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Abstract
Iterated function systems (IFSs) and their attractors have been central in fractal
geometry. If the functions in the IFS are contractions, then the IFS is guaranteed
to have a unique attractor. Two natural questions concerning contractivity arise.
First, whether an IFS needs to be contractive to admit an attractor? Second, what
occurs to the attractor at the boundary between contractivity and expansion of
an IFS? The first question is addressed in the paper by providing examples of
highly noncontractive IFSs with attractors. The second question leads to the
study of two types of transition phenomena associated with an IFS family that
depend on a real parameter. These are called lower and upper transition attrac-
tors. Their existence and properties are the main topic of this paper. Lower
transition attractors are related to the semiattractors, introduced by Lasota and
Myjak in 1990s. Upper transition attractors are related to the problem of con-
tinuous dependence of an attractor upon the IFS. A main result states that, for
a wide class of IFS families, there is a threshold such that the IFSs in the one-
parameter family have an attractor for parameters below the threshold and they
have no attractor for parameters above the threshold. At the threshold there
exists a unique upper transition attractor.
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1. Introduction

According to Hutchinson’s seminal theorem 1.1 stated below, if the functions in an IFS on a
complete metric space are contractions, then the IFS is guaranteed to have a unique attractor.
Recently, however, there has been an interest in the exact relationship between contractiv-
ity and the existence of an attractor and, in particular, what occurs to the attractor at the
boundary between contractivity and expansion of the IFS. These are the subjects of this
paper.

Let X denote a complete metric space with metric d(·, ·). A finite iterated function system
(IFS) is a set

F := { f 1, f 2, . . . , fN}

of N � 2 continuous functions from X to itself. An IFS is affine if its functions are invertible
affine functions on d-dimensional Euclidean space Rd , projective if its functions are non-
singular projective functions on d-dimensional real projective space RPd, and Möbius if its
functions are Möbius transformations on the extended complex plane C ∪ {∞}, i.e., on the
Riemann sphere. An affine IFS all of whose functions are similarities is referred to as a sim-
ilarity IFS. An affine IFS all of whose functions are non-singular linear maps is refer to as a
linear IFS.

For a function f : X→ X, let

Lip( f, d) := sup
x �=y

d( f (x), f (y))
d(x, y)

denote the Lipschitz constant of f with respect to the metric d. For an IFS F, let

Lip(F, d) :=max
f∈F

Lip( f , d).

A function f is Lipschitz if Lip( f , d) < ∞, and an IFS F is Lipschitz if Lip(F, d) < ∞. A
function f is a contraction with respect to d if Lip( f , d) < 1, and is nonexpansive if Lip
( f , d) � 1.

Definition 1.1. An IFS F on X is contractive, if there is an equivalent metric, also called
an admissible metric, d ′ on X, i.e., a metric d ′ giving the same topology as the original metric
d, such that X remains complete with respect to d ′ and Lip(F, d ′) < 1.

Allowing metrics topologically equivalent to the original metric is essential, for example,
to the validity of theorem 3.1 in section 3. Also see example 3.4.

For the collection 2X of all subsets of X, the Hutchinson operator F : 2X → 2X is
given by
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F(S) :=
⋃
f∈F

f (S), S ⊆ X.

One can restrict the action of F to the collection K(X) of non-empty compact subsets of X
equipped with the Hausdorff metric, denoted further by h. See, for example [13, 14], for the
definition of h and its properties. Note that F(S) =

⋃
f ∈F f (S) for compact S. By abuse of

language, the same notation F is used for the IFS, the set of functions in the IFS, and for the
Hutchinson operator; the meaning should be clear from the context.

A compact set A ⊆ X is the (strict) attractor of F if there is an open neighborhood U ⊇ A
such that

• (Invariance) F(A) = A, and
• (Attraction) A = limn→∞ F(n)(K),

where F(n) denotes the n-fold composition, the limit is with respect to the Hausdorff met-
ric and is independent of the non-empty compact set K ⊆ U. So the attractor is the Banach
fixed point of the Hutchinson operator on K(U). The largest such set U is called the
basin of F.

Theorem 1.1 (Hutchinson [14]). A contractive IFS on a complete metric space X has a
unique attractor with basin X.

In classical IFS theory, it is assumed that the functions in the IFS are contractions, a natural
assumption in light of Hutchinson’s theorem. More recently, however, papers have appeared on
IFS attractors assuming average contractivity (see [31] for a survey), on IFSs that are weakly
contractive (see, for example, [21]), and on relaxing the definition of an attractor, see, for
example [17, 18], in which the notion of a semiattractor is introduced to explain the nature of
supports of invariant measures of average contractive IFSs [4]. This paper is concerned with
attractor phenomena at the transition between contractivity and expansion of a one-parameter
IFS family, between the existence and non-existence of an attractor. To illustrate this kind of
transition phenomena, consider the following family Ft of IFSs that depends on a real parameter
t > 0, which is based on [34, example 1.1].

Example 1.1. In R
3 let Ft := { f (i,t), 1 � i � 2} be the one-parameter affine family where

f (i,t)(v) = tLi(v − qi) + qi, and where

L1 =

⎛⎜⎜⎜⎜⎝
√

2
2

−
√

2
2

0
√

2
2

√
2

2
0

0 0 1

⎞⎟⎟⎟⎟⎠,

is the rotation by π/4 about the z-axis and q1 = (0, 0, 2) is a fixed point of L1 outside the
xy-plane; L2 = 0.4L1 and q2 = (1, 0, 0). For t ∈ (0, 1), the IFS Ft is contractive and has an
attractor At. Figure 1 shows views of At for t = 0.9 and t = 0.96. For t � 1, the IFS Ft fails to
be contractive and has no attractor. The value t = 1 is called a threshold, defined precisely in
definition 1.2 below.

The question arises as to the nature of the transition at the threshold t = 1. In this example,
intriguing F1-invariant sets occur. We refer to such sets as transition attractors, and we
consider two types: lower transition attractors, denoted A•, and upper transition attractors,
denoted A•. Namely, A• is the smallest set with F1(A•) = A• and which contains all fixed
points of the maps in F1 that are the limits of fixed points of the maps in Ft as t → 1−, and
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Figure 1. The attractor At for the one-parameter affine family Ft of example 1.1 for
parameter values t = 0.9 (top line), t = 0.96 (bottom line); side and bottom view of a
fractal ‘cone’. The green and blue colours indicate the image of the attractor under the
two maps of the IFS. Note that f(1,t)(A) ∩ f (2,t)(A) �= ∅.

A• = limt→1− At (in the Hausdorff metric). Precise definitions (definitions 4.1 and 4.3) appear
in section 4. The terminology ‘upper’ and ‘lower’ is due to the fact that, for appropriately
defined one-parameter families, it is the case that A• ⊆ A•.

Figure 2 shows the lower transition attractor and figure 3 shows the upper transition attrac-
tor for the IFS family of example 1.1. The subject of transition attractors, in two guises, was
introduced independently in [20, 34].

In example 1.1 it is natural to define an upper transition attractor of the family Ft as a limit
of ordinary attractors of Ft as t approaches the threshold. Under mild conditions on Ft, it is
not hard to prove that any sequence of attractors Atn , tn → 1, admits a convergent subsequence
(theorem 4.3). Hence, potentially, there can exist several upper transition attractors limn→∞ Atn
depending on the sequence tn. This leads to question 1.1 below about the uniqueness of an
upper transition attractor. On the other hand, considering only the limits of fixed points of the
maps in Ft, which necessarily belong to At for t < 1, results in a unique limit object. This leads
to the concept of the lower transition attractor.
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Figure 2. The lower transition attractor of example 1.1—side and bottom view of a
fractal ‘cone’. Note the thin dotted layers in the left panel that make up a ‘sliced cone’.

Figure 3. The upper transition attractor of example 1.1.

Definition 1.2. A one-parameter family is an IFS family

Ft := { f(1,t), f(2,t) . . . , f(N,t)}
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parametrized by a real number t ∈ [0,∞). The intuition is that, the nearer the parameter t is to
0, the more contractive the functions in the IFS, and as t increases, the functions in Ft become
less contractive. A real number t0 is called the threshold for the existence of an attractor of Ft

if Ft has an attractor for t < t0 but fails to have an attractor for t > t0.

Under mild conditions (see theorems 4.2 and 4.3), a one-parameter family has a unique
lower transition attractor and at least one upper transition attractor. The main open question in
[34] was the following.

Question 1.1. If At, t ∈ (0, t0), denotes the attractor of a one-parameter family Ft of affine
IFSs with threshold t0, what conditions on Ft guarantee the existence of a unique upper transi-
tion attractor, i.e., a compact Ft0 -invariant set A• such that

A• = lim
t→t0

At.

In [34] certain conditions on a one-parameter family of affine functions were conjectured
to guarantee such a unique upper transition attractor A•. Roughly speaking these conditions
were:

(a) Ft consists of similarity maps for each t ∈ [0, t0];
(b) Each function f (i,t) is conjugated to a linear function and this conjugation is independent

of the parameter t or equivalently, for each i, all maps f (i,t), t ∈ [0, t0), have a common
fixed point [34, proposition 5.4];

(c) There exists i∗ ∈ {1, . . . , N} such that:

1. f(i∗,t0) is an isometry;
2. The maps f(i,t0) for i �= i∗ have a smaller scaling ratio than f(i∗,t0).

A main result of this paper, theorem 5.2 and its corollary 5.1, establishes uniqueness in the
more general setting of a real Banach spaces instead of Euclidean space as in [34], and we
allow for maps that are not necessarily affine. The theorem and corollary assume:

(a) Pointwise continuity of the maps in Ft with respect to the parameter t.
(b) The existence of a special index i∗ so that all maps f(i∗,t), t ∈ [0, t0), have a common fixed

point (no common fixed point is required for i �= i∗);
(c)

1. { f(i∗,t)}, t ∈ [0, t0], is an affine family of the form considered in [34] (see definition
3.1) such that f(i∗,t0) is a surjective isometry with a periodic linear part;

2. supi �=i∗,t∈[0,t0]Lip f(i,t) < 1 = Lip f(i∗,t0).

2. Organization and results

The paper is organized as follows.

• (Section 3: contractivity, attractors, and thresholds)

From the origin of IFS theory, the existence of an attractor has been associated with the con-
tractivity of the IFS. The precise relationship, however, has not been completely delineated.
The issue involves the converse of Hutchinson’s theorem 1.1. For an IFS F on a complete
metric space, Hutchinson’s theorem states that contractivity of an IFS is a sufficient condition
for the existence of a unique attractor. When the IFS contains only one mapping, the converse
(which is a converse to the Banach contraction mapping theorem) was proved by Janös [16]
and by Leader [19]. A converse is known to hold for affine, projective and Möbius IFSs; see
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theorem 3.1. In general, however, there are IFSs which admit attractors, but there is no equiv-
alent metric with respect to which the functions in the IFS are contractions.

In the first part of section 3 we construct IFSs which admit attractors but are non-contractive
(examples 3.1, 3.2, and 3.3). Two of those IFSs F are defined on the circle X = S1 and have
the property that Lip(F, d) > 1 for all equivalent metrics d on X, while the third one is defined
on the Euclidean space X = Rn and has the property that Lip(F, d) � 1 for all equivalent
metrics d on X.

In the second part of section 3 the theory of affine one-parameter families of IFSs (definition
3.1) is reviewed. In particular, for a one-parameter affine IFS family Ft, there is a single
threshold t0 between contractivity and non-contractivity of Ft, between the existence and non-
existence of an attractor of Ft, where t0 is the reciprocal of the joint spectral radius of the
linear parts of the affine functions involved. See theorems 3.2 and 3.3. Example 3.4 shows
that, in general, a one-parameter family may have an attractor for all positive values of the
parameter, despite the fact that the functions are not contractions for all large values of the
parameter.

• (Section 4: lower transition attractors, upper transition attractors, and semiattractors)

In this section we develop a general theory of, not necessarily affine, one-parameter families
Ft and their thresholds. The results are based on general hypotheses about

1. Continuous dependence of the IFS Ft upon t (called (H1), (H1′)),
2. Contractivity of the maps in Ft (called (H2), (H2′)), and
3. The behaviour of fixed points of the maps in Ft (called (H3)).

Under these hypotheses, the concepts of lower and upper transition attractors are defined as
phenomena which occur at the threshold of Ft.

The results in this section are as follows.

• Theorem 4.2 establishes the existence of a lower transition attractor and its relation to the
Lasota–Myjak theory of semiattractors (see definition 4.2 and theorem 4.1).

• Corollary 4.1 and remark 4.4 provide conditions under which the lower transition attractor
is compact.

• Theorem 4.3 establishes the existence of a not necessarily unique upper transition attractor
under very general conditions.

• Theorem 4.4 shows that in general the upper transition attractor is an invariant set and it
contains the lower transition attractor.

• Proposition 4.1 shows that transition attractors are, in an appropriate sense, often symmet-
ric sets.

Examples illustrate subtleties of the developed theory. Namely, example 4.1 exhibits a lower
transition attractor that is unbounded, and example 4.3 shows that the upper transition attractor
may not exist, despite the fact that the attractors exist for all parameter values of the one-
parameter family of IFSs.

• (Section 5: the existence of a unique upper transition attractor)

Theorem 5.2 (and its corollary 5.1), the main result of the paper, provides an answer to
question 1.1 in the introduction—giving conditions that guarantee a unique upper transition
attractor. There is a short discussion in the introduction.

Examples 5.1–5.4 show that none of the assumptions in theorem 5.2 can be eliminated.
Without any one of them, theorem 5.2 may fail to hold.
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• (Section 6: open problems)

There are questions and conjectures about transition attractors that remain open. Several are
posed in this section. For instance, question 6.2 asks whether the ‘periodicity’ assumption in
theorem 5.2 can be dropped in a less general setting.

3. Contractivity, attractors, and thresholds

For an IFS on a complete metric space, the converse of Hutchinson’s theorem 1.1 does not,
in general, hold. Examples 3.1–3.3 are provided below. These examples notwithstanding, a
converse does hold in the affine, Möbius, and projective cases.

Theorem 3.1 ([2, 5, 33]). An affine, Möbius, or projective IFS can have at most one
attractor. Moreover,

(a) An affine IFS F has an attractor if and only if F is contractive on Rd.
(b) A Möbius IFS F has an attractor A �= C ∪ {∞} if and only if F is contractive on an open

set whose closure is not C ∪ {∞}.
(c) A projective IFS F has an attractor that avoids some hyperplane if and only if F is

contractive on the closure of some open set.

There exist IFSs that have an attractor but are not contractive. For the examples F in [6, 21]
Lip(F, d) = 1. Our counterexamples below are of

(a) An IFS F on the circle S1 that admits a unique attractor but Lip(F, d) > 1 for all equivalent
metrics d on X (example 3.1),

(b) A stronger counterexample of an IFS F on S1 that admits a unique attractor but Lip( f , d) >
1 for all f ∈ F and all equivalent metrics d on X (example 3.2), and

(c) An IFS on R
n that has an attractor but is not contractive (example 3.3).

Let f : S1 → S
1 be the angle doubling map f (z) = z2 (see [10]). Let ρ : S1 → S

1 be the
rotation map ρ(z) = eiα z where α/2π is irrational and let g(z) = ρ ◦ f (z). The following
proposition, which can be obtained from the standard theory of topological dynamics, is helpful
in showing the validity of the two examples.

Proposition 3.1. If d is any metric on S1 inducing the standard topology on S1, then
Lip( f , d) > 1 and Lip(g, d) > 1.

Proof. One can easily see that f and g are locally distance doubling with respect to the arc
metric on S1. Therefore they are topologically expanding ([1], chapter 2.2 and [29]). Since the
notion of a topologically expanding map on a compact space does not depend on the choice of
metric, this proves proposition 3.1. Moreover, neither f nor g are locally nonexpansive at any
point under any equivalent metric d on S1. �

Example 3.1 (An IFS on the circle S
1 having an attractor, but with Lip(F, d) > 1

for any admissible metric d on S1). With f and ρ as defined above, let F := { f , ρ, id},
where id is the identity map on S1. That Lip(F, d) > 1 follows from proposition 3.1. That S1

is the attractor of F is seen as follows. The invariance F(S1) = S1 is clear since ρ is a rotation.
That limn→∞ F(n)(z) = S1 for any z ∈ S1 can be seen as follows. We have {ρ(m)(z) : 0 � m �
n} ⊆ F(n)(z) and {ρ(m)(z)}∞m=0 is dense in S

1, since ρ is an irrational rotation.
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Note that one could remove the identity map from the IFS in example 3.1 and achieve the
same outcome. The justification, however, becomes more complicated as in example 3.2 below.

Example 3.2 (An IFS on the circle S1 having an attractor, but with Lip( f , d) > 1
for all f ∈ F under any admissible metric d on S1). With f and g as defined above, let
F := { f , g}. Again, that Lip( f , d) > 1 and Lip(g, d) > 1 follows from proposition 3.1. That S1

is the attractor of F is seen as follows. The invariance F(S1) = S1 is clear since f maps S1 onto
itself. That limn→∞ F(n)(z) = S1 for any z ∈ S1 can be seen as follows. Abbreviate the point eiθ

by zθ. For (a1, a2, . . . , an) ∈ (Z2)n, denote by f(a1,a2,...,an) : S1 → S1 the map given by

f(a1,a2,...,an)(zθ) = z(2nθ+
∑n

k=1 2k−1akα).

(That is f(a1,a2,...,an) = fan ◦ · · · ◦ fa2 ◦ fa1 , under identification f0 := f , f1 := g.) Then for any
z = zθ we have

F(n)(z) = { f(a1,...,an)(zθ) : (a1, . . . , an) ∈ (Z2)n} = {ρ(m)(z2nθ) : 0 � m < 2n}.

Therefore, for any ε > 0 there is an n such that there is no arc on S1 of length ε not containing
a point of F(n)(z). Therefore limn→∞ F(n)(z) = S1.

Example 3.3 (An IFS on Rn that has an attractor but is not contractive). Let
A be a unit cube in Rn, or any other convex compact set in Rn, other than a single point,
that is the attractor of an IFS F. Then A is a retract of Rn, i.e., there exists a continuous map
r : Rn → A such that r(Rn) = A and r restricted to A is the identity map. (In fact, any set home-
omorphic to a convex compact subset of a Banach space X is a retract of X, see [12, chapter I,
corollary 1.4, definition 1.7 and theorem 1.9.1].) Since A contains more than one point, the map
r cannot be a contraction with respect to any metric equivalent to the Euclidean metric. Now let
G = F ∪ {r}. Then G is an IFS with attractor A. Indeed, F(k)(S) ⊆ G(k)(S) ⊆ F(k)(S) ∪ A for any
non-empty S ⊆ Rn. Since r cannot be a contraction with respect to any metric equivalent to the
Euclidean metric, the IFS G is not contractive.

Remark 3.1. The possibility of remetrization of a given IFS F by a metric making each map
weakly contractive is equivalent to the existence of a coding map [3, 25].

Definition 3.1. A one-parameter family

Ft := { f(1,t), f(2,t) . . . , f(N,t)}

whose functions have the form

f(i,t)(x) = t f i(x) + qi, x ∈ R
d

where

F := { f1, f2, . . . , fN} and Q := {q1, q2, . . . , qN}

are a set of invertible affine transformations on Rd and a set of vectors in Rd , respectively, is
called a one-parameter affine family.

Theorem 3.2 below states that a one-parameter affine family has a threshold for the existence
of an attractor. The threshold in example 1.1 is t0 = 1. See [8, 9, 30] for background on the
joint spectral radius.

Theorem 3.2 ([34]). For a one-parameter affine family Ft, let t0 = 1/ρ(F), where ρ(F) is
the joint spectral radius of the linear parts of the functions in F. Then Ft has an attractor for
t < t0 and fails to have an attractor for t > t0.
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Figure 4. A transition attractor for a linear one-parameter family.

More can be said for a linear family Ft, all of whose maps are of the form f t(x) = t L(x),
where L is a non-singular linear map. In this case, it immediately follows from theorem 3.2
that the attractor At of Ft is the origin, a single point, for all t < t0, and there is no attractor for
all t > t0. However, the following holds.

Theorem 3.3 ([7]). Let Ft be an irreducible (F admits no non-trivial invariant subspace),
one-parameter linear IFS family on Rd with threshold t0. Then there exists a compact Ft0-
invariant set that is centrally symmetric, star-shaped, and whose affine span is Rd.

In other words, the attractor evolves with the parameter t from trival to non-existent, blow-
ing up only at the single threshold value t = t0. An example in R

2 is shown in figure 4 for
F := {L1, L2} where

L1 =

(
0.02 0

0 1

)
, L2 =

(
0.0594 −1.98
0.495 0.015 47

)
.

In general, an IFS Ft may admit an attractor for all t � 0, despite the fact that the functions
in Ft are not contractions with respect to the Euclidean metric for large values of t. See example
3.4 below.

Example 3.4 (A family of IFSs Ft on R2 that admits an attractor for all t � 0,
but the functions in Ft are contractions with respect to the Euclidean metric for
only values of t in a finite interval, cf [21], example 6.3). Define Ft := { f (1,t), f (2,t)},
where

f(1,t)(v) =

(
0 κ1t

λ1/t 0

)
v, f(2,t)(v) =

(
0 κ2t

λ2/t 0

)
v +

(
1/λ2 − t

1/κ2 − 1/t

)
,

where λi,κ j > 0, λiκ j < 1 for i, j ∈ {1, 2}.
Note that the functions in Ft are affine, but Ft is not an affine one-parameter family as in

definition 3.1. The functions in Ft are contractions with respect to the Euclidean metric only
for min{1/κ1, 1/κ2} > t > max{λ1,λ2}. We claim, however, that Ft admits an attractor At for
all t > 0. Since Ft consists of affine functions for each t > 0, it would then follow that the IFS
Ft is contractive for each t > 0 by theorem 3.1 part (a).

To see that Ft has an attractor, consider the second iterate F2
t := { f(i,t) ◦ f( j,t) : 1 � i, j � 2}

of Ft given by

f(i,t) ◦ f( j,t) (v) =

(
κi λ j 0

0 κ j λi

)
v + ai, j(t),
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Figure 5. The attractor At for the one-parameter affine family Ft of example 3.4 for
successive parameter values t = 0.5, 1, 5.

where the vectors ai, j(t), i, j ∈ {1, 2}, are readily calculated. The two functions in F2
t are con-

tractions for all t ∈ (0,∞) when 0 < κiλ j < 1 for i, j ∈ {1, 2}, and therefore have an attractor
for all t ∈ (0,∞). If an attractor exists for one of them, then Ft and F2

t have the same attractor.
Therefore Ft admits an attractor At for all t. The attractor of F2

t is shown in figure 5 for three
values of t in the case that λ1 = 1/4,κ1 = 3,λ2 = 1/5 and κ2 = 2. The functions in Ft are
contractions with respect to the Euclidean metric only for t ∈ (1/4, 1/3), yet the functions in
the second iterate F2

t are contractions for all t ∈ (0,∞).

4. Lower transition attractors, upper transition attractors, and semiattractors

Consider a one-parameter family

Ft := { f(i,t) : 1 � i � N}, t ∈ [0,∞),
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consisting of Lipschitz maps defined on a complete metric space (X, d). Let t0 be the threshold
for the existence of an attractor as given in definition 1.2. We say that t̂0 is a threshold for
contractivity if Ft is contractive for all 0 < t < t̂0 and

t̂0 = sup {t : Ft is contractive}.

We assume throughout this section that Ft has a finite contractivity threshold. Note that for
t < t̂0, the IFS Ft has an attractor; hence

t̂0 � t0

if a threshold t0 exists. It is often the case and it is the interesting case when t̂0 = t0, but we
know from the examples in section 3 that this is not always true.

Various subsequent results in the paper will concern an IFS family Ft for values of t in an
interval [0, t∗], where 0 < t∗ � t0. Often, but not always, t∗ will be a threshold value. It can be
assumed, without loss of generality, that t∗ = 1. Indeed, we can reparametrize

f̃(i,t) := f(i,tt∗)

and

F̃t := { f̃(i,t) : 1 � i � N}.

Therefore, throughout the rest of the paper, the parameter t is restricted to the closed interval
[0, 1]. This allows for ease of exposition and a greater generality of the results.

The following conditions on the one-parameter family Ft on the metric space (X, d) appear
in the hypotheses of the results in this paper:

(H1) The map t �→ f(i,t)(x) ∈ X is continuous for every x ∈ X and every i = 1, . . . , N;
(H1′) The map t �→ f(i,t) ∈ C(X) is continuous for every i = 1, . . . , N, where the space C(X)

of continuous selfmaps of X is endowed with the topology of uniform convergence;
(H2) Lip(Ft, d) < 1 for all t ∈ [0, 1);
(H2′) supt∈[0,1) Lip(Ft, d) < 1;
(H3) qi := limt→1−qi,t exist for each 1 � i � N, where qi,t denotes the unique fixed point of

f (i,t), t ∈ [0, 1). Define Q := {qi : 1 � i � N}.

Clearly conditions (H1)–(H3) are satisfied within the framework of affine one-parameter
families considered in [34], see definition 3.1.

Whenever the IFS Ft has an attractor, we denote it by At.

Remark 4.1. If (H1) and (H2) hold, then

(a) Each Ft : K(X) →K(X), t < 1, is a Banach contraction in the Hausdorff metric.
(b) Lip(F1, d) � 1. In particular, the Hutchinson operator F1 : K(X) →K(X) is nonexpansive

in the Hausdorff metric.
(c) The limit point qi ∈ Q in (H3) is a fixed point of f (i,1) as easily follows from (d) below.

One should be aware, however, that qi is not necessarily a unique fixed point of f (i,1) ( just
think of the affine one-parameter family f (i,t)(x) = tx; see also example 4.2).

(d) The following weakening of condition (H1′) is fulfilled: the map t �→ f(i,t) ∈ C(X) is con-
tinuous for every i = 1, . . . , N, where the space C(X) of continuous selfmaps of X is
endowed with the topology of uniform convergence on compacta. It is worth pointing
out that the above weakening of condition (H1′) holds when the condition (H2) is relaxed
to the following one: Lip(Ft, d) � 1 for all t ∈ [0, 1).
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4.1. The lower transition attractor and semiattractor

Definition 4.1. Let a one-parameter family Ft satisfy condition (H3). The lower transition
attractor of Ft is the smallest (with respect to inclusion) set A• which is (F1, Q)-invariant,
i.e., F1(A•) = A• and A• ⊇ Q. (Equivalently, A• is the smallest set with F1(A•) ∪ Q = A•; see
the first part of proof of theorem 4.2.)

Definition 4.2 ([17, 27]). Let F be an IFS on a metric space X. If the intersection is
nonempty, then the semiattractor of F is

A∗ :=
⋂
x∈X

Li(F(n)({x})),

where Li(Sn) is the lower Kuratowski limit ([13]) of a sequence of sets Sn ⊆ X, i.e.,

Li(Sn) := {y ∈ X : there exist points xn ∈ Sn such that xn → y}.

Note that a semiattractor can be unbounded, e.g. [17]. The following properties of an IFS
with semiattractor A∗ hold.

Theorem 4.1 ([27]). If F is an IFS on a complete metric space with semiattractor A∗, then

(a) F(A∗) = A∗; moreover A∗ is the smallest F-invariant set.
(b) If F admits an attractor A with a full basin X, then A∗ = A.

Originally the notion of a semiattractor appeared in the works of Lasota and Myjak;
see [17, 18]. This framework was intended to give a systematic approach to IFSs where non-
contractive maps are added to an IFS consisting of contractions. Interest in such systems stems
from computer graphics and dates back to Barnsley and Elton [4]. In a particular case, where
an isometry is added to a contractive IFS, such a system is related to another contractive IFS.
This allows one to use the standard methods for computer drawing of attractors of contractive
IFSs, as is done in example 4.2 below; see [20, 32]. However, in general, when an IFS con-
tains noncontractive maps or maps with parabolic fixed points, specific methods of drawing
attractors need to be used; see [26].

Theorem 4.2 below is a significantly more general version of those parts of [34, theorem 8.2]
pertaining to the lower transition attractor. In addition, part (d) of theorem 4.2 relates the lower
transition attractor of a one-parameter family Ft to the semiattractor of an associated IFS.

Theorem 4.2. Let Ft be a one-parameter family Ft, t ∈ [0, 1], on a complete metric space
(X, d) that satisfies (H1)–(H3). Then the lower transition attractor A• exists.

Furthermore, let Q′ = {qi : i ∈ J}, where J �= ∅ is such that

{i ∈ {1, . . . , N} : Lip( f(i,1)) = 1} ⊆ J ⊆ {1, . . . , N}.

In other words, Q′ ⊆ Q contains at least the limits of fixed points qi that correspond to those
functions f (i,1) that are not contractions. Then A• satisfies the following properties:

(a) A• is the smallest (F1, Q′)-invariant set and

A• =
⋂

{A ∈ 2X : F1(A) = A and Q′ ⊆ A};

(b) A• =
⋃

n�0 Fn
1(Q′);

(c) The lower transition attractor A• is the semiattractor of any IFS of the form F	
1 :=F1 ∪

{q̌(x) : q ∈ Q′}, where q̌(x) := q is the constant map on X.
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Proof. Clearly, F	
1(S) = F1(S) ∪ Q′ for any nonempty S ⊆ X, and F1(Q′) ⊇ Q′. First note

that the set A is the smallest F	
1-invariant set if and only if A is the smallest F1-invariant set

which contains Q′. Indeed, A = F	
1(A) = F1(A) ∪ Q′ implies F1(A) ⊆ A and A = A ∪ Q′ ⊇ Q′.

Hence

F1(A) = F1(A ∪ Q′) = F1(A) ∪ F1(Q′) ⊇ F1(A) ∪ Q′ = A.

In the reverse direction, if A = F1(A) and A ⊇ Q′, then F	
1(A) = F1(A) ∪ Q′ = A ∪ Q′ = A.

Second, observe that the subsystem {q̌ : q ∈ Q′} ⊆ F	
1 consists of contractions and admits

a semiattractor (even attractor), which is Q′. Hence, by the Lasota–Myjak criterion ([27],
theorem 6.3), F	

1 admits a semiattractor, denoted A′
∗. By the equivalence shown in the first

paragraph, we have

A′
∗ =

⋂
{A ∈ 2X : F1(A) = A and Q′ ⊆ A}. (4.1)

Furthermore, since A′
∗ ⊇ Q′ and (F	

1)n(Q′) = Fn
1(Q′), we have

A′
∗ =

⋃
n�0

Fn
1(Q′) (4.2)

due to the self-regeneration formula in the Lasota–Myjak criterion ([27], theorem 6.3, equation
(6.9)). In particular, the above is true for Q′ = Q, in which case we write A∗ for the semiattrac-
tor. We have established the existence of a lower transition attractor, which is A• = A∗.

Third, we shall establish that all A′
∗ are equal to A∗. This will give property (c) and, in turn,

(b) (due to (4.2)) and (a) (due to (4.1)). Of course A′
∗ ⊆ A∗. Consider qi = f (i,1)(qi) with i /∈ J.

Since {qi} is the attractor of the subsystem { f(i,1)} ⊆ F	
1, we have qi ∈ A′

∗. Overall Q ⊆ A′
∗ and

A∗ ⊆ A′
∗. �

Remark 4.2. In theorem 4.2, if F1 has an attractor A1, then A1 = A•. This is because A1 ⊇ Q,
where Q is given in condition (H3).

Remark 4.3. The original definition of a lower transition attractor in [34] required that
A• is (F1, Q′)-invariant, where Q′ = {qi∗}, and i∗ is a unique index i ∈ {1, . . . , N} with
Lip( f (i,1)) = 1. Thanks to theorem 4.2, both definitions, the one in this paper and that in [34]
coincide.

Under mild additional conditions on Ft, the lower transition attractor is compact. See
corollary 4.1 and remark 4.4 below. These results require extending some concepts defined
in section 1 to infinite IFSs, e.g., [22, 23]. Let F be a finite or infinite IFS on a complete metric
space X. The Hutchinson operator on 2X for an infinite IFS F is defined exactly as for a finite
IFS in section 1. Further, as in the finite IFS case, we define

Lip(F, d) := sup
f∈F

Lip( f , d).

An IFS F onXwill be called compact if F(K) is compact for every compact set K ⊆ X. Clearly,
any finite IFS is compact.

Given an IFS F on X, the monoid induced by F is

M(F) := { f 1 ◦ · · · ◦ fk : f 1, . . . , fk ∈ F, k ∈ N} ∪ {idX}.
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A monoid can be treated as a new IFS. In particular, we may speak of a compact monoid.

Corollary 4.1. Let Ft be as in theorem 4.2 and let J = {1 � i � N : Lip( f (i,1), d) = 1}. If the
monoid M({ f(i,1) : i ∈ J}) is compact, then the lower transition attractor A• of Ft is compact.

Proof. The statement follows from theorem 4.2(c) and from [32, theorem 4.1(E)]. �
Recall that a metric space is proper if its bounded and closed subsets are compact.

Remark 4.4. If either of the following two conditions hold, then the monoid M({ f(i,1) : i ∈
J}) is compact.

• J = {i∗} for some i∗ ∈ {1, . . . , N}, and f(i∗,1) is a periodic isometry, see [20];
• X is proper and all f (i,1), i ∈ J, have a common fixed point (not necessarily unique), see

[32, theorem 4.2(ii), remark 2.2 item 3].

The compactness of the lower transition attractor A• in corollary 4.1 cannot be inferred from
(H1)–(H3) alone. Example 4.1 below is a counterexample.

Example 4.1 (A one-parameter family satisfying (H1)–(H3) whose lower transi-
tion attractor is not compact.)

On R let Ft := {gt, f t}, where gt(x) = −tx and f t(x) = −tx + t + 1. For t ∈ (0, 1) we have
At = [−t/(1 − t), 1/(1 − t)]. In this case A• = Z.

Example 4.2 below is a three-dimensional example illustrating the previous results in this
section.

Example 4.2. In R3 let Ft = { f (i,t), 1 � i � 5} be the one-parameter affine family where
f (i,t)(v) = tLi(v − qi) + qi, and

L1 = L2 = L3 =

⎛⎝0.5 0 0
0 0.5 0
0 0 0.5

⎞⎠, L4 =

⎛⎝ 0 0 1
0 1 0
−1 0 0

⎞⎠, L5 =

⎛⎝1 0 0
0 −1 0
0 0 1

⎞⎠.

The map L4 is the rotation by π/2 about the y-axis, and L5 is the reflection in the xz-plane. The
fixed points are

qi =

(
cos

2π(i − 1)
3

, sin
2π(i − 1)

3
, 0

)
for i = 1, 2, 3, q4 = (0, 1, 0), q5 = (0, 0, 1),

where q1, q2, q3 are the third roots of unity in the xy-plane. Note that the attractor of the IFS
{ f (i,1), 1 � i � 3} is the Sierpiński triangle in the xy-plane with vertices q1, q2, q3.

For each 1 � i � 5, the point qi is a common fixed point of f (i,t) for t ∈ [0, 1]. However, qi

is not the only fixed point of f (i,1) for i = 4, 5. More precisely, f (4,1) has the whole y-axis as its
set of fixed points; f (5,1) has the whole xz-plane as its set of fixed points; and (0, 0, 0) �= q4, q5

is the only common fixed point of f (4,1) and f (5,1).
On the left in figure 6 is the attractor At of Ft for t = 0.8. By theorem 4.2 the lower tran-

sition attractor A• for IFS family Ft of example 4.2 exists; it appears on the right in figure 6.
By corollary 4.1 A• is compact, since one can easily check that the monoid M({ f(4,1), f(5,1)})
is finite or one can apply remark 4.4. Figure 6 was generated using Mekhontsev’s IFStile pro-
gram [24]. To draw A• using this program we have applied part (c) of theorem 4.2 which
identifies A• as a semiattractor of a suitable IFS F	

1 := { f(1,1), f(2,1), f(3,1), f(4,1), f(5,1), q̌4, q̌5}
related to Ft. Then the resulting IFS F	

1 was replaced with a contractive IFS according to
[32, theorem 4.1(B)].
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Figure 6. The attractor At for the one-parameter affine family Ft of example 4.2 for
parameter value t = 0.8 and the lower transition attractor A• of Ft.

4.2. The upper transition attractor

Definition 4.3. Call a compact set A• an upper transition attractor of a one-parameter
IFS family Ft := { f (1,t), f (2,t), . . . , f (N,t)}, t ∈ [0, 1], if there is an increasing sequence tn → 1
such that

A• = lim
n→∞

Atn .

Theorems 4.3, 4.4, and proposition 4.1 below are strong versions of results on upper transi-
tion attractors and their relation to the lower transition attractor that were proved in [34] only
for special cases of one-parameter similarity families.

Theorem 4.3. Let Ft, t ∈ [0, 1], be a one-parameter family of IFSs on a proper metric space
(X, d). Assume that

(a) either Ft satisfies (H1′) and (H2);
(b) or Ft satisfies (H1) and (H2), and there is ( possibly empty) I ⊆ {1, . . . , N} such that:

1. The sub-family FI
t := { f(i,t) : i ∈ I} of Ft satisfies (H2′) and Lip(FI

1, d) < 1, i.e.,
sup{Lip( f(i,t), d) : t ∈ [0, 1], i ∈ I} < 1;

2. The maps f (i,t) have a common fixed point for all t ∈ [0, 1], i /∈ I.

Then Ft admits at least one upper transition attractor.

Condition (2) in part (b) of the above theorem may look artificially strong. However, in view
of remark 5.3, it is in line with condition (c) of theorem 5.2.

To prove theorem 4.3 we need the following lemmas.

Lemma 4.1. Assume that ( fn) is a sequence of contractions on a complete metric space
(X, d), uniformly convergent to some function f . Then the set of fixed points of maps fn, n ∈ N,
is bounded.

Proof. Let dsup( f , g) := supx∈X d( f (x), g(x)) for f , g : X→ X. For n ∈ N, let xn be the fixed
point of fn. Fix an n0 ∈ N such that dsup( fn, f ) < 1 for all n � n0. For every n � n0, we have
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d(xn, xn0) � d( fn(xn), fn0(xn)) + d( fn0(xn), fn0(xn0 ))

� dsup( fn, fn0 ) + Lip( fn0)d(xn, xn0)

� dsup( fn, f ) + dsup( f , fn0) + Lip( fn0)d(xn, xn0).

Hence

d(xn, xn0) � dsup( fn, f ) + dsup( f , fn0)
1 − Lip( fn0)

� 2
1 − Lip( fn0)

.

Therefore

diam{xn : n ∈ N} � 2 max

{
d(x1, xn0), . . . , d(xn0−1, xn0),

2
1 − Lip( fn0)

}
< ∞.

�

The lemma below will be used in section 5 as well.

Lemma 4.2. LetX be a metric space and ft, t ∈ [0, 1], be a family of nonexpansive selfmaps
of X such that the map [0, 1] � t �→ f t(x) is continuous for every x ∈ X. Then

(a) For every nonempty and compact set D ⊆ X, the map

[0, 1] � t �→ f t(D) ∈ K(X)

is uniformly continuous;
(b) The IFS F := { f t : t ∈ [0, 1]} is compact.

Proof. Part (a). This result follows from remark 4.1(d). Indeed, observe that the one-
parameter family Ft := { f t} satisfies (H1) and Lip(Ft, d) � 1.

Part (b). Take any nonempty and compact set D ⊆ X. By (a)

F(D) =
⋃

t∈[0,1]

ft(D) =
⋃

t∈[0,1]

f t(D)

is compact thanks to [13, corollary 2.20, ch 2.1 p 42 and theorem 2.68, ch 2.2 p 62]. �

Proof of theorem 4.3. Fix a sequence [0, 1) � tn ↗ 1. For every sequence of attractors Atn

of Ftn , we are going to find a bounded set B so that Atn ⊆ B. Since X is a proper metric space,
(Atn) must have a convergent subsequence, whose limit is an upper transition attractor of Ft.

Part (a). Observe that

sup
K∈K(X)

h(Ftn(K), F1(K)) = sup
K∈K(X)

h

(
N⋃

i=1

f(i,tn)(K),
N⋃

i=1

f(i,1)(K)

)
� sup

K∈K(X)
max

i=1,...,N
h( f(i,tn)(K), f(i,1)(K))

� max
i=1,...,N

dsup( f(i,tn), f(i,1)) → 0.

Therefore the sequence of Hutchinson operators (Ftn) is uniformly convergent to F1. Hence by
lemma 4.1 the family of attractors {Atn : n ∈ N} is bounded in K(X). So B :=

⋃
n∈N Atn ⊆ X is

bounded.
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Part (b). The case I = ∅ is immediate since At = {q∗}=: B, where q∗ is a common fixed
point of f (i,t)’s guaranteed by condition (2.).

To find B in case I �= ∅, consider the IFSs

F′ :=
⋃
i∈I

{ f(i,t) : t ∈ [0, 1]}

F′′ :=
⋃
i/∈I

{ f(i,t) : t ∈ [0, 1]}.

First observe that the IFS F′ is compact since, by lemma 4.2(b), F′ is a finite union of
compact IFSs. Moreover, Lip(F′, d) < 1.

Second observe that by [32, remark 2.2, items (3) and (4)], the monoid M(F′′) is compact.
Moreover, Lip(F′′, d) � 1.

By the above observations, using [32, theorem 4.1, remark 2.2], we have that the IFS F′ ∪ F′′

has a compact semiattractor B. In particular, Ft(B) ⊆ F′(B) ∪ F′′(B) = B. So, for each t < 1,
At ⊆ B for the attractor At of Ft. �

The existence of an upper transition attractor in theorem 4.3 cannot be inferred from
(H1)–(H3) alone; see example 4.1. Neither can it be inferred from (H1) and the assumption that
all maps in Ft are contractions for all t ∈ [0, 1]. This is in contrast to a lower transition attrac-
tor, which exists under conditions (H1)–(H3); see theorem 4.2. Nevertheless, if the attractor
of F1 exists and the upper/lower transition attractor of Ft exists, then they both coincide; see
theorem 4.4(a) and remark 4.2. It is worth recalling that a one-parameter family Ft, t ∈ [0, 1],
can satisfy (H1) and (H2) and have a unique upper transition attractor, while the attractor of
F1 does not exist, see [34, example 8.1]. Example 4.3 below shows that the opposite situation
can occur. Namely, we construct a family Ft for which F1 admits an attractor, but Ft does not
have an upper transition attractor.

Example 4.3. Motivated by the construction in [28, example 1], we will construct a one-
parameter family of IFSs Ft, t ∈ [0, 1], with the following properties:

(a) Ft satisfies (H1);
(b) For all t ∈ [0, 1] all maps in Ft are contractions, in particular Ft satisfies (H2);
(c) Ft has no upper transition attractor.

Let 
1 be the Banach space of absolutely summable sequences of real numbers. We will
construct functions f t : 
1 → 
1, t ∈ [0, 1], such that the one-parameter family Ft = { f t} will
satisfy properties (a)–(c) above.

First, for every n ∈ N, define gn : 
1 → 
1 by

gn(x) :=

(
1
n
+

(
1 − 1

n

)
xn

)
en, x = (xn) ∈ 
1,

where en = (0, . . . , 0, 1, 0, . . .) is a sequence with a 1 in the nth position and 0s elsewhere.
Observe that

‖gn(x)‖ � 1
n
+ |xn|

and so

(a′) gn(x) → 0 for every x ∈ 
1,

where 0 is the sequence of zeros. Moreover, the sequence of functions gn satisfies
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(b′) Lip(gn) = 1 − 1
n < 1;

(c′) en is a unique fixed point of gn but en �→ 0.

Next we construct a one-parameter family f t, t ∈ [0, 1], which interpolates the sequence
gn. It will be done in such a way that the properties (a′)–(c′) of gn bootstrap to the properties
(a)–(c) of Ft = { f t}, t ∈ [0, 1]. In order to do that define

f 1(x) := 0, x ∈ 
1.

Next choose any increasing sequence (an) of real numbers tending to 1 and such that a0 = 0. We
need three functions α, β : [0, 1) → [0, 1], and ν : [0, 1) → N ∪ {0}. Dissect the unit interval
into disjoint subintervals [0, 1) =

⋃
n∈N∪{0} [an, an+1) and define on each subinterval

α(t) :=

⎧⎪⎪⎨⎪⎪⎩
1, if an � t � an + an+1

2
,

2 · (t − an+1)
an − an+1

, if
an + an+1

2
� t < an+1,

β(t) :=

⎧⎪⎨⎪⎩
2 · (t − an)
an+1 − an

, if an � t � an + an+1

2
,

1 if
an + an+1

2
� t < an+1,

see figure 7. Finally, define ν(t) := min{n ∈ N ∪ {0} : t � an} for t ∈ [0, 1). (Equivalently,
ν(t) = n when t ∈ [an, an+1).) The maps f t : 
1 → 
1, t ∈ [0, 1), can now be defined as follows:

f t :=α(t)gν(t) + β(t)gν(t)+1.

(In particular, f an = gn.)
The maps α, β, ν satisfy the following conditions:

(i) α, β are right continuous on [0, 1), and are continuous on each interval (an, an+1),
n ∈ N ∪ {0};

(ii) For any n ∈ N ∪ {0}, we have that

(iia) α(t) = 1 for t ∈ [an, (an + an+1)/2], and limt→a−n+1
α(t) = 0;

(iib) β(an) = 0, β(t) = 1 for t ∈ [(an + an+1)/2, an+1) and limt→a−n+1
β(t) = 1.

We will justify conditions (a)–(c) for the family Ft = { f t}.

(a) The continuity of the map t �→ f t(x) at each t ∈ [0, 1) follows from (a) and (b), whereas
its continuity at t = 1 follows from (a′).

(b) From (b′) we easily see that for t ∈ [0, 1),

Lip( f t) � max

{(
1 − 1

ν(t)

)
α(t),

(
1 − 1

ν(t) + 1

)
β(t)

}
� 1 − 1

ν(t) + 1
< 1.

(c) Straightforward calculations show that the unique fixed point of f t, t ∈ [0, 1), is

zt =
α(t)

ν(t)(1 − α(t)) + α(t)
eν(t) +

β(t)
(ν(t) + 1)(1 − β(t)) + β(t)

eν(t)+1.

(4.3)
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Figure 7. The graphs of α and β.

Thanks to (b), either the left or the right fraction in (4.3) equals 1. Hence ‖zt‖ � 1. In
consequence, ztn �→ 0 for any tn → 1. Since At = {zt} is an attractor of Ft, and the attractor
{0} of F1 is the only possible candidate for an upper transition attractor of a one-parameter
family Ft (see discussion before this example), this yields (c).

Theorem 4.4. Let Ft, t ∈ [0, 1], satisfy (H1) and (H2). If A• is any upper transition attractor
of Ft, then

(a) F1(A•) = A•.

If, in addition, Ft satisfies (H3), then

(b) A• ⊇ Q; equivalently A• ⊇ A•,

where A• is the lower transition attractor of Ft and Q is the set of limit fixed points from (H3).

Proof. Let [0, 1) � tn ↗ 1 be such that Atn → A• with respect to h as n →∞. To establish
(a) recall that each Ftn and F1 are nonexpansive with respect to h (part (b) of remark 4.1).
Furthermore, according to lemma 4.2(a), we have

h(F1(A•), Ftn(A•)) � max
1�i�N

h( f(i,1)(A
•), f(i,tn)(A

•)) → 0.

Hence, by using Ftn(Atn) = Atn we get

h(F1(A•), A•) � h(F1(A•), Ftn(A•)) + h(Ftn(A•), Ftn(Atn)) + h(Ftn(Atn), A•)

� h(F1(A•), Ftn(A•)) + 2h(Atn, A•) →
n→∞

0.

Now we establish (b). Observe that qi,tn ∈ Atn → A•, and qi,tn → qi ∈ Q as n →∞. Thus
Q ⊆ A•. Hence A• is (F1, Q)-invariant, and therefore it contains A•. �

Remark 4.5. Assuming (H1)–(H3), A• is compact whenever A• exists.

Proposition 4.1. Assume that Ft, t ∈ [0, 1], satisfies (H1) and (H2). Let f(i∗,1) be an isometry
for some i∗ ∈ {1, . . . , N}.

(a) If there exists an upper transition attractor A•, then it is f(i∗,1)-symmetric, i.e., f(i∗,1)

(A•) = A•.
(b) If there exists a lower transition attractor A• that is compact, then it is f(i∗,1)-symmetric.
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Proof. Observe that f(i∗,1)(A•) ⊆ A•. Then the isometry f(i∗,1) is surjective on compactum A•.
Analogously for A•. �

5. The existence of a unique upper transition attractor

This section addresses question 1.1 in the introduction. Theorem 5.2 below gives an affirmative
answer for a large class of one-parameter IFS families.

We start with lemma 5.1 below for infinite IFSs, which is already known for finite IFSs.
Here the Hutchinson operator F : 2X → 2X is as defined in section 4.

Definition 5.1. For a finite or infinite IFS F, a nonempty compact set A is a Hutchinson
attractor on a complete metric space X if

• (Invariance) F(A) = A, and
• (Attraction) A = limn→∞ F(n)(S),

for every nonempty closed and bounded set S ⊆ X, the limit with respect to the Hausdorff
metric. Note that a Hutchinson attractor, if it exists, is unique.

A generalization of the Hutchinson theorem is the following (see [32] and the references
therein):

Theorem 5.1. If an IFS F on (X, d) satisfies sup f ∈F Lip( f , d) < 1 and is compact, then it
admits a Hutchinson attractor.

Roughly speaking, lemma 5.1 says that, if compact IFSs F, G are close to each other on a
compact subinvariant set, in the sense that each map f from F has a close neighbour g ∈ G,
and vice versa, then attractors of F and G are also close.

Lemma 5.1. Let G := {gi : i ∈ I} and H := {hj : j ∈ J} be two compact IFSs on a complete
metric space (X, d) such that Lip(G, d) < 1 and Lip(H, d) < 1. Let B ⊆ X be a compact set
such that G(B) ⊆ B and H(B) ⊆ B, and let δ > 0 satisfy

∀i∈I ∃ j∈J ∀x∈B d(gi(x), h j(x)) � δ and ∀ j∈J ∃i∈I ∀x∈B d(gi(x), h j(x)) � δ. (5.1)

Then

h(AG, AH) � δ

1 − min{Lip(G, d), Lip(H, d)} ,

where AG and AH are the Hutchinson attractors of G and H, respectively.

Remark 5.1. Given two compact IFSs G and H with attractors AG and AH, there always
exists a nonempty compact B ⊆ X such that G(B) ⊆ B and H(B) ⊆ B. Indeed, since G and H
are compact, the IFS G ∪ H is also compact, hence admits the attractor AG∪H. Furthermore, for
any nonempty compact set D ⊆ X, the set

B := cl

(
D ∪

⋃
n∈N

(G ∪ H)(n)(D)

)
= AG∪H ∪ D ∪

⋃
n∈N

(G ∪ H)(n)(D)

is compact, and G(B) ∪ H(B) ⊆ B.

Proof of lemma 5.1. By (5.1), we can easily see that for any compact D ⊆ B,

h(G(D), H(D)) � δ. (5.2)
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Without loss of generality suppose α = Lip(G, d) � Lip(H, d). We will check inductively that
for every n ∈ N,

h(G(n)(B), H(n)(B)) � δ

n−1∑
k=0

αk. (5.3)

The case n = 1 of (5.3) is exactly (5.2) for D :=B. Assume that the inequality (5.3) holds for
some n ∈ N. Then

h(G(n+1)(B), H(n+1)(B)) � h(G(G(n)(B)), G(H(n)(B))) + h(G(H(n)(B)), H(H(n)(B)))

� αh(G(n)(B), H(n)(B)) + δ

� αδ

n−1∑
k=0

αk + δ = δ

n∑
k=0

αk,

where the penultimate inequality follows from (5.2) for D :=H(n)(B), and the last inequal-
ity uses (5.3) for n. Thus (5.3) is true for n + 1. Now from (5.3) and the convergence of the
Hutchinson iterates to the attractor, we get

h(AG, AH) � δ

∞∑
k=0

αk =
δ

1 − α
.

This completes the proof. �
Recall that any surjective isometry g : X→ X of a real normed space is of the following

form:

g(x) = ĝ(x) + b = ĝ(x − x∗),

where ĝ : X→ X is a linear isometry, b = g(0) ∈ X and x∗ = g−1(0) (see [11] ch 1.3,
Mazur–Ulam theorem).

Lemma 5.2. Let X be a real Banach space; let g : X→ X be a surjective isometry; let x∗ =
g−1(0); and let ĝ be the linear part of g. For t ∈ [0, 1], set

gt(x) := tg(x) + x∗, x ∈ X.

The following statements hold:

(a) For every m ∈ N, t1, . . . , tm ∈ [0, 1] and for all x ∈ X, we have

gt1 ◦ · · · ◦ gtm(x) = t1 . . . tm ĝ(m)(x − x∗) + x∗.

(b) g1 is periodic if and only if ĝ is periodic, and their periods are the same.
(c) If g1 is periodic, then the monoid generated by the IFS G := {gt : t ∈ [0, 1]} is compact.

Proof. By the preceding observations concerning surjective isometries, we have

gt1 (x) = t1ĝ(x − x∗) + x∗

which gives us (a) for m = 1. Suppose that (a) is true for some m ∈ N. Then we have

gt1 ◦ · · · ◦ gtm ◦ gtm+1 (x) = t1 . . . tmĝ(m)(tm+1ĝ(x − x∗) + x∗ − x∗) + x∗

= t1 . . . tm+1ĝ(m+1)(x − x∗) + x∗
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so we obtain (a) for m + 1. This ends the proof of (a).
By (a), for every m ∈ N and x ∈ X, we have

g(m)
1 (x) − x∗ = ĝ(m)(x − x∗).

Hence if g(m)
1 = idX, then also ĝ(m) = idX, and vice versa. Thus (b) is true.

Now we prove (c). By (a), each element of the desired monoid M(G), distinct from the
identity map, is of the form

gt1 ◦ · · · ◦ gtm(x) = t1 . . . tmĝ(m)(x − x∗) + x∗ = tiĝ(i)(x − x∗) + x∗ = g(i)
t (x)

for some i = 1, . . . , p where p is the period of ĝ and t := i
√

t1 . . . tm. Hence

M(G) = {g(i)
t : i = 1, . . . , p, t ∈ [0, 1]}

(note that gp
1 = idX). In particular, M(G) is the finite union of IFSs {g(i)

t : t ∈ [0, 1]} over i =
1, . . . , p, which are compact in view of lemma 4.2. Thus M(G) itself is compact. �

We now state the main result of this section, which shows that quite a wide class of IFS fam-
ilies possess a unique upper transition attractor. This gives an answer to question 1.1, but only
a partial answer to conjecture 8.1 in [34]. Namely, we have to assume that the so-called special
function in [34, definition 8.1], which is an isometry and is denoted by g1 in theorem 5.2 below,
has a periodic linear part. On the other hand, we are able to deal with [34, conjecture 8.1] in
a more general setting. More precisely, we allow for the underlying space X to be not neces-
sarily a Euclidean space and for the maps comprising the one-parameter IFS family to be not
necessarily affine. Question 6.2 in the next section asks whether the periodicity assumption in
theorem 5.2 can be dropped in a setting more restrictive than a real Banach space.

Theorem 5.2. Let (X, ‖ · ‖) be a real Banach space and let g : X→X be a surjective
isometry. Consider the one-parameter family

Fg
t :=Ft ∪ {gt}

on X with t ∈ [0, 1], where

Ft := { f(i,t) : 1 � i � N}

and

gt(x) := tg(x) + x∗.

Assume that Ft satisfies:

(a) Condition (H1), and
(b) Condition (H2′) and Lip(F1, ‖ · ‖) < 1.

Assume that gt satisfies:

(c) x∗ = g−1(0), and
(d) The isometry g has a periodic linear part.

Then Fg
t has a unique upper transition attractor.

Remark 5.2. Note that g has a periodic linear part if and only if g1 has a periodic linear part.
See also statement (b) in lemma 5.2.

Remark 5.3. Condition (c) is equivalent to any of the following:
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(a) The maps gt have a common fixed point for at least two different parameters t ∈ [0, 1];
(b) The maps gt have a common fixed point for all parameters t ∈ [0, 1];
(c) x∗ is a common fixed point of all gt’s.

Proof of theorem 5.2. Since all functions in Fg
t are contractions for t < 1, each IFS Fg

t

has an attractor At for t ∈ [0, 1) and we can consider upper transition attractors for the one-
parameter family Fg

t , t ∈ [0, 1]. The existence of a unique upper transition attractor follows
from the uniform continuity of the map

[0, 1) � t �→ At ∈ K(X),

see [34, proposition 8.1]. Hence we will prove that this map is uniformly continuous.
Step 1. Consider the IFSs

F :=
⋃

t∈[0,1]

Ft = { f(i,t) : i = 1, . . . , N, t ∈ [0, 1]} =
⋃

i=1,...,N

{ f(i,t) : t ∈ [0, 1]}

G := {gt : t ∈ [0, 1]}.
(5.4)

As in the proof of theorem 4.3(b), we can find a nonempty and compact set B ⊆ X so that

f(i,t)(B) ⊆ B and gt(B) ⊆ B (5.5)

for all t ∈ [0, 1] and i = 1, . . . , N. One only needs to observe that the monoidM(G) is compact
due to lemma 5.2(c).

Step 2. An alternative description of the attractor At of Fg
t .

Fix a real value t ∈ [0, 1). Clearly,

Lip(Fg
t , ‖ · ‖) � max{t, Lip(F, ‖ · ‖)} < 1.

Hence Fg
t generates a unique attractor At. Using [32, theorem 4.1] for IFSs Ft and {gt}, we see

that At can be viewed as the attractor of the IFS

Mt := {g(m)
t ◦ f(i,t) : i = 1, . . . , N, m = 0, 1, 2, . . .} (5.6)

where g(0)
t = idX. Note that the assumptions of [32, theorem 4.1] will be satisfied if we observe

that the monoid

M({gt}) = {g(m)
t : m = 0, 1, 2, . . .}

is compact. This is the case as it is a subset of a compact IFS M(G) considered in step 1.
(Alternatively, we can observe that M({gt}) is compact by using the fact Lip(gt) � t < 1.)
Moreover, in view of (5.5), we see that At ⊆ B.

Step 3. Uniform continuity of the map [0, t0] � t �→ At, where t0 ∈ [0, 1).
Fix any t0 ∈ [0, 1). Clearly,

sup{Lip(Fg
t , ‖ · ‖) : t ∈ [0, t0]} � max{t0, Lip(F, ‖ · ‖)} < 1.

Hence the assumptions of [15, theorem 2.6] are satisfied. This means that the map [0, t0] � t �→
At is continuous. As [0, t0] is compact, it is uniformly continuous.
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Step 4. Uniform continuity of the map [0, 1) � t �→ At.
The idea in the proof below is that if both t, s < 1 are appropriately less than 1, then we

make use of uniform continuity proved in step 3, whereas if s, t are both sufficiently close to
1, then for each map of the form gm

t ◦ f(i,t) we will find sufficiently close neighbour gk
s ◦ f(i,s)

(where k will be appropriately chosen), and vice versa. Then we will make use of lemma 5.1.
Let ĝ be the linear part of g. Then by lemma 5.2, we see that for every m ∈ N and x ∈ X,

we have:

g(m)
t (x) = tmĝ(m)(x − x∗) + x∗. (5.7)

Let p be the period of ĝ. Take any ε > 0 and choose r ∈ (0, 1) such that

(1 − rp) · (diam(B ∪ {0}) + ‖x∗‖) <
ε

2
. (5.8)

Then choose δ > 0 such that:

(a) For s, t ∈ [0, r], if |t − s| < δ, then h(At, As) < ε;
(b) For s, t ∈ [0, 1], if |t − s| < δ, then

sup{‖ f(i,t)(x) − f(i,s)(x)‖ : i = 1, . . . , N, x ∈ B} <
ε

2
;

(c) (1 − (r − δ)p)· (diam(B ∪ {0}) + ‖x∗‖) � ε
2 .

The choice of δ is possible by step 3 (for item (a)), by lemma 4.2(a) (for item (b)) and by
condition (5.8) (for item (c)).

Now choose s, t ∈ [0, 1) such that |s − t| < δ. If s, t � r, then h(At, As) � ε in view of (a).
Hence assume that

max{s, t} � r. (5.9)

Take any i = 1, . . . , N and m = 0, 1, 2, . . . , and let m′, l′ be such that m = pm′ + l′, and l′ =
0, . . . , p− 1. Then let k′ be the least nonnegative integer such that

spk′+l′ � tpm′+l′

and set k := pk′ + l′. We will show that

|tm − sk| � 1 − (r − δ)p. (5.10)

Using sk � tm < sk−p, we have

|tm − sk| = tm − sk � min{1, sk−p} − sk = min{1 − sk, sk−p(1 − sp)}

�
{

1 − sl′ if k′ = 0

sk−p(1 − sp) if k′ � 1

� 1 − sp � 1 − (r − δ)p,

where the last inequality follows from r − δ � s (thanks to (5.9)). Thus we have shown (5.10).
Now fix i = 1, . . . , N and choose any x ∈ B. Assume that m � 1 (which also implies k � 1).

Set zt := f (i,t)(x) − x∗ and zs := f (i,s)(x) − x∗. Then by (b) and (c) and from the choice of δ, we
have

‖zt − zs‖ = ‖ f(i,t)(x) − f(i,s)(x)‖ <
ε

2
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and

‖zs‖ � ‖ f(i,s)(x) − 0‖+ ‖x∗‖ � diam(B ∪ {0}) + ‖x∗‖ � ε

2
· (1 − (r − δ)p)−1.

Hence by (5.7) and (5.10), and the fact that ĝ(p) = idX, we have

‖g(m)
t ◦ f(i,t)(x) − g(k)

s ◦ f(i,s)(x)‖

= ‖tmĝ(m)( f(i,t)(x) − x∗) + x∗ − skĝ(k)( f(i,s)(x) − x∗) − x∗‖

= ‖tmĝ(m)(zt) − skĝ(k)(zs)‖

= ‖tmĝ(pm′+l′)(zt) − skĝ(pk′+l′)(zs)‖

= ‖tmĝ(l′)(zt) − skĝ(l′)(zs)‖

� ‖tmĝ(l′)(zt) − tmĝ(l′)(zs)‖+ ‖tmĝ(l′)(zs) − skĝ(l′)(zs)‖

= tm · ‖ĝ(l′)(zt − zs)‖+ |tm − sk| · ‖ĝ(l′)(zs)‖

= tm · ‖zt − zs‖+ |tm − sk| · ‖zs‖
� ‖zt − zs‖+ (1 − (r − δ)p) · ‖zs‖
< ε.

When m = 0 (and consequently k = 0), we also have

‖g(m)
t ◦ f(i,t)(x) − g(k)

s ◦ f(i,s)(x)‖ = ‖ f(i,t)(x) − f(i,s)(x)‖ <
ε

2
.

Similar reasoning works when the roles of s and t are switched. Hence we see that condition
(5.1) from lemma 5.1 is satisfied for IFSs Mt and Ms, whose attractors are At and As, respectively
(for definitions of Mt and Ms, see (5.6)). Thus, using lemma 5.1, and the fact that

Lip(Ms, ‖ · ‖), Lip(Mt, ‖ · ‖) � Lip(F, ‖ · ‖) < 1

(recall definition of F in (5.4) and notice that Lip(g(m) ◦ f ) = Lip( f ) for f ∈ F), we get

h(At, As) �
ε

1 − Lip(F, ‖ · ‖)
.

We conclude that the map [0, 1) � t �→ At is uniformly continuous. �
The following corollary explains how theorem 5.2 answers question 1.1.

Corollary 5.1. Let

Ft := { f(i,t) : 1 � i � N}

t ∈ [0,∞), be a one-parameter family of IFSs on a real Banach space X. Let g : X→ X be a
surjective isometry. Assume that there exist t∗ ∈ (0,∞) and i∗ ∈ {1, . . . , N} such that

(a) For any i = 1, . . . , N and x ∈ X, the map [0, 1] � t �→ f (i,t)(x) is continuous;
(b) sup{Lip( f(i,t), ‖ · ‖) : 1 � i � N, i �= i∗, t ∈ [0, t∗]} < 1;
(c) f(i∗,t)(x) := t

t∗
· g(x) + x∗ for all t ∈ [0,∞) and x∗ = g−1(0);

(d) The isometry g has a periodic linear part.
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Then t∗ = t0 = t̂0 is a threshold for the existence of an attractor and for the contractivity of
the one-parameter family Ft, and Ft has a unique upper transition attractor at t∗.

Proof. It is enough to check that t∗ = t0 = t̂0. The rest is immediate from theorem 5.2. From
conditions (b) and (c) we have that t0 � t̂0 � t∗. Now, for t > t∗ the IFS Ft does not have an
attractor, since Lip( f(i∗,t)) = t

t∗
> 1. Therefore t0 � t∗. �

Examples 5.1, 5.2, 5.3, and 5.4 below show that each of the assumptions (a)–(d) in theorem
5.2 is crucial. If any of these assumptions is removed, then not only may the upper transition
attractor of the family Fg

t fail to be unique, but Fg
t may have no upper transition attractor at

all. In particular, example 5.4 provides an infinite dimensional one-parameter family where the
function g is not periodic and the one-parameter family has no upper transition attractor.

Example 5.1 (Theorem 5.2 may fail without assumption (a).)
Let Fg

t := { f t, gt} be a one-parameter family onR, where f t(x) = tx/2 + (2 − t)/(1 − t), t ∈
[0, 1), f1 is any continuous function, and gt(x) = tx, t ∈ [0, 1]. Here Fg

t satisfies the assump-
tions of theorem 5.2 except that [0, 1] � t �→ f t(x) is not continuous at t = 1 for any x. The
fixed point qt of f t is qt = 2/(1 − t) →∞ as t → 1. Since qt ∈ At, the limit limt→1 At does not
exist.

Example 5.2 (Theorem 5.2 may fail without assumption (b).)
On R, let Fg

t := { f t, gt}, where gt(x) = −tx, f t(x) = −tx + t + 1. (This is example 4.1 from
section 4.) Here Fg

t satisfies the assumptions of theorem 5.2 except that limt→1 Lip( f t, ‖ · ‖) =
1. For t ∈ (0, 1) we have At = [−t/(1 − t), 1/(1 − t)]; therefore limt→1 At does not exist.

Example 5.3 (Theorem 5.2 may fail without assumption (c).)
Let Fg

t := { f t, gt}, where g(x) = x, gt(x) = tx + 1, and f t(x) = tx/2 + 1. Here Fg
t satisfies

the assumptions of theorem 5.2 except that x∗ = 1 �= g−1(0). In this case the fixed point qt of
gt is qt = 1/(1 − t) →∞ as t → 1. Since qt ∈ At, the limit limt→1 At does not exist.

Example 5.4 (Theorem 5.2 may fail without assumption (d).)
Let X := 
∞(C) denote the real Banach space of all bounded complex sequences, endowed

with the supremum norm. For k ∈ N, set αk := π
2k , and define g : X→ X by

g((xk)) :=
(
xk eiαk

)
,

that is, each coordinate xk is rotated around the origin by angle αk. Next define f : X→ X by

f ((xk)) :=

(
1
4

(xk − 1)

)
.

Observe that f (1) = 0, where 1 and 0 are sequences of ones and zeroes, respectively. For
t ∈ (0, 1], define

gt((xk)) := tg((xk)) =
(
txk eiαk

)
and

f t((xk)) := t f ((xk)) + 1 =
( t

4
xk + 1 − t

4

)
.

Clearly, the map [0, 1] � t �→ f t(x) is continuous for every x ∈ X, Lip( f t) = t
4 and g−1(0) = 0.

Hence, setting Ft := { f t}, all assumptions of theorem 5.2 are satisfied except that ĝ (which here
coincides with g) is not periodic. We will now show that Fg

t does not have any upper transition
attractor.
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Let

D := {0} ∪
∞⋃

m=0

B

((
3
4

tm eimαk

)
,

1
4

tm

)
, (5.11)

where B(·, ·) denotes the closed ball in X, where the first coordinate is the center, and where
the second coordinate is the radius. We first show that for every t ∈ [0, 1], the attractor At of
Fg

t := { f t, gt} is a subset of D. Clearly, the set D ⊆ B(0, 1), and it is easy to see that

f t(B(0, 1)) ⊆ B

((
3
4

)
,

1
4

)
⊆ D,

(where
(

3
4

)
is the constant sequence whose coordinates equal 3

4 ). Hence

f t(D) ⊆ D.

On the other hand, for every m = 0, 1, 2, . . . , we have

gt

(
B

((
3
4

tm eimαk

)
,

1
4

tm

))
= B

((
3
4

tm+1 ei(m+1)αk

)
,

1
4

tm+1

)
⊆ D

and gt(0) = 0; so we also have

gt(D) ⊆ D.

Altogether we have Fg
t (D) ⊆ D. As D is closed, we get (5.11).

Now since the sequence 1 is the fixed point of f t, it belongs to the attractor At, and hence
also (

tm eimαk
)
= g(m)

t (1) ∈ At (5.12)

for every m ∈ N.
We are ready to prove that (Fg

t ) does not generate any upper transition attractor, that is, there
is no sequence tn ∈ [0, 1) with tn ↗ 1 so that (Atn) converges. First observe that it is enough to
prove that

∀s∈[ 1
2 ,1) ∃t0<1 ∀t∈[t0,1) h(At, As) �

1
2
. (5.13)

Indeed, suppose that (5.13) holds, and for some sequence tn ↗ 1 we have that (Atn) is conver-
gent. Then (Atn) is a Cauchy sequence in K(X) and we can find n0 ∈ N so that h(Atn0

, Atn) < 1
2

for all n � n0 and tn0 � 1
2 . On the other hand, setting s := tn0 and using (5.13), we can find

n � n0 with h(Atn , Atn0
) � 1

2 , which gives a contradiction.

We will now prove (5.13). Choose any s ∈ [ 1
2 , 1), and find the least k0 ∈ N such that sk0 < 1

2 .
As s � 1

2 , we see that sk0 � 1
4 . Since 1 − sk0 > 1

2 , we can find t0 < 1 such that for t ∈ [t0, 1)
we have

t2k0 − sk0 >
1
2
. (5.14)

Choose any (xk) ∈ As. By the definition of D (see (5.11)) and the fact that At ⊂ D, we can
consider three cases.
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Case 1. (xk) ∈ B
((

3
4 sm eimαk

)
,
(

1
4 sm

))
for some m � k0.

Since mαk0 � k0
π

2k0
= π

2 , we have

t2k0 �
∣∣∣∣t2k0 +

3
4

sm eimαk0

∣∣∣∣ � ∣∣t2k0 + xk0

∣∣+ ∣∣∣∣−xk0 +
3
4

sm eimαk0

∣∣∣∣ � ∣∣t2k0 + xk0

∣∣+ 1
4

,

so by (5.14) we get∣∣t2k0 + xk0

∣∣ � t2k0 − 1
4
� t2k0 − sk0 >

1
2
.

Case 2. (xk) ∈ B
((

3
4 sm eimαk

)
,
(

1
4 sm

))
for some m � k0.

Since t2k0 > sk0 � sm, we have

t2k0 − 3
4

sk0 � t2k0 − 3
4

sm �
∣∣∣∣t2k0 +

3
4

sm eimαk0

∣∣∣∣ � ∣∣t2k0 + xk0

∣∣ + ∣∣∣∣−xk0 +
3
4

sm eimαk0

∣∣∣∣
�

∣∣t2k0 + xk0

∣∣+ 1
4

sm �
∣∣t2k0 + xk0

∣∣+ 1
4

sk0 .

Thus by (5.14),∣∣t2k0 + xk0

∣∣ � t2k0 − 3
4

sk0 − 1
4

sk0 >
1
2
.

Case 3. (xk) = 0.
In this case ∣∣t2k0 + xk0

∣∣ = t2k0 >
1
2
.

Summing up, we have that∣∣∣∣∣∣(t2k0 ei
2k0
2k π

)
− (xk)

∣∣∣∣∣∣ � ∣∣∣∣t2k0 e
i

2k0
2k0

π − xk0

∣∣∣∣ = | − t2k0 − xk0 | = |t2k0 + xk0 | >
1
2
.

By (5.12) we see that
(

t2k0 ei
2k0
2k π

)
∈ At, so the above shows that

h(At, As) � inf
(xk)∈As

∣∣∣∣∣∣(t2k0 ei
2k0
2k π

)
− (xk)

∣∣∣∣∣∣ � 1
2

and the proof of (5.13) is complete.

6. Open problems

Examples 3.1–3.3 show that an IFS with an attractor need not be contractive. In example 3.2
no function in the IFS F is a contraction. In fact, with respect to any equivalent metric d on the
circle, Lip( f , d) > 1 for all f ∈ F. This is not the case in example 3.3. It can be asked whether
such a strong counterexample exists for Rn.

Question 6.1. Is there an example of an IFS F on Rn that has an attractor A with basin Rn

but with respect to any metric d equivalent to the Euclidean metric we have Lip( f , d) > 1 for
all f ∈ F.
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For a large class of one-parameter IFS families, theorem 5.2 guarantees the existence of a
unique upper transition attractor A• such that A• = limt→t0 At at a threshold t0. The theorem,
however, assumes that the linear part of the special function g is periodic. Example 5.4 shows
that, in general, the assumption of periodicity of the linear part cannot be dropped. But the
underlying space in that example is a non-separable infinite dimensional space.

Question 6.2. Can the assumption of periodicity of the linear part of the function g in
theorem 5.2 be dropped assuming a less exotic space? In particular, can the assumption be
dropped for a one-parameter similarity family with threshold t0 satisfying the following prop-
erties:

• All f t ∈ Ft are contractions for t ∈ [0, t0], gt is a contraction for t ∈ [0, t0) and Lip(gt0) = 1,
and

• The unique fixed point of each f t ∈ Ft and gt is independent of t ∈ [0, t0).

Theorem 4.3 guarantees the existence, but not necessarily the uniqueness, of an upper
transition attractor in this context.

In [34, theorem 8.2] relationships between the upper and lower transition attractors are given
for a special type of one-parameter family. It can be asked whether the same relationships hold
in a more general setting. In particular:

Conjecture 6.1. If Ft satisfies properties (H1)–(H3) of section 4 and if A• = A• for some
upper transition attractor of Ft, then A• is the unique upper transition attractor of Ft and A• is
an attractor of F1.

Recall that in a metric space (X, d), a segment with ends x, y ∈ X is defined by [x, y] := {z ∈
X : d(x, z) + d(z, y) = d(x, y)}. A set S ⊆ X is metrically convex if [x, y] ⊆ S for all x, y ∈ S.
The metrically convex hull of S ⊆ X is convd S :=

⋃
x,y∈S[x, y].

Conjecture 6.2. If the functions in Ft map metrically convex sets onto metrically convex
sets, then the metrically convex hulls of A• and A• in (X, d) coincide: convd A• = convd A•.
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