vertices on F fq p that are 
nearest to v and u, respectively. Replace p by the path Pl = p[u, to] tO F[to, so] t3 p[so, v]. 
Now there are three possibilities for a non-planar revisit of  Pl to a face F1. Either the 

revisit involves a vertex tl of  pl[u, to] and a vertex sl o f  pl[so, v]; or it involves a 

vertex sl of  pl(so, v] and a vertex of  pl[so, to]; or it involves a vertex tl o f  pt[u, to] 
and a vertex of  pl[so, to]. The first case is identical to subcase (b) in case (B). The 
argument for the second and third cases are identical because the situation is symmetric. 

So consider only the second case. Among all choices for F1, choose one for which 

the vertex s 1 is nearest to v on  F 1 N Pl. Let tl be the vertex on  F1 f-) p l  that is nearest 

to u along Pl.  Replace pj by the path p2=-pl[u, t l]UFl[h,sl]tOpl[sl ,v],  so that P2 
avoids t3A. Now the only possibility for a non-planar revisit of  P2 to a face F2 is 
for it to involve a vertex s2 of  p2(sl, v] and the vertex h. Replace the path p2 by a 

path p3 -- pE[u, tl] tOF2[tl,s2] U p2[$2, v] such that P3 is contained in the interior o f  the 
annulus A. By the minimality of  Sl, the path P3 can have only planar revisits. 

Case b. F may meet C1 but not C2. Replace p by the path p l = p [ u , t ] U F [ t , s ]  
tO p[s, v]. Notice that the situation now is identical to case (a) above, with the annulus 
A inverted, i.e., the role of  C1 and C2 interchanged. 

Thus in each of  the cases 1, 2 and 3, the vertices u and v can be joined by a path 
in M that has only planar revisits and, by Lemma 1, we are done. [] 

4. Representativity and the non-revisiting path property 

By definition, the requirement that faces of  a polyhedral map meet properly implies 
that the representativity is at least three. 
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Theorem 2. (1) The non-revisitino path property holds for every polyhedral map of  
representativity p >1 4. 

(2) There exist polyhedral maps of representativity p = 3  for which the non- 
revisitin9 path property fails. 

Proof. Concerning statement (1), let M be a polyhedral map of  representativity p ~> 4. 

I f  u and v are vertices o f  M,  consider a sequence ~ = {F1, F2 . . . . .  Fn } of  faces such 

that uEF1, vEFn, and F,fqFi+l # 0  for i =  1,2 . . . . .  n - 1. Further consider a sequence 

~ll={u=uo, ul . . . . .  un=v} of  vertices such that uiEFiNFi+l, i=  1,2 . . . . .  n -  1, and 

let si be the length of  a shortest path Pi from ui-1 to ui along the boundary of  Fi. 
Now choose the sequences ~-  and q /min imum in the following sense. Consider ~ so 

that n is minimum; of  all such ~ ,  choose an ~ and ~// such that S={so,  sl . . . . .  sn} 
is lexicographically minimum. 

It now suffices to prove that the path p = pl  U P2 U • • • t3 Pn is a non-revisiting path 
from u to v. I f  not, let F be a face revisited by p. By Lemma 1 it may be assumed 

that this revisit is not planar. Let x be the first vertex o f  p incident with F and y 

the last vertex o f  p incident with F .  Assume j and k are such that x E p[uj, uj+l] and 
yEp[uk,  uk+l], but X~blj and y#uk+l .  Then k - j > ~ 2  since p>~4.  I f k - j > ~ 3 ,  

then the sequence o f  faces F1 . . . . .  Fj+I,F, Fk+I . . . . .  Fn contradicts the minimality o f  n. 
I f  k - j = 2 ,  then p = 4 ,  which implies that x¢uj+l .  Now the sequence o f  vertices 

{uo, ul . . . . .  Uj,x,y, uk+l . . . . .  u,} yields a sequence o f  lengths S'={S'o,S ~ . . . . .  Jn} such 
that s~ = s ;  for i<j ,  but sj <sj, because the length o f  the shortest path s~. from uj to x 

along the boundary o f  Fj+I is less than the length sj o f  the shortest path from uj to 
uj+l along the boundary o f  Fj+z. This contradicts the minimality o f  S. 
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The example in Fig. 3 shows that there is a polyhedral map on the double torus that 
does not possess the non-revisiting path property but has representativity p - -3 .  This 
example is essentially the same as the one we used in [12] to show that T2 does not 
satisfy the non-revisiting path property. Consider the 24 faces given in Fig. 3. Identify 
like labeled edges. It is shown in [12] that the result is a polyhedral map M on the 
surface T2 not satisfying the non-revisiting path property. In particular, there can be 
no non-revisiting path between the vertices labeled x and y. It is easily checked that 
M has representativity 3. [] 
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