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itt([o, a]") a". 

Combining these facts yields Cavalieri's formula. 

3. COMMENTARY. It is well known that acting on the cube by Sn, the full symmet- 
ric group, yields the fundamental domain 

S = 
{(x1, x2, ... , xn) : 0 x I x2 I< x < na 

(we can order the coordinates in increasing order). This is the standard simplex, whose 
volume in thus a/ IS,,I = an/n!. From our perspective, this leads to the equation: 

a x3 
f 

2 1 
S ..i dxl dx2... dxn =-a"n, 
Jx=0 -x2=0 x1 =O 

which is an iterated form of Cavalieri's formula. 
Our pyramid construction is precisely inverse to the standard geometric proof of 

the power rule for derivatives, dx"/dx = nx"-l, seen as the change in volume of an 
n-cube when the side-length is increased by dx: each of the n far faces of the cube 
increases the volume by xn-1 dx. We just integrate this and get n pyramids. 

We can also interpret the observation in [1] that the graph y = x" is symmetric 
under nonhomogeneous dilation (it is unchanged if dilated in the x-direction by a > 0 
and in the y-direction by an): this is because in one direction we are dilating in one 
dimension, and in the other we are dilating in n dimensions. 

Computing the area under the curve xn by comparison of the cross sections with 
a pyramid in n + 1 dimensions is an application of Cavalieri's principle (if cross- 
sectional areas are equal, then volumes are equal), but here changing dimension (which 
is legitimate as these areas and volumes are actually unitless ratios with respect to a 
standard square or cube: whether a curve is x" or some multiple thereof depends on a 
choice of scale). In particular, the formulas for the quadrature of the parabola and the 
volume of a pyramid or cone are the same, though the ancient Greeks (Archimedes 
and Eudoxus) and Cavalieri computed them separately. By calculus we know these are 
both computed by f x2; here we have given a common geometric setting that illustrates 
why. 
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A Property of Normal Tilings 
Deniz Kazanci and Andrew Vince 

1. INTRODUCTION. Every polyhedron has a face with at most five edges. This is a 
consequence of Euler's formula for polyhedra. There is an analogous result for tilings 
of the plane. 
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Theorem 1. Every normal tiling of the plane contains an infinite number of tiles each 
of which has at most six edges. 

This result appears in the classic text Tilings and Patterns [4], where a fairly in- 
volved proof is given. The goal of this note is to provide a short proof. Our proof 
requires only the Euler formula for planar graphs [7], which states that v - e + t = 1 
for any finite, connected plane graph with v vertices, e edges, and t bounded regions. 

Section 2 covers basic notions about tiling, in particular the definition and proper- 
ties of a normal tiling. Theorem 1 is false without the assumption of normality. For ex- 
ample, the plane can be tiled with 7-gons if they are allowed to be arbitrarily long and 
thin. The proof of Theorem 1 appears in section 3, and remarks on a three-dimensional 
analog appear in section 4. 

2. NORMAL TILINGS. Two sets in the plane are said to overlap if their interiors 
have nonempty intersection. A plane tiling T is a collection of compact sets that cover 
the plane without overlap. To eliminate some pathological cases we restrict our atten- 
tion to normal tilings. A tiling T is normal if it satisfies the following three conditions: 

(1) Every tile of T is a topological disk. 

(2) The intersection of any two tiles of T is a connected set. 

(3) The tiles of T are uniformly bounded. 

It follows from conditions (1) and (2) that the intersection of two or more distinct 
tiles is either empty, a point (called a vertex of the tiling), or a Jordan arc (an edge 
of the tiling). Uniformly bounded in condition (3) means that there exist two positive 
constants U and u, the parameters of the tiling, such that every tile of T contains 
some circular disk of radius u and is contained in some circular disk of radius U. 
Condition (3) guarantees that the tiles in T do not get arbitrarily long or arbitrarily 
thin. 

Let D(r, P) denote the closed disk of radius r centered at point P in the plane. 
Given a tiling T, consider the set of all tiles whose intersection with D(r, P) is 
nonempty. Add to this set any tiles needed to make their union simply-connected. Call 
the resulting set of tiles T(r, P). Let v(r, P), e(r, P), and t (r, P) denote the number 
of vertices, edges, and tiles in T (r, P), respectively. The straightforward proofs of the 
following properties of normal tilings appear in [4]. These proofs are based on the 
simple fact that the area of each tile of a normal tiling T lies between nu2 and r U2. 
Statement (2) of Lemma 1, often referred to as the "Normality Lemma," implies that 
there are relatively few tiles near the boundary of D(r, P). 

Lemma 1. If T is a normal tiling with parameters u and U, then: 

(1) each vertex of T has at most 4(U/u)2 incident edges, and each tile has at most 
9(U/u)2 - 1 edges; 

(2) for any fixed positive number x and any point P in the plane 

l t(r + x, P) - t(r, P) 
lim = 0. 

r----oo 
t (r, P) 

3. PROOF OF THEOREM 1. Throughout this section the point P in the plane is 
fixed. We thus abbreviate D(r, P) to D(r), and likewise for T(r), v(r), e(r), and t(r). 
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Lemma 2. If T is a normal tiling, then for any fixed positive x 

r e(r + x) 
lim - = 1. 
r-.oo e(r) 

Proof Let k = 9(U/u)2 - 1, where u and U are the parameters of T. Then by state- 
ment (1) of Lemma 1, 

e(r + x) e(r + x) - e(r) k [t(r + x) - t(r)] 1 < ( = 1 + < 1 + (1) - 
e(r) e(r) e(r) 

Let p(t) denote the number of edges in tile t. Because EtET(r) p(t) counts each edge 
in T (r) at most twice, and each tile has at least three edges (by condition (2) in the 
definition of normality), we see that 

3t(r) < 1 p(t) < 2e(r). 
tET(r) 

Combining this with inequality (1) yields 

e(r + x) 2k t (r + x) - t(r) 

e(r) 3- t(r) 
In view of statement (2) of Lemma 1, Lemma 2 follows from the last inequality. m 

Proof of Theorem 1. Assume, by way of contradiction, that all except finitely many 
tiles have at least seven edges. Then, for any E > 0, the average number of edges per 
tile in T (r) is greater than 7 - E if r is sufficiently large. With notation as in Lemma 2, 
we conclude that 

2e(r) > Jt(r) p(t) >7-t (r) 
- 

t (r). 
t(r) - t(r) 

Therefore, for any E > 0, 

2e(r) t (r) < (2) 
(7 - E) 

if r is sufficiently large. 
Note that every vertex in T(r) is contained in the disk D(r + 2U), where U is the 

upper parameter of the tiling. If q (v) denotes the number of edges of T incident with 
vertex v, then Ev r(r) q(v) counts each edge of T(r + 2U) at most twice, yielding 

3v(r) < q(v) < 2e(r 2U). (3) 
veT(r) 

According to Euler's formula for planar graphs 1 = v(r) - e(r) + t (r) for any r. 
Combining this with inequalities (2) and (3) yields 

2 2e(r) 2 e(r + 2U) 2 
< - e(r + 2U) - e ) 

) e+ ((r) - 
e(r (7 

(4) 3 (7-c) 3 e(r) (7-E) 

for any 6 > 0 and r sufficiently large. But by Lemma 2 the right-hand side of inequal- 
ity (4) is less than 0 for r sufficiently large, clearly a contradiction. m 
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4. TILING EUCLIDEAN 3-SPACE. There is no analog of Theorem 1 for tilings of 
Euclidean three-space. Danzer, Grtinbaum, and Shephard [1] gave examples of nor- 
mal, face-to-face tilings of E3 by (combinatorially equivalent) convex polyhedra with 
n faces, where n can be arbitrarily large. Interesting constructions of this kind of tiling 
were also described by Schulte [5]. (A tiling is said to be face-to-face if neighboring 
tiles intersect in a face of each.) In fact, there is no known upper bound for the num- 
ber of faces of a convex polyhedron with the property that congruent copies of it will 
tile E3. Engel [3] gave an example of such a face-to-face tiling by copies of a poly- 
hedron with thirty-eight faces, but it is unknown whether the number thirty-eight is 
maximum in this regard. In 1961 Delone [2] showed that any polyhedron that admits 
an isohedral face-to-face tiling of E3 can have at most 390 faces. Delone's bound was 
slightly improved to 378 by Tarasov [6] in 1997. (A tiling is isohedral if its symmetry 
group acts transitively on the set of tiles.) 
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