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Periodicity, Quasiperiodicity, 
and Bieberbach's Theorem 

on Crystallographic Groups 

A. Vince 

1. INTRODUCTION. This article contains an elementary proof of a fundamental 
geometric theorem of Bieberbach. Moreover, it affords the opportunity to digress 
onto subjects that motivated the proof-periodicity and quasiperiodicity. The 
proof is in Sections S and 6. Most of the article consists of observations on 
isometries of Euclidean space (Section 2), crystallographic groups (Section 3), and 
the role of Bieberbach's theorem in the theory of crystals and quasicrystals (Section 
4). 

A czystallographic group is a discrete, cocompact group of isometries of n- 
dimensional Euclidean space. All terms in this definition are explained in Section 
3. For now, it suffices to say that the two-dimensional crystallographic groups, 
often called wallpaper groups, are familiar as symmetry groups of tilings of the 
plane, and the three-dimensional groups arise as symmetry groups of crystals. 
There are exactly 2 one-dimensional, 17 two-dimensional, and 230 three-dimen- 
sional crystallographic groups. In dimension four there are 4,783 crystallographic 
groups [2]; this enumeration relys heavily on the computer. The exact number in 
higher dimensions is unknown. The eighteenth of Hilbert's famous problems posed 
at the 1900 International Congress of Mathematicians asks, in part, whether the 
number of crystallographic groups is finite in all dimensions. An affirmative answer 
was provided by Bieberbach [1] in papers that appeared in 1911 and 1912. The 
two- and three-dimensional crystallographic groups were first classified in the 
1890's by Fedorov [7] and, independently, by Schoenflies [14]. The classification of 
the three-dimensional crystallographic groups can be found in many texts on 
mathematical crystallography, but these texts usually assume the following result. 
This same result is the main step in Bieberbach's solution of Hilbert's eighteenth 
problem. 

Theorem 1 (Bieberbach). If G is an n-dimensional czystallographic group, then G 
contains translations in n linearly independent directions. 

Bieberbach's proof of Theorem 1 [1] depends on a nontrivial number theoretic 
result concerning the approximation of irrational numbers by rationals. More 
recent treatments by Wolf [17] and Charlap [5], also somewhat technical, are based 
on a proof of Frobenius [8] that appeared shortly after Bieberbach's proof. A 
shorter proof by P. Buser [4] was a result of his study of Gromov's work on almost 
flat manifolds. Gromov, in turn, has stated that his work on almost flat manifolds 
resulted from an attempt to understand the Bieberbach theorem [5]. Our proof is 
intended to be accessible to anyone with a basic undergraduate knowledge of 
abstract and linear algebra. 
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The concept that plays the central role in the proof is what we call the axis of an 
isometry g, the largest subspace of Rn on which g acts as a pure translation. A 
main step in the proof, a result also proved by Buser [4], is an analog in Rn of the 
well known Crystallographic Restriction in 2 and 3. 

2. ISOMETRIES. An isometry is a mapping of Rn onto itself that preserves 
distance. The following representation of an isometry is well known and very easy 
to prove given the fact that an isometry with a fixed point is an orthogonal 
transformation. Given any point p E sn, an isometry g can be expressed as the 
composition of an orthogonal transformation A, centered at p, and a translation: 

(2.1) g( x) = Ax + a . 
The orthogonal map A will be referred to as the rotationalpart and translation by 
a the translationalpart of g. The rotational part is, up to conjugacy, independent of 
the point p. The main result in this section is a refinement of (2.1), obtained by 
making an appropriate choice of the origin p. 

Lemma 1. Let g be an isometry of Rn. There exists a unique affine subspace F 
satisJying the following properties: (a) g is a translation when restricted to F, and (b) F 
is maximal with respect to property (a). Moreouer, if the origin is chosen to lie in F, 
then 

g(x) = Qx + q, 
where Q is orthogonal, F is the set of fixed points of Q, and q E F. 

The subspace F of Lemma 1 will be called the axis of g and denoted axis(g). 
As an application of Lemma 1, consider any isometry g of 3. If axis(g)= 3 

then, according to Lemma 1, g is a translation. If axis(g) is a plane 7r, then g is 
the composition of a reflection through X and a translation in a direction along r. 
Such an isometry is called a glide reflection (or a reflection if the translation is the 
identity). If axis(g) is a line 1, then g is the composition of a non-identity rotation 
and a translation along 1. Such an isometry is called a screw displacement (or a 
rotation if the translation is the identity). Finally, if axis(g) is a point p, then g is 
an orthogonal transformation having only p as fixed point. Such an orthogonal 
transformation has canonical form 

cos 0 - sin 0 0 
sin 0 cos 0 0 

\ ° O -1, 

which is the composition of a non-identity rotation about a line I with a reflection 
in a plane perpendicular to 1. Such an isometry is called a rotary reflection. Thus 
Lemma 1 provides the following classification: every 3-dimensional isometry is a 
translStion, rotation, reflection, glide, screw or rotary reflection. 

Proof of Lemma. As in (2.1), write g(x) = Ax + a. Let V be the subspace of fixed 
points of A and V l the orthogonal complement of V. Note that both V and V l 
are invariant under A. Let q and q l be the components of a in the subspaces V 
and Vl, respectively. Since I-A is nonsingular when restricted to Vl, the 
affine subspace F = (I-A)- lq 1 is not empty. For x E F we have Ax = x _ q 1, 
which implies that g(x) = Ax + a = x + (a _ q 1) = x + q E F. Therefore g is a 
translation when restricted to F. Define Qx = Ax + q l . Then F is the set of fixed 
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points of Q; Q is orthogonal because it has a fixed point; and g(x) = Qx + q. We 
leave to the reader the routine exercise of showing that F is unique, i.e., that there 
does not exist even a one dimensional subspace, not contained in F, upon which G 
acts as a translation. I 

3. CRYSTALLOGRiPHIC GROUPS, DELAUNAY SETS AND VORONOI 
TILINGS. An n-dimensional crystallographic group G is a discrete, cocompact 
subgroup of isometries of Rn. Discrete means that any ball contains at most finitely 
many points in the G-orbit of any point. Cocompact means that the quotient space 
Rn/G is compact, where the quotient is the set of orbits with the quotient 
topology. A less abstract, but equivalent, definition of crystallographic group is 
more appropriate for our purpose. A set X of points of Rn is called an (r, R)- 
Delaunay set, or simply Delaunay set, if 

(1) X is discrete: there is a number r such that every ball of radius r centered 
at a point of X contains no other points of X. 

(2) X is unifoz7n: there is a number R such that every ball of radius R contains 
a point of X. 

Let G be a group of isometries of Hn and p any point of Hn. Then G is a 
crystallographic group if and only if the orbit of p is a Delaunay set. This can be 
restated in terms of Voronoi tilings as follows. Let P be the orbit of any point 
under the action of a group G of isometries of Hn. For any p E P, let Dp denote 
the Voronoi region of p. This is the set of points at least as close to p as to any 
other point of P: 

Dp = {x E Hn: lx-pl < Ix-yl for all y E P} . 

The Voronoi region Dp is the intersection of half space determined by the 
perpendicular bisectors of the line segments joining p to each of the other points 
of P. The group G is a crystallographic group if and only if each Voronoi region 
{Dplp E P} is a bounded convex polytope. In particular, the Voronoi regions of 
any orbit of a crystallographic group tile Hn; all the tiles are congruent; G acts 
transitively on these tiles; and the action of g E G on a single tile completely 
determines g. 

This definition makes it easy to prove a first approximation to Bieberbach's 
theorem, a result Buser [4] calls Mini-Bieberbach. It states that an n-dimensional 
crystallographic group must contain n isometries that are nearly translations, in 
the sense that the translational parts are linearly independent and the rotational 
parts are close to the identity. As a measure of the proximity of the rotational part 
of an isometry g to the identity, define 

lAx - x l 
( g ) x E R tl Ix 

whese A is the rotational part of g. 

Lemma 2 (Mini-Bieberbach). Let G be an n-dimensional crystallographic group. 
Giuen any point p and any e > O, there exist in G elements gl(x) = Ax + ai, 
i = 1, 2, . . ., n, centered at p, such that 
(1) rot(gi) < e foralli and (2) {al,a2,...,an} islinearlyindependent. 

Proof: Consider the Voronoi tiling with respect to the orbit of the point p. 
Further, let b be an arbitrary direction and consider the sequence {Dl} of tiles that 
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intersect the ray with endpoint p and direction b. Let gi(x) = Aix + ai be an 
element of G with rotational part Ai centered at p and such that gi takes Do to 
Di, where Do is the tile centered at p. Because the orthogonal group is compact, 
{gi} has a convergent subsequence. For us this means that there must exist two 
isometries gj and gk with the properties: (1) Aj and Ak are sufficiently close in 
the sense that rot(gk O gl. l) < sS and (2) laj - akl is sufficiently large so that the 
angle between b and the vector from gj(p) to gk(p) is less than s. Then the 
element g = gk O gl. 1 satisfies statement (1) in the lemma. The lemma follows by 
repeating this argument where, at the kth stage, b is chosen orthogonal to the 
subspace spanned by a1, a2, * * *, ak-l. k 

4. CRYSTALS AND QUASICRYSTALS. With the atoms and molecules of a real 
crystal in mind, define a czystal as the image of a finite number of points of FOn 

under a group generated by n linearly independent translations. The symmetzy 
group, sym(X), of a crystal X is the group of isometries that leave the points of X 
as a whole invariant. A crystal clearly has the following properties: X is discrete; X 
is periodic, which means that sym(X) contains translations in n linearly indepen- 
dent directions; X is the union of finitely many lattices, a lattice being the image of 
a single point under a group generated by n linearly independent translations. 

The notions, crystal and crystallographic group, are intimately related, as 
described in Theorem 2. Although it would be surprising if it were otherwise, this 
theorem is illustrative for a couple of reasons. First, it is another consequence of 
Bieberbach's theorem. Second, the proof uses two essential ingredients in crystallo- 
graphic analysis, the translation group and the point group. Let g be an element of 
a crystallographic group G and let p E Fan. Consider the representation (2.1): 

g(x) = Ax + a, with respect to p. The mapping +: g A induces a homomor- 

phism of G into the orthogonal group. The kernel of + is the translation subgroup 
T of G; the image of + is the point group at p. 

Theorem 2. A set X of points in Euclidean space is a czystal if and only if X is discrete 
and sym(X) is a czystallographic group. 

Proof: Assume that X is a crystal, G its symmetry group, and T the subgroup of G 
generated by the n independent translations that define X. If p E X then G(p), 
the orbit of p, is the union of finitely many lattices since G( p) is invariant under 
T. Therefore, G(p) is a Delaunay set, so G is a crystallographic group. 

In the other direction, let G be the symmetry group of X, and let T be the 
translation subgroup of G, which, by Bieberbach's theorem, is generated by n 
independent translations. Let p E X and let L be the lattice that is the image of p 
under the action of T. From the fact that T is normal in G, it is easy to show that 
L is invariant under the action of the point group b at p and that, for any A E ¢, 
A is completely determined by its action on finitely many points of L. Then ¢, 
being a group of permutations of these points, is finite. Being isomorphic to ¢, the 
quotient G/T is also finite. Express G = Ui Tgi as the disjoint union of finitely 
many cosets of T. Denoting by Dp the Voronoi region at p, there are finitely many 
points in Xp = X n Dp because X is discrete. Now we have X = G(Xp) = 
(UiEgi)(Xp)= T[Uigi(Xp)]. Therefore X is the image of finitely many points 
under the action of the translation subgroup T. By Theorem 1, T contains 
translations in n linearly independent directions, so, by definition, X is a crystal. 

. 

30 [January CRYSTALLOGRAPHIC GROUPS 



It was actually quasicrystals, rather than crystals, that drew our attention to 
Bieberbach's result. A decade ago Shechtman, Blech, Gratias, and Cahn [16] 
discovered the first "quasicrystal," an alloy of aluminum and managanese whose 
electron diffraction pattern consisted of sharp spots exhibiting a 5-fold symmetry. 
This elicited great excitement in solid-state science for the following reason. A 
distinct diffraction pattern with sharp spots, called Bragg peaks, is evidence of 
"long range order,"which, until that time, meant a crystal structure. On the other 
hand, the well known Czystallographic Restrzetion states that the only rotational 
symmetry possible for a crystal in two or three dimensions is 2, 3, 4, or 6-fold 
symmetry. In other words, a crystal structure and the observed 5-fold symmetry are 
incompatible. Since this original discovery, various similar materials (aluminum- 
lithium-copper, uranium-palladium-silicon, and other compositions) have been 
discovered and analyzed, and the consensus among solid-state scientists is that 
these materials cannot be explained within the framework of a periodic structure, 
that they are truly new. The "long range order" in quasicrystals, whatever is 
causing the Bragg peaks in the electron diffraction, is often referred to as 
"quasiperiodicity." 

In any study of quasiperiodicity, a minimum that should be required of a set X 
of points is that X be a Delaunay set. However, this alone implies little about 
global order, an example being the molecules of a gas in a closed container. 
Senechal and Taylor [15] inquire about the consequences of requiring the following 
additional local congruence property. For x E X and real number p, let Np(x) 
denote the intersection of X with the ball of radius p centered at x. 

Properb Np: For any two points x, y E X, the neighborhoods Np(x) and Np(y) are 
congruent by a congruence taking x to y. 

Unfortunately, as Senechal and Taylor point out, a theory based on the local 
regularity Property Np will not be interesting because it already implies that X is a 
crystal. 

Theorem 3. Let X be an (r, R)-Delaunay set in S;8n. There exists a number p, 
depending only on r, R, and n, such that if property Np holds, then X is a czystal. 

Theorem 3 is again a consequence of Bieberbach's theorem. The proof of 
Theorem 3 is in two parts. First, in 1976 Delaunay and his colleagues [6] gave an 
elegant proof that, under the conditions of Theorem 3, the symmetry group G of 
X acts transitively. Since the orbit X of G is a Delaunay set, G is a crystallo- 
graphic group. Theorem 3 now follows directly from Theorem 2, which, in turn, 
was a consequence of Bieberbach's theorem. 

Theorem 3 implies that any investigation into quasiperiodicity requires ideas 
more subtle than the local homogeneity given by property Np. Advances in this 
direction have been made by Penrose [12], de Bruijn [3], Kramer and Neri [10], 
Katz and Duneau [9], Mozes [11], Radin [13], and many others, but these results lie 
outside the scope of this note. 

5. CONJUGACY IN A CRYSTALLOGRAPHIC GROUP. Very informally, to say 
that two isometries of Euclidean space are conjugate means that they do the same 
thing, but in different places. In 3, for example, the conjugate kgk- l of a 
(X/2)-rotation g about a line I is a (X/2)-rotation about the image line k(l). 
Lemma 3 is a more formal statement. The notation is as follows. Let g be an 
isometry; use Lemma 1 to express it in the form g(x) = Qx + q, where Q is 
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orthogonal and q E axis(g). Define trans(g) = q, where trans(g) is considered as a 
free vector so, in statement (2) of Lemma 3, k maps both the initial and terminal 
point of the vector. 

Lemma 3. If g and k are isometries and h = kgk- 1 then 

(1) aucisfh) = k(aucisfg)) (3) rot(h) = rot(g) 

( 2) trans( h ) = k( trans f g ) ) (4) rot ( hg- 1 ) < 2rot f k ) rot f g ) . 

Proof: The first three statements are routine to verify. The following proof of 
statement (4) is due to Buser [4]. Let A and B be the orthogonal parts of g and k, 
respectively, centered at the same point. Then BAB-1Al - I = ((B - I)(A - I) 
- (A - I)(B - I))B- 1A-1 and, since IB-1A-1xl = Ixl, it follows that 

rot(kgk- lg- 1 ) = rot f BAB- 1A - 1 ) < 2rot f B) rotf A) = 2rot(k) rot(g) . ( 

Although somewhat technical, the next lemma is essential to the proof of 
Bieberbach's Theorem. A rough sketch of how it comes into play is as follows. Let 
G be a crystallographic group. Mini-Bieberbach (Lemma 2) implies the existence 
of n isometries with translational parts in independent directions and with rota- 
tional parts that are close to the identity. To prove Bieberbach's theorem it 
remains to show only that each such isometry g must necessarily be a translation. 
Assume the contrary, that g is not a translation. Under this assumption, a certain 
set C of conjugates of g, each distinct from g, is not empty. Lemma 4 is used to 
prove that axis(g) and axis(g) are not too close to each other if g E C. So among 
the isometries in C, let h have axis closest to the axis of g. Then it can be shown 
that axis(hgh - 1 ) is even closer to axis(g) than is axis(h), a contradiction if 
hgh-1 E C. Lemma 4 is required again to show that hgh-l E C. The complete 
proof appears in Section 6. 

As apparent from this outline, the minimum distance between the axes of two 
isometries g and h plays a crucial role. We use the notation 

df g, h) = min{lx - y1: x E axisf g), y E axisf h)} . 

Lemma 4. If g is an element of a crystallographic group, then there eucist positive 
numbers 6 and c with the following property. Let h = kgk-I be a conjugate of g. If 
rot(k) < 6 and either 

(1) d(g,h) c or (2) hgh-l =g, 

then h = g. 

Proof: Let p and p be closest points on axis(g) and axis(h), respectively, and 
consider the Voronoi tiling with respect to the orbit of p. Choose c small enough 
so that, if d(g, h) < c, then p lies in the interior of tile Dp. Choose 6 < 4 and, in 
addition, small enough so that both of the following conditions are satisfied. 

(1) If p lies in the interior of tile Dp and rot(k) < 6, then g(Dp) n h(Dp) + 0. 
This is possible due to statement (2) of Lemma 3. 

(2) If f(Dp) = Dp and rot(f ) < 4b, then f must act as the identity on Dp. This 
is possible because Dp is a bounded polytope with finite symmetry group. 

Now assume that rot(k) < 6 and d(g, h) < c. By statement (1) we have g(Dp) n 
h(Dp) + 0, which implies that g(Dp) = h(Dp) and g-lh(Dp) = Dp. By parts (2) 
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and (4) of Lemma 3, rot(g-1h) = rot(hg-1) < 2rot(k)rot(g) < 4rot(k) < 46. So by 
condition (2), with f = g-lh, the isometry g-lh acts as the identity on Dp. Since 
an element of G is determined by its action on Dp, we have h = g. 

Next assume that gO = hgh-1 = g. We claim that d(g, h) = O, in which case 
h = g follows from what has already been proved. To prove the claim, express 
h(x) = Qx + q as in Lemma 1, where Q is orthogonal and q E V = axis(h). 
Taking the center of Q as the origin, let W + a be the axis of g, where W is a 
linear subspace of Rn. Using statement (1) of Lemma 3, Q(W) + Qa + q = 
h(W + a) = h(axis(g)) = axis(gO) = axis(g) = W + a. This implies both (a) Q(W) 
= W and (b) (I-Q)a E q + W. But V= axis(h) = k(axis(g)) = k(a + W), 
which, by the same reasoning as above, implies (c) V = A(W), where A is the 
rotational part of k centered at the origin. We next prove, by contradiction, that 
W= V. Since subspaces V and W have the same dimension, assume that there 
existsawe W\V.Let w=v+vl,where veVand vle Vl andlet x=w 
- Qw. Then x E W because of statement (a), and x E V l because x = ( v + v l 
- (Qv + Qvl) = vl -Qvl E Vl . Hence, by statement (c), we know that A 
takes the element x of V l to an element of V. This contradicts rot(k) < \/;5. 
Now W= V and, from statement (b), we have (I- Q)a E V, which implies that 
a E V because I - Q le.aves both V and V l invariant and is non-singular when 
restricted to V l . Hence axis(g) = W + a = V + a = V = axis(h). - 

6. A CRYSTALLOGRAIE>HIC RESTRICTION AND THE PROOF OF BIEBER- 
BACH'S THEOREM. Theorem 4 is an analog in Rn of the Crystallographic 
Restriction discussed in Section 4. In particular, if X is a crystal, then Theorems 2 
and 4 eliminate the possibility of X possessing a k-fold rotation about a codimen- 
sion two axis if k 2 13. Also notice that Bieberbach's Theorem is an immediate 
corollary of Theorem 4 because the existence of translations in n linearly indepen- 
dent directions is guaranteed by Lemma 2. 

Theorem 4. If g is any non-identity element of a czystallographic group such that 
rot(g) < 1/2, then g must be a translation. 

Proof: By way of contradiction, assume that g is not a translation. Let 8 and c be 
as in Lemma 4, and let e = min(8, c/(41trans(g)1)). Consider the set C consisting 
of all conjugates g = kgk-1 of g in G such that 

(1) g Og and (2) rot(k) < s. 

The set C is not empty for the following reason. Since g is not a translation, 
axis(g) + sn. Lemma 2, with point p on axis(g), then guarantees the existence of 
an isometry k E G such that rot(k) < e and the translational part of k does not 
lie in axis(g). The latter condition implies that axis(g) and axis(g) are distinct 
because, by Lemma 3, axis(g) = k(axis(g)). Since axis(g) + axis(g), also g + g. 

Let 

d= infd(g,g)>c>0, 
gEc 

the inequalities resulting directly from Lemma 4. The contradiction that will finish 
the proof is the existence of a g0 E C such that d(g, g0) < d. Let h E C be such 
that 

d(g,h) < 4d 

1997] 
33 

CRYSTALLOGRAPHIC GROUPS 



Then gO = hgh-1 is such an element. It remains to show only that gO E C and that 
d(g,go)<d. 

We first show that gO E C. Because h E C, we have h 7& g and h = kgk-l, 
where rot(k) < £ < b. Therefore gO 7& g by Lemma 4. To verify the second 
condition in the definition of C, we show that there exists a k E G such that 
gO = kgk-1, where rot(k) < £. Since gO = hgh-l = (hg-1)g(hg-l)-l, statement 
(4) of Lemma 3 implies that rot(hg-1) < 2rot(g)rot(k) < rot(k) < £. Hence take 
k = hg-1. 

To show that d(g, gO) < d, let V = axis(g) and V' = axis(h). Let p E V and 
p' E V' be closest points on V and V', respectively. Further, let V denote the 
image of V under the translational part of h, and let p E V be a closest point to 
p on V. If trans(h) = 0 then p =p. Otherwise, since h E C express h = kgk-1, 
and let a be the angle between trans(g) and trans(h). By elementary trigonometry 
we have sin(a) < rot(k). Condition (2) in the definition of C and statement (2) of 
Lemma 3 yield 

Ip-p-I < Itrans(h)l sin(a) < Itrans(g)lrot(k) < 4C < 4d 

IP-P!I < IP-PI + IP-P!I < 4d+d(g,h)<2d 

If p" is the image of p under the rotational part of h then, using statement (3) of 
Lemma 3, 

IP-P"l < Ip-p'lrot(h) < 2drot(g) < 4d. 

But p E axis(g) and p", being in the image of axis(g) under h, lies in axis(gO). 
Therefore 

d(gvGo) < IP-P I < IP-PI + IP-P"I < 4d + 4d =d. < 

REFERENCES 

1. L. Bieberbach, Uber die Bewegungsgruppen der Euklidischen Raume, I, Math. Ann. 70 (1911), 
297-336; II, Math. Ann. 72 (1912), 400-412. 

2. H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, C.rystallographic Groups 
of Four-Dimensional Space, Wiley, New York, 1978. 

3. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane I, II, Proc. Konink. 
Ned. Akad. Wetensch A84 (1981), 39-66. 

4. P. Buser, A geometric proof of Bieberbach's theorems on crystallographic groups, L'Ensignment 
Mathe'matique 31 (1985), 137-145. 

5. L. S. Charlap, Bieberbach Groups, and Flat Manifolds, Springer-Verlag, New York, 1986. 
6. B. Delone, N. Dolbilin, M. Shtogrin, and R. Galiulin, A local criterion for the regularity of a 

system of points, SovietMath. Dokl. 17 (1976), 319-322. 
7. E. S. Fedorov, Symmetry in the plane, Zapiski Rus. Mineralog. Obsvcestva, Ser. 2 28 (1891), 

345-390. .. 
8. C. Frobenius, Uber die unzerlegbaren diskreten Bewegengsgruppen, Sitzungsber. Akad. Wiss. 

Berlin 29 (1911), 654-665. 
9. A. Katz and M. Duneau, Quasiperiodic patterns and icosahedral symmetry, J. Physique 47 (1986), 

181-196. 
10. P. Kramer and R. Neri, On periodic and non-periodic space fillers of Em obtained byprojection, 

Acta Cryst. A40, 580-587. 
11. S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Analyse Math. 

53 (1989), 139-186. 
12. R. Penrose, The role of aesthetics in pure and applied mathematics, Bull. Inst. Math. Applications 

10 (1974), 266-271. 

34 
[January 

CRYSTALLOGRAPHIC GROUPS 



13. C. Radin, SymmetIy of tilings of the plane, Bull. Amer. Math. Soc. 29 (1993), 213-217. 
14. A. Schoenflies, Kristallrysteme und Kristallstruktur, Teubner, Leipzig, 1981. 
15. M. Senechal and J. Taylor, QuasicIystals: the view from Les Houches, Math. Intelligencer 12 

(1990), 54-64. 
16. D. Shechtman, I. Blech, D. Gratias, and J. Cahn, Metallic phase with long-range orientational 

order and no translational symmetIy, Phys. Rev. Lett. 53 (1984), 1951-1954. 
17. J. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967. 

Department of Mathematics 
University of Flonda 
P. O. Box 118105, 358 Little Hall 
Gainesville, FL 32611-8105 
vince @math. uJif. edu 

Note on Gauss-Bonnet 

Several geometers have pointed out that I have not given due 
credit to Allendoefer and Weil in my recent article on the 
Gauss-Bonnet Theorem, All the Way with Gauss-Bonnet and the 
Sgiology of Mathematics, Monthly 103 (1996), 457469 

As I described on p. 464, Hopf asked for an intrinsic proof and 
generalization of the even dimensional case of his Satz VI, the 
topological Gauss-Bonnet theorem. In 1940, Allendoerfer and 
Fenchel independently found the correct formula which today is 
called the Gauss-Bonnet-Chern theorem, but only for Riemannian 
submanifolds in Euclidean space. However, in 1943, Allendoerfer 
and Andre Weil proved that in fact it held for all Riemannian 
manifolds. This is clearly stated in Theorem I on p. 101 of C. B. 
Allendoerfer and Andre Weil, Truns. Amer.iMath Soc. 53 (1943) 
101-129. This is is the complete Gausso Bonnet-Chern theorem. But 
their proof involved local embeddings, and hence was not intrinsic. 

Later, Weil told Chern about the lack of an intrinsic proof for the 
Gauss-Bonnet-Chern Theorem. Chern found his famous proof in 
short order, and published it in the Annals in 1944 with a title that 
accurately reflected his contribution: A Simple Intrinsic Proof of 
the Generalized Gauss-Bonnet Theorem, The Nash embedding 
theorem (evely Riemannian manifold can be found as a submani- 
fold of Euclidean space) was proved in the l950's. When combined 
with the Allendoerfer-Fenchel result of 1940, Nash's theorem 
renders Allendoerfer-Weil's step superfluous. Chen's proof and 
NashU theorem probably helped create the current widespread 
misconception about the credit due to Allendoerfer and Weil. 4 

I:)aniel Henry Gottlieb, Department of Mathematics 
Purdue University, West Lafayette, IN 47907 

gottlieb@math.purduc.edu 
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