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G R A P H I C  M A T R O I D S ,  S H E L L A B t L I T Y  AND THE 

P O I N C A R E  C O N J E C T U R E  

ABSTRACT. In this paper we introduce a theory of edge shelling of graphs. Whereas the standard 
notion of shelling a simplieial complex involves a sequential removal of maximal simplexes, 
edge shelling involves a sequential removal of the edges of a graph. A necessary and sufficient 
condition for edge shellability is given in the case of 3-colored graphs, and it is conjectured that 
the result holds in general. Questions about shelling, and the dual notion of closure, are motivated 
by topological problems. The connection between graph theory and topology is by way of a 
complex AG associated with a graph G. In particular, every closed 2- or 3-manifold can be 
realized in this way. If AG is shellable, then G is edge shellable, but not conversely. Nevertheless, 
the condition that G is edge shellable is strong enough to imply that a manifold AG must be a 
sphere. This leads to completely graph-theoretic generalizations of the classical Poincar6 
Conjecture. 

1. I N T R O D U C T I O N  

Research involving the interplay between combinatorics and topology can 
enrich both fields. Some recent contributions are cited among the references. 
The purpose of this paper is to investigate certain questions concerning 
the edge set of a graph. These questions are motivated by problems about 
low-dimensional manifolds, in particular the classical Poincar6 Conjecture. 

The graphs G in this paper are endowed with a cover, i.e. a set of subgraphs 
covering the edges of G. The connection with topology is by way of a com- 
plex AG associated with the graph G. The complex AG is essentially the 
nerve of the cover: Examples of graphs with cover can be obtained naturally 
from edge-colored graphs, which are discussed in Section 5. These examples 
are important because any closed 2- or 3-manifold can be realized as AG 
for some colored graph G. A combinatorial fundamental group n(G) is 
defined for the graph G in Section 2. This generalizes the edge-path con- 
struction of the fundamental group of a simplicial complex. It is shown that 
the combinatorial fundamental group of G is isomorphic to the topological 
fundamental group of AG. 

The graph theoretic questions considered in this paper concern edge 
shelling of G. An edge shelling is a certain sequential removal of the edges of 
G. Shelling of simplicial complexes has been important in polyhedral theory, 
in manifold theory and, more recently, in connection with Cohen-Macaulay 
rings. Early calculations of the Euler characteristic of a conw~x polytope 
were based on a shelling argument. Shelling of complexes and edge shelling 
of graphs are related as follows: if AG is shellable, then G is edge shellable, but 
not conversely. Properties of edge shelling are treated in Section 6. For 
example, it is shown that if G is edge shellable, then n(G) is trivial. It is con- 
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jectured that the converse is true : if ~(G) is trivial then G is edge shellable. 
The conjecture is proved in the case of 3-colored graphs. 

Dual to edge shelling is a concept of closure in the cycle matroid of G. 
In Sections 3 and 4 three closure operators (c o, c a and c2) are investigated. 
Basically c o is closure with respect to cycles in G ; c 1 is closure with respect to 
null homotopic cycles ; and c 2 is closure with respect to cycles in members of 
the cover. The closure operators are related by c2(A) ~ el(A) ~_ co(A) for any 
subgraph A of G. For a spanning tree T in G we show that c~(T) = Co(T) if 
and only if ~z(G)= 0. The conjecture that c 2 ( T  ) = el (T  ) for some spanning 
tree T implies the conjecture mentioned above. 

The topological significance of edge shelling and closure is examined in 
Section 7. The long-standing Poincar6 Conjecture states that a simply con- 
nected closed 3-manifold is homeomorphic to a 3-sphere. It is well known that 
a triangulated 3-manifold that is shellable is homeomorphic to a 3-sphere. 
However, it has been impossible to use this fact to prove the Poincar~ Con- 
jecture, because there exist non-shellable 3-balls and 3-spheres. An alter- 
native graph-theoretic approach leads to problems involving edge shell- 
ability and closure. The edge shellability of a 4-colored graph G is not as 
strong a condition as the shellability of the complex AG. Nevertheless we 
prove that if G is edge shellable, then a manifold AG is still a 3-sphere. In 
particular, the validity of either of the graph-theoretic conjectures stated 
above implies the validity of the Poincar6 Conjecture. 

2. G R A P H S  AND COVERS 

Graphs will be finite, without loops. Multiple edges are allowed. A collection 
~- of connected subgraphs of a graph G is called a cover if w g = G. In this 
section a complex A(G, J )  will be associated with the pair (G, ~) .  

If the intersection of any set of subgraphs in ~ is connected, then A(G, ~ )  
could be defined as the nerve of the cover .~-. This means that A(G, ~ )  is a 
simplicial complex whose simplexes are nonempty subsets of ~ with non- 
empty intersection. In general, we proceed as follows: Consider any subset 
{FI '  F2 . . . .  ' Fk+ 1 } of distinct elements of ~ .  If H is any connected compo- 
nent of c~ + ] F i, let a n denote a k-dimensional Euclidean simplex whose verti- 

Fig. 1. 
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Cover ,~={Fl ,Fz ,F3 ,F ,~} ,  where F 1 = ( 1 , 2 , 3 ) ,  F 2 = ( 4 , 5 , 6 ) ,  F 3 = ( 2 , 4 , 7 , 8 ) ,  
F4 = (3, 5 ,8 ,9) .  
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ces are labeled F1, F 2 '  " '"  ' Fk + 1" Each m-dimensional face < Fil, F i z  , . . . .  Fire +1 > 
ofa/~ is labelled H',  where H'  is the connected component  of c~]11 F~j contain- 
ing H. Let K be the disjoint union of the a n taken over all connected com- 
ponents H of intersections of all possible subsets of ~ .  In K :identify two 
simplexes of the same dimension when all the faces are identically labeled. 
If ~ denotes this equivalence, define AG := A(G, ~ )  = K / ~ .  An example is 
shown in Figure 1. Here the subgraphs in Y are denoted by the edges that 
induce them. In A(G, o~) it is possible for a set ofm + 1 vertices to be contained 
in two distinct m-dimensional simplexes. For this reason a complex whose 
cells are simplexes is referred to as a pseudocomplex in [7]. 

For simplicial complexes, the well-known [11] edge-path c, onstruction 
yields the fundamental group. We now generalize this procedure. A closely 
related notion of homotopy  was used by Tits [13] in relation to chamber 
complexes. Consider a connected graph G with cover ~ .  A path in G is a 
sequence of directed edges {ea, e 2 . . . . .  era} such that the initial vertex of 
ez+ 1 is the terminal vertex of e~ for i = 1, 2 . . . .  , m - 1. If the terminal vertex 
of path c~ is the initial vertex offl, then the product cq3 is the concatenated path. 
The path e -  1 is obtained by listing the edges of c~ in revers order. Two paths 

=/~7~ and ~' =/~: '6 are called elementary ~ - h o m o t o p i c  if77'- 1 is contained 
entirely in one of the subgraphs F e g .  Two paths ~ and ~' are 9;-homotopic 

-,~ a' if there is a sequence of elementary homotopies taking one to the other. 
If v is taken as a base point of G, the homotopy  classes of paths with initial 
and terminal vertex v form a group in the usual way. This group, which is 
independent of base point, is denoted n(G):= n(G, ~) .  

EXAMPLE 1. Clearly n(G, {G} ) = 0. At the other extreme let E(G) denote 
the edge set of G. Then n(G, E(G)) ~- nl(G), where nl(G) is the topological 
fundamental group of G regarded as a 1-complex. 

EXAMPLE 2. Consider a finite simplicial complex A. Let A 1 be the 1- 
skeleton of A and ~ the set of 1-skeletons of 2-simplexes in A. Then 
rc(A 1, ~ )  = nl(A ). This is exactly the edge-path construction of the funda- 
mental group of a simplicial complex. 

The next result relates the combinatorial  fundamental group of a graph 
G to the topological fundamental group of the complex AG. 

T H E O R E M  2.1. I f  G is a connected graph with cover, then ~z(G) ~- rCl(AG ). 
Proof Let Y be the cover of G. By definition each F e Y  is a vertex of 

AG. Let a = EoE 1 ... E k be any edge path in AG based at F o e ~ .  If E z has 
endpoints F i, F i + i e ~ ,  where F k + 1 = Fo, let H i be the component  o fF  i c~ F i + 1 
corresponding to E i. If Pl is any vertex in Hi, let fll be a path joining Pi and 
Pi+ 1 and lying entirely in F~+ 1- Then ~ = f l l / ~ 2  . . .  ]~k is a path in G with base 
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point Po and it is easily checked that the ~ - h o m o t o p y  class [~] of ~ depends 
only on the edge-path homotopy class [e] of :t. Thus the map [e]~--~[~] 
induces a homorphism f : n l (AG)~  n(G). In the other direction let ~ = 
eoe ~ ... e k be a path in G based at Po" Then there are subgraphs F~, F 2 . . . . .  F k 
in ~ such that e~eFt.  Let p~ be the common vertex of e~ and e~+ ~ and let 
be the edge path E~E 2 ... E k in AG, where E l is the edge corresponding to the 
component of F~_ ~ r~ F~ containing p~. Then the edge-path homotopy class 
[:t] of ~ depends only on the ~ - h o m o t o p y  class [~] of :~. Thus we have a 
homorphism # :n(G)~ n~(AG)given by [ ~ ] ~ [ e ] .  It is easily checked that 
f a n d  # are inverse to each other. []  

T H E O R E M  2.2. I f  T is a tree wi th  cover, then n( T)  ffi O. 

Proof .  Let ~t = ele 2 ... e k be a loop in T. We claim that • ~ 0. The proof is 
by induction on the length of:t. It is obvious for k ffi 0. Ifk I> 1, then e~ ffi e7+~1 
for some i. For any cover, ~t = el ... e i_ ~ ele t + ~ e t.~ 2 "" ek ~ e~ . . .e t_ ~ e I + 2 " '  ek " 

[] 

3, CLOSURE 

Throughout this section G is a connected graph with edge set E and cover ~ .  
The topics in this section will be framed in the language of graphic matroids. 
For background on matroids see [13, [ 16 3 . If A is a set of edges of G, we often 
make no distinction between A and the subgraph of G induced by A. Recall 
that the cycles of G are the circuits of a matroid M ( G )  on the edge set E. 
The matroid M ( G )  is called the cycle matroid of G. If A ___ E, the following 
facts about  the cycle matroid are elementary. 

(1) An edge e e E  - A belongs to the closure o fA ~ t h e r e  is a cycle C in G 
with e ~ C c _  A ~ e .  

(2) A is a basis of M ( G ) , ~  A is a spanning tree in G. 

We now introduce three closure operators on E. Let c£ 0 be the set of cycles 
in G. Let c£ 1 be the set of cycles in G that are ~ ' -homotopic to 0. Let cg 2 be 
the set consisting of cycles C in G such that C ___ F for some F ~ .  Clearly 
c£2 _~ ~1 --- c~0' Let A be a subset of E. An edge e E E  - A is said to be i- 
dependent  on A for i~{0, 1, 2} if there is a cycle C e ~  such that e ~ C  =_ A ~ e .  

A subset A ~ E is called i-closed if there does not exist an e e E  - A that is i- 
dependent on A. The i-closure of A is the intersection of all /-closed sets 
containing A. The/-closure of A is denoted c~(A). Note that the closure c o is 
just the usual closure operator of the cycle matroid M(G).  It is easy to verify 
that all three satisfy the standard properties of a closure operator. 

(1) A c_ ci(A ) 

(2) A ~_ B ~ ci(A ) =_ c~(B) 
(3) c~c~(A) = c~(A). 
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Fig. 2. Cover ~ = {F 1 ,F2,F3},whereF 1 = ( 1 , 2 , 7 , 9 ) , F ,  --- ( 3 ,4 ,8 ,9 )  and F a = (5 ,6 ,7 ,8) .  

However, the closure operators c~ and c 2 do not always determine a matroid 
on E. This is because, in general, the exchange property does not hold for 
c~ or c 2. For example, consider the graph G in Figure 2. The set of edges 

A = {1,2, 3,4, 5} is c 1- and c2-closed. For i =  1,2 we. have 6cq(Au{7}) ,  
but 7~ci(A ~ {6}). 

The following properties of the closure operators are consequences of 
the definitions. 

PROPOSITION 3.1. Let G be a connected graph with cover ,~. I f  A is a 
set of edges of G, then 

(1) A O-closed =*. A 1-closed =~ A 2-closed. 
(2) c2(A) __q cl(A) ~_ co(A ). 
(3) The intersection of i-closed sets is i-closed for i~ {0, 1, 2}. 

Let A be a subgraph of G. The set ~ / A  = {F n A tF ~ ~'} will be referred to 
as the restricted cover o f ~ .  By n(A) we always mean ~(A, ~ /A) ,  the homotopy 
group with respect to the restricted cover. Similarly, AA = A(A, ~:/A). 

THEOREM 3.2. Let G be a connected graph with cover. I f  A c_ G, then there 
are subjective homorphisms re(A)~ rc(q(A) ) for i=  1, 2. 

Proof. The inclusion maps A ~ c i(A) induce homomorphisms 
fl  :n(A)--* zc(ci(A)). We will show that f l  is subjective. The proof for f2 is 
almost identical. Let A = A  I ~ A  2_= . . . _cA.=c t (A  ) be a sequence of 
subgraphs of G such that Ai+ ~ = Atwe  ~, where e~Ci  c_ A~we~ and C~ is a 
cycle in A~+ 1 ~'-homotopic to 0. By induction, it is sufficient to show that 
any based path ~ = E1E 2 ... E,, in A~+ 1 is ~-homotopic  to a path in A~. Ife~ 
does not lie in e we are done. Otherwise e~ = Ej for some j. If C~ = E l  ~fl, 
then ~ = E 1 ... Ei_ ~EjE~.. ~ ... E,, ~ E 1 ... E i_ lflEj+ 1 ... E,, = V, where 7 lies 
in A i. [] 

4. m CONJECTURE 

Let G be a connected graph with cover. This section deals with the relation- 
ship between the closure operators c 0, cl and c 2. Specifically, let T be a 
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spanning tree of G. In other words, T is a basis for the cycle matroid M(G). 
By Proposition 3.1 we know that c2(T) _ c l (T)  ~_ co(T) = G. Under certain 
conditions more can be said. 

T H E O R E M  4.1. Let  G be a connected graph with cover and T a spanning 
tree o f  G. Then c l ( T  ) = co(T) if  and only i f  re(G) = O. 

Proof. If zt(G)= 0 then ~gl = C~o- This implies that c a ( T ) =  co(T). Con- 
versely, if Cl(T ) = co(T ) = G then, by Theorem 3.2, there is a surjective homo- 
morphism it(T) ~ ~(G). But by Theorem 2.2 ~(T) = 0. [ ]  

T H E O R E M  4.2. I f  G is a connected 9raph with cover and T is a tree in G, 
then rc(e2( T) ) ~ re(el(T)) = O. 

Proof. By Theorem 3.2 there are surjective homomorphisms 7r(T)--* 
rc(ci(T)) for i = 1, 2, and by Theorem 2.2 ~r(T) = 0. Hence n(ci(T)) = 0 for 
i =  1,2. []  

We would like to strengthen Theorem 4.2. A special case of the following 
conjecture is proved in Section 6, but we are unable to give a proof  in general. 
This is not surprising in light of the topological implications discussed in 
Section 7. 

C O N J E C T U R E  1. Let  G be a connected 9raph with cover. There exists a 
spannin9 tree T such that c 2 ( T  ) = C l ( T  ). 

There validity of Conjecture 1, together with Theorem 4.1, would imply 
the following statement. 

C O N J E C T U R E  2. Let  G be a connected graph with cover. I f  ~z(G) = 0 then 
there exists a spannin 9 tree T such that c2(T ) = c l (T)  = Co(T) G. 

Conjecture 2 cannot be strengthened to state that if re(G) = 0 then c 2 ( T  ) = G 
for every spanning tree T. As an example, consider the graph G in Figure 3. 
The simplicial complex AG is a topological 2-cell. Hence, by Theorem 2.1, 

Fig. 3. 
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Cover  ~ - =  {F j ,  Fz, i f3} ,  where F 1 = ( 1, 2, 3, 7 ) ,  F 2 = ( 3, 4, 5, 6 )  and  F 3 = ( 1, 2, 3, 4, 5 ) .  
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re(G) = 0. However T =  ( 1, 5, 6, 7 )  is a spanning tree and c2(T ) ~ G. The 
graph G, however, is not a counterexample to Conjecture 2 because T ' =  
( 1, 2, 4, 5 ) is also a spanning tree and c2(T') = G. 

5. COLORED GRAPHS 

Several authors have recently applied edge-colored graphs to topics in 
topology [4], [5], [6], [8], [15]. For us they furnish important examples 
of graphs with cover, because every closed 2- or 3-manifold can be realized 
as the associated complex AG of some colored graph G. In subsequent 
sections colored graphs are used in treating shellability of 2- and 3- mani- 
folds and in an approach to the Poincar6 Conjecture. 

Let I = {1, 2, . . . ,  n} be fixed throughout this section. An n-colored 9raph 
is a connected graph, regular of degree n, whose edges are / -colored  so that 
no two incident edges are the same color. The integer n is called t]he rank of G. 
For J _~ I let G(3) be the subgraph of G obtained by deleting all edges of 
color not in J. Each connected component of G(J) is a colored graph of rank 
]Jt, called a J-residue of G. The only residue of rank n is G itself. Each residue 
of rank 1 is a single edge, and each residue of rank 0 is a single vertex of 
G. Figure 4 shown a 3-colored graph and the six residues of rank :2. 

Let G be an n-colored graph. The set ~ of residues of rank (n - 1) is a cover 
of G. The associated complex AG := A(G,~) is an (n-1)- ,dimensional 
pseudomanifold. The following result is proved in [4], [8]. 

T H E O R E M  5.1. I f  M is a closed 3-manifold (2-manifold), then there is a 4- 
colored graph (3-colored 9raph) such that AG is homeomorphic to M. 

1 

2 2 

1 

Fig. 4. The residues of rank 2 in a 3-colored graph. 
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6. SHELLABILITY 

A simplicial complex is pure if its maximal simplexes all have the same di- 
mension d. A pure finite simplicial complex is shellable if there is an 
ordering (s 1 , s 2 . . . . .  s N) of the maximal simplexes such that s k c~ ~ s t is a 
nonempty union of maximal proper faces of s k for k - 2 ,  3 . . . . .  N. This 
implies, in particular, that this intersection is homeomorphic to either a 
(d - 1)-ball or (d - 1)-sphere. Therefore, a shellable d-dimensional pseudo- 
manifold is either a d-ball or a d-sphere. The preceding definitions hold, 
exactly as stated, for pseudocomplexes. 

Shellability has been a useful concept in polyhedral theory and, more 
recently, in connection with Cohen-Macaulay  rings [12]. In this section 
a notion of edge shelling of graphs is formulated. Edge shelling is dual, in a 
sense, to closure. Also edge shelling for a graph is related to the standard 
shelling for simplicial complexes as defined above. 

An edge e of a graph G is called a bridge if G - e has more connected com- 
ponents than G. Let G be a graph with cover ~'. In this section the terminology 
~, c, dependent and closure refer, respectively, to ¢g2, c2,2-dependent and 2- 
closure as defined in Section 4. Hence ~g is the set consisting of those cycles 
C such that C _= F for some F e ~ .  Let A be a subgraph of G. An edge eeA 
is said to be shellable from A if either 

(1) e is a bridge in A, or 
(2) e is dependent on A - e. 

The graph G is called edge shellable is there is an ordering (e t , e 2 . . . . .  eN) 
of the edges of G such that e k is shellable from ( e 1 , e 2 . . . . .  e k ) for 1 ~< k ~< N. 
Edge shellability of a graph is related to closure. 

T H E O R E M  6.1. Let G be a connected graph with cover. The graph G is 
edge shellable if and only if G has a spanning tree T with c(T) = G. 

Proof. Assume c (T)=  G, where T = {e 1 . . . . .  ek}. It is clear that for 
1 <<.i <~k,e i is shellable from ( e l , e  2 . . . . .  et). Let A = {e 1 . . . . .  ek' ek+ I . . . . .  eu} 
be a set of edges of G, maximal with respect to the property that for 1 ~< i 
N, e~ is shellable from ( e  1 . . . . .  e l ) .  IfA is the set of all edges of G, then we are 
done. If not, then A is not closed. There is an eeA  such that e is dependent 
on A. Hence e is shellable from A we, contradicting the maximality of A. 

Conversely, assume (e l , e  2 . . . . .  e N) is an edge shelling of G. Let T = 
{el . . . . .  e'k} be a subset of {e I . . . . .  eu} consisting of those et that are bridges 
in ( e  1 . . . . .  e~ ) .  This implies that T contains no cycle. Also by the  definition 
of edge shelling c(T)= G. Finally, T is a spanning tree; otherwise G = 
e(T) c_ co(T ) ~ G. [] 

The next result follows immediately from Theorems 4.2 and 6. I. 
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THEOREM 6.2. Let G be a connected ~]raph with corer. IJ'G is edge shellable, 
then z~(G) = O. [] 

Via Theorem 6.1 the Conjecture 2 can be restated in terms of edge shell- 
ability. The equivalent restatement is exactly the converse of Theorem 6.2. 

CONJECTURE 2'. Let G be a connected graph with cover. I f  n(G)= O, 
then G is edge shellable. 

Conjecture 2' can be settled in the case of 3-colored graphs. Recall that 
the cover in this case is the set of residues of rank 2. 

THEOREM 6.3. A 3-colored graph G is edge shellable if and only if z~(G) = O. 
Proof. The implication in one direction is a direct consequence of Theorem 

6.2. Conversely, assume that zr(G) = 0. Note that the rank 2 residues of G 
are cycles in G. Let T be any spanning tree of G and assume, by way of con- 
tradiction, that c (T)~  G. Then there must exist a set S = {Ci}, 0 ~<i~ < m, 
of rank 2 residues and a set A = {e~}, 0 ,N< i ~< m, of edges not in T, such that 
e~eClc~C~+ 1 . Here the indices are labeled modulo m. In particular, each 
cycle C~ contains exactly two elements of A. Let ao be the unique cycle con- 
tained in T w %. Note that :% contains exactly one edge in A. If:~ is any based 
path containing an odd number of edges of A and :( is elementary homo- 
topic to a, then a' must also contain an odd number of edges of A. Hence 
it is not possible that % ~ 0. Therefore, n(G) ~ O. [] 

To understand how edge shellability relates to the usual notion of shell- 
ability of pseudo complexes, consider the case where G is an n-colored graph. 
The set ~,~ of residues of rank m i> 1 is a cover of G. In this case the elements 
of ~ are cycles in G that are m-colored. The pseudocomplex AG, as defined 
in the previous section, is a pure pseudocomplex. 

THEOREM 6.4. Let G be an n-colored 9raph. I f  AG is shellable, then G is 
edge shellable with respect to the cover ~ m.for any m >i 2. 

Proof. Assume that AG is shellable. It is sufficient to prove the result for 
the cover ~2 '  It was proved in [15] that AG shellable is equivalent to the 
existence of an ordering (v 1, v 2 . . . . .  v N) of the vertices of G such that for 
1 ~< k ~ N, O k belongs to a regular residue of rank d in the induced graph 
H = ( v 1 . . . . .  v k), where d is the degree of/A k, If {e I , e 2 . . . . .  ed} is the set of 
edges incident with v k, then ej is shellable from H - { e  1 . . . . .  ej_l}, for 
1 ~<j ~< d. This process can be repeated for k = N, N - 1, . . . .  1 and the result 
follows by induction. [] 

The converse of Theorem 6.4 is false. Consider two identical copies of the 
graph in Figure 5. Let G be the 4-colored graph formed by joining correspond- 
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1 3 

2 2 

4 4 

Fig. 5 

ing vertices of the two copies by appropriately colored edges. It can be 
checked that G is edge shellable. However, it is shown in [15] that AG is a 
non-shellable sphere. 

7. POINCARI~ CONJECTURE 

Let G be a 4-colored graph. We know that if AG is shellable, then AG is a 3- 
sphere. By Theorem 6.4 and the remarks following it, the edge shellability 
of G is weaker than the shellability of AG. Nevertheless, it is proved in this 
section that if G is edge shellable, then a manifold AG is a 3-sphere. Topo- 
logical implications of this result, particularly for the Poincar6 Conjecture, 
are discussed. 

Recall that for an n-colored graph, the set of residues of rank ( n -  1) 
is the cover. 

T H E O R E M  7.1. Let G be an n-colored graph, n ~<4, such that AG is a mani- 
fold. I f  G is edge shellable, then AG is an (n - 1)-sphere. 

Proof. Only the case n = 4 is proved. The cases n < 4 follow from easier 
versions of the same argument. Assume that G is edge shellable. Then there 
is a spanning tree T such that c (T)=  G. Because AT is shellable, AT is a 
3-ball. We will rather regard AT as the complement of an open 3-ball in S 3. 
In general let ~ be the class of 3-dimensional pseudomanifolds that are the 
complements of a finite number of disjoint open 3-balls in S 3. Thus A T ~ .  
To prove Theorem 7.1, it is sufficient to show that zXG~N' because AG is 
without boundary. This will be done by induction. Assume that A _~ G and 
A A ~ .  Let e~A  be an edge that is dependent on A. We have only to show 
that A(A w e ) ~ .  By the construction described above, A(A u e) is obtained 
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(a) Ib) 

Fig. 6 

from AA by identifying two 2-simplexes, s and s'. The fact that e is dependent 
on A means that s and s' share a vertex v in AA. If s and s' belong to the 
boundaries of distinct 3-bails in S 3 - AA, then link v cannot be a 2-sphere in 
AG, contradicting the assumption that AG is a manifold. Therefore s and s' 
belong to the boundary of the same 3-ball in S 3 - AA. Figure 6 shows simple- 
xes s and s' situated on the boundary of this 3-ball. There are two ways that 
s and s' can be identified in A(A w e). If they are identified along like-number- 
ed vertices as in Figure 6a, then link v cannot be orientable in AG, contradict- 
ing the assumption that AG is a manifold. Hence the identification is as 
in Figure 6b. It is possible that some of the vertices labeled 1 and 2 and some 
of the edges labeled (12), (lv), (2,v) are already identified in AA. In any case 
S 3 - A(A ~ e) remains the disjoint union of 3-balls. []  

Remark 1. Theorems 2.1, 5.1, 6.3 and 7.1 imply that a simply connected 
closed 2-manifold must be a 2-sphere. Of  course, this is well known by the 
classification of 2-dimensional surfaces. Our proof  may be of interest be- 
cause it is completely combinatorial.  

Remark 2. If a triangulated closed 3-manifold is shellable, then it is a 
3-sphere. As pointed out by Bing [2], this fact provides a natural approach to 
the classical Poincar6 Conjecture. 

POINCARI~ C O N J E C T U R E .  A simply connected closed 3-.manifold is 
homeomorphic to a 3-sphere. 

To verify the conjecture it is sufficient to show that every simply connected 
closed 3-manifold is shellable. Unfortunately, there exist triangulated 3- 
balls [10] and 3-spheres [15] that are not shellable. An alternative is to use the 
concept of edge shellability. By Theorems 2.1, 5.1 and 7.1, a weaker graph 
theoretic statement still implies the Poincar6 Conjecture : 

C O N J E C T U R E  3. Let G be a 4-colored 9raph. I f  g(G) = 0, then G is edge 
shellable. 

Conjecture 3 is a special case of Conjecture 2 or 2', which in turn is a 
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special case of Conjecture 1. Each of the three may therefore be considered a 
generalized Poincar6 Conjecture, 
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